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ABSTRACT: The propagation study of electromagnetic (EM) waves within a human body is becoming essential due to the growing
demand for the design and development of implantable sensing nodes in a body area network (BAN). Many researchers are interested in
contributing to the development of propagation models in the ultra-wideband (UWB), i.e., 3.1 to 10.6 GHz, for biomedical applications,
as well as the license-free Industrial, Scientific, and Medical (ISM) band. This kind of propagation model is essential in order to design
and develop UWB transceivers for in-body, on-body, and off-body communications. This paper looks at the possibility of using a stepped
slot patch antenna with a copper ground plane as either an off-body or on-body antenna by comparing measurements taken on a liquid
human phantom. In addition, we use the empirical data to propose a statistical model.

1. INTRODUCTION

he development of wireless sensing nodes for body area net-

work (BAN) could enable sophisticated medical facilities
for people residing in remote places. In addition, this will make
the continuous monitoring of elderly people easier and more ef-
ficient from anywhere, even from our workplaces. As a result,
performing research on the design and development of moni-
toring devices, such as wireless sensors for human bio-signals,
is gaining popularity these days [1]. Ultra-wideband (UWB)
has been released for biomedical applications to meet the high
data rate channel requirements of applications like in-body im-
ages or videos [2]. However, the UWB channel through hu-
man tissues is not completely characterized for medical appli-
cations, especially for on-body or off-body-to-in-body commu-
nication. In UWB, this necessitates a deeper knowledge of EM
wave propagation in human tissues.

Measuring the characteristics of UWB channels within liv-
ing human organisms is difficult from a practical standpoint.
Hence, the collection of empirical data from in vivo measure-
ments with animals or human tissue mimicking phantoms is an
alternative solution. On the other hand, channel models may
also be developed to foresee the transmission of radio waves
inside the human body based on the above experimental data
or numerically. Many of the published BAN channel measure-
ments and models only describe ISM and narrow band chan-
nels.

Researchers have proposed only a few propagation models to
characterize the UWB channels for on-body or off-body-to-in-
body communication. The very first UWB channel model [3]
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examined the viability of using the 3.4-4.8 GHz frequency
band as a channel between in-body and on-body transceivers.
The authors conducted numerical simulations based on the
frequency-dependent finite difference time domain (FDTD)
method. The authors in [4] obtained simulated data with a voxel
model of an adult male, deriving this model from the results.
The above voxel model is available at the National Institute of
Information and Communications Technology, Japan. The re-
searchers developed the voxel model using magnetic resonance
imaging (MRI) data and included almost fifty types of human
tissues. For this model, simulated data were obtained at each
of the randomly selected twenty locations in the chest at depths
ranging from 0.6 cm to 1.8 cm.

The above numerical models need the complex structure
of human models and consume more time. In addition, re-
searchers have proposed a few empirical models within the fre-
quency range of 1 GHz to 6 GHz at a depth of 0.5 cm—12 c¢cm in
the chest, as described in [5] and [6]. Simulations using time-
domain finite integration techniques (FIT) obtained the existing
data that support these statistical models. In the above case, a
voxel model of the human body was used to describe the hu-
man body model, incorporating frequency-dependent dielectric
properties [7].

A function of frequency determines the attenuation that
EM waves experience as they travel through space. In [8],
researchers improved the previous model by incorporating
the frequency-dependent nature of UWB signals. In [9],
researchers proposed another empirical model for in-body
to on-body channels in the lower UWB, i.e., 1-6 GHz. This
model is applicable to the human abdomen region only. The
simulation was conducted first for several implanted node
positions in the abdomen region of an anatomical model at
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(a)

FIGURE 1. The proposed stepped slot multi-band patch antenna. (a) Simulated 3-D stepped slot patch antenna. (b) Dimensions of stepped slot patch.

(c) Fabricated prototype antenna.

a depth of 0.1cm—1.5cm. The authors derived the above
statistical model after analyzing the simulated data. After a
computational analysis, they also improved the model to deter-
mine the path loss for a digestive tract in the frequency range
of 3.4-4.8 GHz. The model is highly applicable to the in-body
biomedical application known as capsule endoscopy [10]. To
avoid conducting unethical in vivo measurements using the
human body, experiments were conducted with anesthetized
porcine subjects. The researchers placed the transmitting
antenna at various locations inside the body, while keeping the
receiving antenna on the surface of the body. They developed
a path loss model from the measurements taken. The first
in-body to on-body UWB channel path loss model from in-vivo
measurements was conducted with animal subjects [11]. This
path loss model provides good results within the frequency
range of 1-6 GHz and for the implanted node locations within
the depths of 50 mm—160 mm.

Signals lose a lot of power when they travel through tissue
layers and bones in a body area network with implanted sen-
sors because they travel in multiple directions [12]. In addition,
modern hospital building structures include concrete floors and
metal frames that support drop ceilings made of acoustical ma-
terials. Within the rooms, patients’ state can be checked using
beds, iron tables, trolleys, and medical equipment. These ob-
jects attenuate radio waves. The authors in [14] describe a ge-
ometrical optics-based model to anticipate propagation inside
buildings with the aim of creating personal communication sys-
tems.

Numerical models are necessary to analyze path loss for a
specific set of transmitter and receiver locations. These mod-
els are based on the dielectric and physical properties of struc-
tures outside the body and tissues nearby where the transceivers
are located. According to [15, 16], raytracing is the preferred
method for conducting numerical simulations because it takes
into account site-specific information, which is crucial for pre-
dicting signal attenuation. The authors predict the path loss of
an on-body to in-body UWB channel using a UWB antenna de-
sign and numerical channel model [17].

Researchers reported a UWB antenna with stable and om-
nidirectional radiation properties and fine tuning of the feed
in [18]. The set of slots comprising pi, triangular, and circu-
lar shapes in the patch increases the gain by approximately up
to 2dBi. Without thick and complex designs, they help sta-
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bilize the radiation patterns by reducing side lobe levels and
nulls in the broadside [19]. It was possible to make a dual- or
triple-band patch antenna by adding U-slots to the patch of a
broadband antenna [20]. The authors utilized this method for
the L-probe-fed patch, M-probe-fed patch, coaxial-fed stacked
patches, and aperture-coupled stacked patches. Researchers
have created a brand-new monopole antenna with dual-band
notched features for UWB use. It has a square radiating patch
with a modified T-shaped slot, a ground plane with two E-
shaped slots, and a W-shaped conductor-backed plane [21].
Printed elliptical/circular slot antennas for UWB applications,
featuring feeds on the same and different sides, are presented
in [22]. The fractal implementation of an antenna improves the
impedance bandwidth at least twice compared to conventional
printed slot antennas [23].

For enhanced performance on bio-tissue, an antenna de-
sign connects WBAN with wireless technologies, covers three
bands, and features a perfect conducting metal plate, designed
for on-body to off-body communication [24]. A compact UWB
antenna with twisted F slots offers an ultra-wideband 3.1 to
10.6 GHz with a modified ground plane, evaluated using a
three-layered rectangular phantom model [25]. In [26], authors
suggest using one-layer and three-layered phantoms to simulate
implant antennas in the ISM band.

This paper characterises an on-body to in-body channel in
UWRB using a stepped slot patch antenna and studies its path
loss characteristics using a honey-based liquid phantom. In ad-
dition, simulations were performed using BANsim [16], to pre-
dict the path loss in the above scenario for comparison.

2. ANTENNA DESIGN AND PARAMETRIC ANALYSIS

Using a high-frequency structure simulator (HFSS), we de-
sign the proposed multi-band suspended stepped slot microstrip
patch antenna with dimensions of 50 mm x 50 mm x 1.6 mm,
along with the feeding structure. Figure 1 demonstrates the ba-
sic geometry and fabricated prototype of the antenna. The an-
tenna is developed on a FR4 epoxy substrate with a relative di-
electric constant (&,.) of 4.4, a loss tangent of 0.02, and a height
of 1.6 mm, with a copper ground plane on the substrate’s lower
side.

The fabricated prototype was characterized in the frequency
range of 30 kHz to 9 GHz using a microwave vector network an-
alyzer (FieldFox N9925A). Figure 2 illustrates the return loss
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TABLE 1. Operating frequency band of proposed antenna in free space and phantom.

Band of operation (GHz) | Return Loss (dB) (Free space) | Return Loss (dB) (Human body phantom)
5.46-5.68 —24.25 —20.45
7.08-7.3 —20.47 —-17.4
8.34-9.15 —34.06 —26.5
1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
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FIGURE 2. Return loss of the proposed antenna in free space and within body Phantom.
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FIGURE 3. Gain radiation pattern of the proposed antenna for (a) 5.6 GHz, (b) 7.2 GHz, (c) 8.5 GHz.

S11 versus frequency curve for the proposed antenna, which
was simulated and measured in both free space and human
phantom. It is evident in Figure 2 that there are multiple res-
onances, each providing a broad bandwidth according to the
simulation and practical results. Furthermore, the coupling of
human body phantoms with the resonant frequency leads to a
noticeable difference in the variation of return loss compared
to free space. Table 1 shows the comparison of return losses at
various resonant frequency bands measured in free space and
within the human body phantom.
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To meet the far-field requirement and eliminate outside in-
terference, we test the planned antenna prototype by measuring
its radiation patterns in an anechoic chamber at a distance of
1.5m. Figure 3 shows the respective radiation patterns of the
proposed antenna at 5.6, 7.2, and 8.5 GHz. The proposed an-
tenna exhibits a butterfly-shaped radiation pattern at 8.5 GHz,
while demonstrating good unidirectional radiation characteris-
tics at the operating frequencies of 5.6 and 7.2 GHz. Table 2
shows the performance comparison between the simulated and
measured peak gains of the proposed antenna. The simulated
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FIGURE 4. Cross section and Ray tracing in tissue layers of human abdomen model.

TABLE 2. Realized peak gain of the proposed antenna.

Operating frequency (GHz) ‘Realizhed peak gain (dB1)
Simulation | Measurement
56 —8.22 —9.42
7.2 —5.84 —7.01
8.5 directed at 60° —6.03 —7.23
8.5 directed at 40° —6.64 —7.84

and measured outcomes show a good agreement. The small dif-
ference between the two sets of results is due to many factors,
including antenna fabrication tolerances, vector network ana-
lyzer calibration, and possibly multiple reflections in the mea-
surement environment.

3. SCENARIO FOR SIMULATION

Numerical simulations have been performed using BAN-
sim [16], a raytracing based simulator. A layer of hetero-
geneous tissue, regarded as a single, multi-layered object,
serves as the propagation channel between the transmitter and
receiver. Figure 4(a) shows the use of a four-layer model of
a human abdomen for numerical simulations. The simulation
parameters include the depth of penetration and respective
tissue layers depending on the location of the receiving
antenna.

There is no direct channel for on-body vs. in-body commu-
nications since the in-body antenna will be an implantable one.
Hence, a Direct Transmitted Ray (DTR) path is used instead of
the Line of Sight (LOS) path, and the intensity of the electric
field of the DTR from the transmitter to the receiver is assessed
with the inclusion of the ABCD matrix [13] in the computa-
tion of the scattering coefficient. After the transmitter sends
out the rays, the shoot and bounce ray tracing method are used
to find all the intersections and direction vectors of secondary
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reflected rays and secondary transmitted rays (STRs), as shown
in Figure 4(b).

The secondary rays are traced individually with this recur-
sive ray-tracing method until the specified number of iterations
or their reception by the receiver is attained. In the simula-
tion, the receiving antenna is moved across the four layers of
the human abdomen model while the transmitter is positioned
at the skin’s surface. The simulation includes a maximum of
ten transmissions and reflections. In the abdomen region, path
loss is computed at 1 mm intervals up to a depth of 30 cm.

4. PATH LOSS INSIDE HUMAN ABDOMEN MODEL

We looked at path loss with a KeySight N9917A Vector Net-
work Analyzer (VNA) in a honey-based liquid phantom [16],
which is like the human abdomen, to make sure that the pro-
posed antenna design would work as a transmitter for frequen-
cies below and above 6 GHz.

Two proposed antennas were fabricated and used as receiv-
ing and transmitting antennas. To prevent any shorts, a poly-
thene cover with a thickness of 0.5 mm is used to insulate the
receiving antenna. Figure 5 depicts the measuring configura-
tion. Figure 6 shows the path loss calculated for various depths
using the Sy; parameter. Figure 7 shows the estimated path loss
parameters for the human abdomen using the numerical simu-
lation at 5.6, 7.2, and 8.5 GHz, as well as the measurements ob-
tained at the respective frequencies in honey-based liquid phan-
toms.

Despite using a homogeneous liquid phantom, measured and
estimated path loss parameters show good agreement with al-
most the same slope. Transmitting and receiving antenna mis-
orientation caused variations in the field intensity measure-
ments as the receiving antenna was manually moved through
the phantom. To investigate the impact of the DTR path on re-
ceived field strength, the picture also includes a simulated result
without direct transmission (RR + TR).
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In Body Pathloss at Abdominal Region (7.2 GHz)
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FIGURE 7. Measurement and Simulated path loss at (a) 5.6 GHz, (b) 7.2 GHz and (c) 8.5 GHz.

5. CONCLUSION

For on-body-to-in-body communications, the developed an-
tenna performs effectively for frequencies within and beyond
the 6 GHz frequency range. The measurements made in honey-
based liquid phantoms at the relevant frequencies are compared
to the path loss that would happen in a human belly if the an-
tennas were placed farther apart. The correlation between mea-
sured and anticipated path loss parameters is very good. Path
loss is lower in the skin and fat layers than in the muscle and
small intestinal layers due to their low attenuation constants.
The rise in path loss is more obvious at greater antenna separa-
tions, according to observations.
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