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ABSTRACT: The fusion of electromagnetic (EM) waves and information theory in wireless and waveguide communication technologies
has enjoyed a remarkable revival during the last few years. In particular, unlike traditional transceiver systems, the recently proposed
information metasurface system directly links the controllable binary array sources with the scattered EMwaves, making the combination
of EM and information theories highly desirable and natural. Moreover, a traditional linear channel matrix cannot be directly used for
such scattering reconfigurability enabled communication system, making the information characterization of such system a great chal-
lenge. In this paper, EM information characteristics of a direct digital modulation (DDM) system enabled by programmable information
metasurface, also known as reconfigurable intelligent surface (RIS), are analyzed, in which RIS is used as a modulator of the illuminating
field, while the scattered far-field amplitudes are measured and effectively treated as the received quantities. The posterior probabil-
ity for a specific source coding pattern, conditioned over a given measured scattering fields, is obtained through the Bayesian analysis
technique, from which the average mutual information (AMI) is obtained to estimate the RIS observation capability along any particular
direction. The averaged receiver mutual information (ARMI) is then introduced to characterize the generated field correlation structures
along different observation directions. Based on ARMI, the joint observation capability is also analyzed. Furthermore, the suggested
techniques are employed in a noisy environment, and a code selection scheme is put forth to achieve efficient information transmission.
The proposed configuration is validated through a simulated experiment. As a comprehensive evaluation of the system’s performance,
the channel capacity of the system is derived, and a set of relevant influencing factors are identified and analyzed from four different
perspectives: 1) the observation direction, 2) the size of RIS, 3) potential joint observations in multiple directions, and 4) the noise level.
The proposed method, together with the various related performance measure metrics introduced therein, are expected to provide the
research community with guidelines for analyzing and designing the current and future RIS-based communication systems, which can
also be extended to other aspects in the growing field of the EM information theory.

1. INTRODUCTION

In wireless communication scenarios, accurate modeling of
the transmission channel characteristics from a full-wave

electromagnetic (EM) analysis can be difficult due to com-
plex propagation environments and the coupling of propagating
waves in space and time [1]. As a result, in the field of com-
munication theory, the focus is typically on the temporal as-
pects of the carrier, while the spatial characteristics of the EM
waves are often simplified as in multipath fading models [2].
In recent years, with emergent new application scenarios such
as near-field communication [3, 4], indoor communication [5],
and dense antenna communication [6], the necessity to model
and analyze the spatial characteristics of waves in various com-
munication systems is growing [7, 8]. The introduction of an
electromagnetic theory of information, where the electromag-
netic scattering physics is seamlessly connected to and incorpo-
* Corresponding author: Shurun Tan (srtan@intl.zju.edu.cn).

rated into the information theory, would help overcoming some
of the shortcomings arising from the absence of a detailed and
comprehensive understanding of spatial correlations in statisti-
cal models of modern wireless technology [9], hence allowing
the spatio-temporal characteristics of information to be effec-
tively expressed and exploited in order to improve the perfor-
mance of various data transmission and processing systems [9–
14].
In traditional wireless communication systems, information

is first converted to a digital baseband signal, and then passed
through a digital modulation process in order to improve the
noise immunity of the system [2], before it is injected into the
radio-frequency carrier signal, often resulting (when properly
designed) in high-data rate links [15]. In such systems, infor-
mation is confined to carrier characteristics such as the ampli-
tude, phase and frequency. The EM information analysis de-
ployed in traditional communication system theory starts from
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an accurate model of the antenna radiation fields, especially
the near fields [16–19]. Subsequently, the channel matrix H
is obtained from the deterministic fields, then linked into some
basic metrics taken from information theory in order to ana-
lyze important aspects in the EM communication system such
as the channel capacity [12, 16, 20], channel degree of free-
dom [21, 22], antenna element layout and array design [23], in
addition to the relevant power allocation considerations and ef-
ficient on-site EM correlation estimation as manifested in var-
ious possible practical scenarios [24]. In the last few years,
Reconfigurable Intelligent Surfaces (RISs) have also been a
prime catalyst pushing toward a better understanding of how
information and physical aspects of the communication envi-
ronment relate to each other [25–28]. Since these structures
are intended to modify the channel transmission characteristics
in ways conductive to improving spectral efficiency, latency,
and power constraints, they provide an excellent opportunity to
link the physical degrees of freedom with the purely signal pro-
cessing aspects of the communication system [28–30]. Here, it
appears that the main contribution is the enormous usefulness
of the idea of reconfigurablity and electronic adaptability of a
given system to the environment and vice versa [25, 26, 31, 32].
In recent years, the introduction of various strategies for per-

forming digital coding using information metasurfaces [33, 34]
has required researchers to directly combine information data
transmission with a more detailed knowledge of the fine details
of EM scattering by complex structures, making it inevitable
to apply the crossdisciplinary field of EM information theory
to the full analysis of such complex and not yet fully under-
stood systems. Additionally, research has shown that one-bit
coding of RIS can yield satisfactory performance in most prac-
tical scenarios [35]. It demonstrates the capabilities of digital
coding RISs in electromagnetic information systems and under-
scores the significance of further research to fully characterize
such EM information systems. Cui et al. first proposed a di-
rect digital modulation (DDM) system based on the RIS [36],
in which the coding metasurface is directly controlled by the
source digits through a field programmable gate array (FPGA),
and the far-field is directly measured by the receiver to de-
code the information and realize communications. In such a
DDM system, which is distinct from the conventional com-
munication systems, information is directly modulated by the
metasurface itself while operating in the scattering mode. On
the other hand, the decoding process at the receiver side is
strictly constrained by the locations of the receivers, demon-
strating clear advantages in terms of simplicity, design, and
security. Subsequently, inspired by the time-division multi-
plexing schema in digital communications, frequency-division
multiplexing, and other multiplexing techniques in information
systems [2], metasurface systems for temporal-spatial modu-
lations were recently proposed [37], and different modulation
methods have also been explored for DDM application scenar-
ios, including, for example, amplitude shift keying (ASK), fre-
quency shift keying (FSK) [38], phase shift keying (PSK) [39],
and quadrature amplitude modulation (QAM) [40, 41]. Over-
all, currently existing researches on such information metasur-
face have enabled the development of communication systems

exploiting unique designs and special settings based on EM re-
configutablity [42, 43].
Nevertheless, in spite of the progress already made in terms

of design, testing, and implementation, a comprehensive and
detailed systematic theoretical analysis of the performance of
such systems with respect to various system parameters has
not received the attention it deserves. In a previous work,
Cui et al. proposed the concept of metasurface information en-
tropy in order to evaluate the information carrying capabilities
of metasurfaces, including information transfer in space-time
domains [44–47]. However, to the best of our knowledge, a
detailed transmission mechanism of the reconfigurable cells’
digital data from source to destination or observation locations
has not been considered before. There also exists a parallel re-
search direction that substitutes multiple-input-multiple-output
(MIMO) [48] system’s antennas with metasurfaces, after which
one proceeds to analyze the obtained metasurface-based sys-
tem’s performance using the information theory of MIMO sys-
tems [49, 50]. However, it is noteworthy that such a DDM sys-
tem is fundamentally different from a MIMO system in terms
of information characterization. In a conventional information
system, one can adopt the well understood linear channel model
y = Hx(s) + n [49] to represent the channel by its channel
matrix H, where the transmitted signal x is connected to the
information source s through a mapping x(s). In such analy-
sis, the channel matrixH linking the transmitted signal x to the
received signal y is independent of the information source s,
thoughH could vary with time or adjust to transmitter/receiver
locations as in the RIS aided MIMO systems. However, for
the RIS-DDM system discussed in this paper, the variations in
the scatterers, i.e., different states of the RISs, directly carry
information. The mathematical model can be abstracted as
y = H(s)x + n, where the source information s is being de-
livered through modulating the properties of the channel H,
i.e., the scattering characteristics of the metasurface, while the
transmitted signal x (the illuminating field from the transmit-
ting antenna) is irrelevant to the information being carried. An
equivalent representation [47] would be again to represent the
system with y = Hx(s) + n where a stationary H is extracted
(related to the free space wave propagator or the Green’s func-
tion in the field analysis language) while our concern is to link
s directly to y rather than connecting x (corresponding to the
equivalent current J induced on the metasurfaces) to y as in
the traditional theory. All these interpretations deserve new de-
velopment in theoretical characterization as discussed in this
paper.
Overall, the authors believe that a systematic and

computationally-efficient framework combining electro-
magnetic and information theories for the purpose of analyzing
RIS-DDM systems is still missing, and it would be highly
desirable to propose one. The present article’s main objective
is attempting to introduce a contribution toward filling this gap
by defining several useful and implementable EM information
performance measures aiming at describing the information
content of such systems, as well as to analyze the impact of
several external configurations influencing the information-
handling capacity of such systems. The proposed performance
measures introduced below include:
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1. The average mutual information (AMI), whose aim is to
describe the information-theoretic observation capability
of the digital-modulated metasurface as effected along any
given particular direction.

2. The averaged receiver mutual information (ARMI) and
the joint average mutual information (JAMI), which, re-
spectively, are used in order to characterize the correlation
of the scattered electromagnetic fields along multiple ob-
servation directions and to estimate the joint information
transmission capacity with multiple observations taken si-
multaneously.

3. The Shannon information channel capacity, which is
needed in order to estimate the theoretical upper bound
on the maximal information data transmission capability.

On the other hand, influencing factors taken into considera-
tion below include the receiver direction, the size of the infor-
mation metasurface, potential joint observations in multiple di-
rections, and the noise level. Our overall methodology is based
on the joint utilization of the principles of electromagnetic the-
ory and Shannon information theory [51], which provides a
more accurate evaluation for the quantitative characterization
of the system performance, while it may help guide the devel-
opment of both current and future advanced telecommunication
systems that exploit the advantage of deeper understanding of
electromagnetics in the information transmission system design
itself.

2. THE DDM SYSTEM AND FAR-FIELD STATISTICS

FIGURE 1. An illustration to the RIS-enabled DDM system.

The goal of the RIS-enabled DDM system (Fig. 1) is to ex-
ternally modify the scattered EM field fingerprints that cor-
respond to each coding pattern supplied to the programmable
metasurface. This modification enables the system to manipu-
late, store, and transmit information. The system decodes the
scattered far fields detected by the receivers into the coding pat-
tern of the metasurface. The coding pattern is controlled by the
digital source, which utilizes FPGAs on the metasurface sub-
strate. Unlike most current wireless communication technolo-
gies, DDM systems do not use amplitude, frequency, or phase
modulation of the carrier wave to transmit the digital baseband
signals carrying information. Instead, they utilize the far-field
scattering pattern in modulation, where the digital baseband
signals directly affect various far-field scattering distributions
of the electrical signal.

(a) (b)

(c) (d)

FIGURE 2. Exampled far field patterns for modulation in the DDM
system. (a) SA corresponds to 00. (b) SB corresponds to 01. (c) SC

corresponds to 10. (d) SD corresponds to 11.

To demonstrate the far-field modulation mode and practical
implementation of the DDM system, a compelling example is
provided. Fig. 2 shows four different metasurface scattering
patterns named SA, SB , SC and SD, which are used as the
modulation of the baseband codes 00, 01, 10, and 11, respec-
tively. The encoding sequence of the RISs (defined as the RIS
hardware code) associated with these scattering patterns are 1,
3855, 9925, and 42405, respectively, for the 4× 4 RIS consid-
ered in this study, corresponding to the RIS binary sequences of
0000000000000000, 0000111100001111, 0010011011000100,
and 1010010110100101, respectively. The detailed mapping
between the metasurface patterns and the RIS binary sequence
(or defined hardware codes) is explained as follows in this sec-
tion. Consider a digital information flow to be transmitted,
“1010001101,” which can be broken down into “10 10 00 11
01.” By manipulating the information metasurface, a far-field
distribution of “SC-SC-SA-SD-SB” can be generated in a time
sequence, and the information flow can be demodulated from
the observation of the far-field (provided the correspondence
between the far-field and baseband code is clear at the receiver).
However, in practice, it is challenging to observe the total scat-
tering pattern in all directions. It is therefore more efficient
to establish a correlation between the far-field observations in a
single direction or a limited number of directions with the base-
band codes. This is what is referred to as single direction ob-
servation and multi-direction joint observation in this paper. In
traditional amplitude or phase modulation, the modulation sig-
nal is designed first, and then a circuit is designed to produce
the desired modulation wave. However, in DDM systems, the
far-field scattering patterns are limited by the size and reconfig-
urability of the metasurface, and cannot be randomly devised.
A crucial aspect of DDM systems is determining the number
of possible far-field patterns and what metasurface pattern reg-
ulations should be applied to obtain those scattering patterns.

3 www.jpier.org



Bai et al.

This process heavily relies on the observation directions, noise
levels, and single or joint observations.
It is important to note that even though the far-field pattern is

used as the modulation mode, the specific metasurface pattern
controlled by themetasurface code (hardware code) remains the
source of the system, with the scattering far-field to be observed
by the receiver. As a result, the DDM system has the poten-
tial to provide enhanced security, optimized utilization of the
spatial characteristics of the wave, and a more streamlined con-
figuration than traditional amplitude modulation systems [36].
Moreover, the DDM concept may be combined with the tra-
ditional RIS-MIMO mechanism, offering a new dimension of
freedom to carry information by the RIS patterning. Fig. 3 dis-
plays a flowchart that visually represents the information trans-
mission process of the DDM system. It demonstrates how the
system relies on far-field directions, its multi-directional obser-
vation capability, and its lack of complex modulation circuits.

FIGURE 3. Information transfer flow chat for RIS (MS) based DDM
system.

In the computational examples that follow, we utilize 3 × 3
and 4 × 4 coding metasurface configurations operating under
normal illumination conditions. In practical applications, to
justify the periodic boundary condition in modeling the meta-
surface scattering phases, each metasurface elements are usu-
ally repeated several times to form a larger surface while main-
taining limited degrees of freedom. For instance, a 20 × 20
metasurface can be utilized, but every 5 × 5 cells are tied to
the same control signal, making the system degree of freedom
essentially 4×4. While a 20×20metasurface with completely
independent units would offer a greater degree of freedom in
theory, it would require significant computing resources to de-
termine the receiving set of the system. Once the set of re-
ceived values is determined, all the parameters, relations, and
calculation methods proposed in this article remain fully effec-
tive and applicable. Therefore, the various investigative sce-
narios given below are chosen for simplicity without sacrificing
generalizability. We also assume one or more power detection
schemes at the receiver side. The metasurface is placed in the
XOY plane with the center of the metasurface at the origin O.
We assume that each cell of the metasurface can vary indepen-
dently of the states of other cells. Externally-controlled cell-
by-cell binary information patterns can be practically realized
by switching ON and OFF a grid of independently-controlled
varactors, where each varacator is connected to a metasurface
element [33]. The state of the varacator diode is controlled by
a digital source: 1 and 0 correspond to the opening and clos-

ing of the diode, respectively, thus realizing the modulation of
the information on the metasurface pattern. Therefore, a 4× 4
metasurface supports 216 different coding patterns (hardware
codes), and a 3× 3 metasurface supports 29 patterns.
In order to describe as clearly as possible the manner of how

each hardware code and its associated binary pattern are dealt
with in this paper, we refer to the decimal number of code as
its hardware code number. To explain our method, we provide
a simple but illustrative example. The 4 × 4 metasurface has
a total of 216 different kinds of hardware codes which are la-
beled in this paper as the 1st code, the 2ed code, the 3rd code,
etc, up to the final label, the 216th code. The i-th code corre-
sponds to the standard binary representation of i − 1, and we
name it RIS hardware code i. For example, the 9925th code, or
RIS hardware code 9925, corresponds to 0010011011000100,
where two zeros were prefixed in order to make the code fits
into a 4 × 4 metasurface. In Fig. 4, we illustrate how this bi-
nary code schema of the 9925th code is assigned in an example
of a 4 × 4 reconfigurable grid. The code is arranged on the
metasurface following the order from top to bottom and from
left to right as stated in the figure.

(a) (b)

FIGURE 4. (a) The standard assignment pattern for a metasurface starts
with cell 1 in the top-left corner and then fills the column downwards.
The numbers 1, 2, etc., indicate the physical metasurface cell locations
in the binary representation of the hardware code. Once a column is
complete, the assignment moves to the next column to the right and
starts again from the top with cell 5. This process repeats until the
entire DDM grid is filled. By following this pattern, the hardware
code can be accurately mapped to the precise distribution of ON and
OFF states for all radiating cells. (b) An illustration of a metasurface
pattern for an example code 9925.

2.1. Electromagnetic Far-Field Calculations

For modeling the scattering far fields, full-wave simulations are
sometimes used due to their high accuracy [52–55]. However,
a complete electromagnetic simulation of generic metasurfaces
for stochastic analysis is currently unfeasible. More commonly,
to speed up the calculation, accurate physics-based determinis-
tic simulations are only applied for the reflection coefficients or
surface equivalent currents of the cell unit, where it can be later
combined with a physical optics (PO) approximation [56] in or-
der to model the total far fields [57, 58]. In this paper, a Fourier
transform (FT) approach, which is based on the PO framework,
is adopted for the purpose of efficiently approximating the scat-
tering far fields, the effectiveness of which has been validated
in [44]. For simplicity, the equivalent current density of one
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FIGURE 5. An illustration of the utilized symbols, and the interconnection and progression of diverse system parameters.

particle (unit cell) is taken as

J (x, y) =

{
J0e

iϕ0

J0e
i(ϕ0+π)

for coding ‘0’,
for coding ‘1’.

(1)

Note that, in general, Eq. (1) can take on arbitrary forms when
describing the current distribution on metasurface elements.
For instance, the amplitude of different states may vary. Nev-
ertheless, these variations do not affect the proposed analyzing
methodology but might introduce further computational com-
plexity to characterize the current distribution. On the other
hand, the far field can be derived from the FT of the equivalent
current (1) as represented by the coding pattern. The scattering
far field is given by, following [44]

Es (r, θ, ϕ) =
iωµ0

4πr
eikrP (k sin θ cosϕ, k sin θ sinϕ) , (2)

where k is the wave number, while r, θ, ϕ are the spherical
coordinates. The function P is the FT of the coding pattern,
which has the form [44]

P (k sin θ cosϕ, k sin θ sinϕ) =

Lx
2∫

−Lx
2

Ly
2∫

−Ly
2

dx′dy′J (x′, y′) e−i(kx′ sin θ cosϕ+ky′ sin θ sinϕ).

(3)

Formula (2) shows that distance r only affects the far-field
pattern through an additional coefficient, not its distribution.
Hence, the analysis will focus on a single distance, and calibra-
tion of the coefficient is needed for other distances. We choose
far-field locations satisfying r = ωµ0/(4π) for the receiver,
while we use the magnitude of the scattering far-field |Es| as
the observation values. The frequency of the illuminating wave
is 10GHz, and the metasurface element size is 7mm. As a re-
sult of the above approximation, the far-field distribution for
any coding pattern can be efficiently and directly calculated in
any specified direction. As examples, Fig. 2 illustrates the sim-
ulated distributions of scattering far-field |Es| for four different
metasurface hardware code, 1, 3855, 9925, and 42405.
To clearly illustrate our analysis approach for this novel RIS-

DDM system, the various symbols utilized, as well as the in-
terconnection and progression of diverse system parameters to

be discussed, are summarized in Fig. 5. We begin by identi-
fying the discrete states of the source (RISs) and subsequently
apply the EM model to determine the discrete states of the re-
ceiver. This establishes the connection between source and re-
ceiver, forming the core of the EM information strategy dis-
cussed in this article. Subsequently, we can determine the con-
ditional probability for each possible source-receiver combina-
tion. Based on a specific prior probability assumption, the pos-
terior probabilities of each source-receiver combination can be
next obtained, and the average mutual information of the sys-
tem can be calculated to evaluate the performance of the system
under a specific encoding state. And the channel capacity of
the system can be obtained by optimizing the prior probability,
providing an assessment of the overall system performance.

2.2. Source Entropy, Receiving Value, and Posterior Probability

2.2.1. Source Entropy

Following Shannon information theory, the source, i.e., the RIS
hardware codes, modeled as a random variable X , has an en-
tropy defined as [51],

H (X) = −
Nx∑
i=1

p(xi) log2 p(xi), (4)

where xi represents the ith source hardware code (the RIS hard-
ware code i). Recall that the source x we considered in this pa-
per is directly linked to the information s, rather than serving
as a carrier signal. p(xi) is its prior probability, while Nx is
the number of all the possible RIS patterns, i.e., the number of
source. For example, in the case of an 4× 4 information meta-
surface, distribution of all hardware codes with a total number
of Nx = 216, corresponds to a source entropy of 16 bits when
they are all assigned a equal prior probability.
In the following, wemay firstly deduce from single-direction

observations in zero channel noise scenarios. The concepts for
multi-observation cases are similar, with only a difference in the
form of the received value, whichwill be discussed in Section 4.

2.2.2. Receiving Value and Its Set

In the absence of channel noise (noisy scenarios will be con-
sidered in Subsection 3.3), a specific source random variable
X = x (the RIS hardware code) will have a uniquely deter-
mined scattered far field Y = y (Y is the receiving random
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variable, and y is one of its specific value), with a generic func-
tional form y = f(x), where f is the input-output relation. This
relation is ultimately based on the physical (Maxwell’s) theory
of electromagnetic scattering, here approximated by the PO for-
mula (2) above1. Therefore, a distinct variable y(θ, ϕ, xi) ∈
Cy(θ, ϕ) may be assigned to represent the received far-field
value in direction (θ, ϕ) for a specific source xi, where the set of
all possible observation values in a given direction is denoted
by Cy(θ, ϕ). The set Cy(θ, ϕ) can be obtained by traversing
all RIS hardware codes (from i = 1 to i = 216 for the 4 × 4
metasurface, as shown on the horizontal axis of Fig. 6). The re-
ceiving value y(θ, ϕ, xi) is a discrete variable, and its value set
Cy(θ, ϕ) is finite. The number of values that can be taken by
y, i.e., the size of Cy(θ, ϕ), is denoted byNy(θ, ϕ). Recall that
Ny can be readily obtained from traversing all the RIS hardware
codes and counting from all the obtained receiving values.
Note that, since multiple metasurface coding patterns, i.e.,

the RIS hardware codes, may correspond to the same far-field
observation value at a given direction considering the symme-
try, the number of receiving values Ny will be smaller than
the number of source Nx. Table 1 shows the total source pat-
tern numberNx under three different metasurface sizes and the
number of observation value Ny in three different observation
directions. Obviously, Ny is much smaller than Nx.

TABLE 1. Source number and receiver value number for different size
metasurface DDM systems.

RIS
size

Nx
Maximum

source entropy
Observe direction Ny

2× 2 16 4 bit
θ = 45◦, ϕ = 0◦ 5

θ = 13.5◦, ϕ = 36◦ 8
θ = 54◦, ϕ = 72◦ 8

3× 3 512 9 bit
θ = 45◦, ϕ = 0◦ 19

θ = 13.5◦, ϕ = 36◦ 116
θ = 54◦ ϕ = 72◦ 134

4× 4 65536 16 bit
θ = 45◦, ϕ = 0◦ 120

θ = 13.5◦, ϕ = 36◦ 535
θ = 54◦, ϕ = 72◦ 476

As a specific example to illustrate our strategy to obtain
Cy(θ, ϕ), and to clearly show the relation of its size Ny(θ, ϕ)
with the source numberNx, in Fig. 6, observation values repre-
sented by the far electric field magnitude conducted at θ = 45◦,
ϕ = 0◦, cf. Fig. 6(a), and θ = 13.5◦, ϕ = 36◦, cf. Fig. 6(b), for
a 4× 4 metasurface system under all the source hardware code
numbers from 1 to 216 are displayed. It can be seen that the
observation values are discrete, while the relation is many-to-
one (many hardware codes to the same |Es|) due to symmetry.
All the possible receiving values y shown in the vertical axis
are combined to construct Cy , and the number of the values
(the size of Cy) can be readily counted as Ny . Note that the
number of distinct observation values in Fig. 6(b) is larger than

1Note that this relation does not adhere to amere linear correlation; hence, in
the DDM system, the receiving variable cannot be simplistically characterized
as y(xi) = Hxi.

(a)

(b)

FIGURE 6. Observation values for each coding pattern with no channel
noise. The horizontal axis is the decimal value corresponding to each
code. (a) Observe in θ = 45◦, ϕ = 0◦. (b) Observe in θ = 13.5◦,
ϕ = 36◦.

that in Fig. 6(a), indicating a better communication potential in
the latter case, an observation that will be corroborated using
information-theoretic measures to be introduced below.

2.2.3. Posterior Probability

As discussed in Section 2.2.2, based on the EM model and the
traversal process, we can determine the complete range of re-
ceiving values, i.e., each individual element in Cy

2. In order to
facilitate our discussion, we organize them in ascending order
and denote them as yj (j = 1, . . . , Ny , is ranked by the value
in Cy from small to large). From this and due to the unique
relation from a specific xi to its scattered far-field, we deduce,
in the noiseless RIS-DDM system,

p(yj |xi) =

{
1,

0,

for yj = f(xi),

for yj ̸= f(xi).
(5)

2It is worth mentioning that expanding the digital RIS to a continuous RIS
would result in the source x and receiver value y no longer being discrete. In
this case, by leveraging beam-forming theory, we can determine a maximum
value of y in the observation direction. From a certain segmentation, a finite
number of y states can be readily obtained, ensuring the applicability of the
proposed strategy in this article. It is also worthwhile to investigate a pure
continuous system analysis methods under such a system. In this article, our
focus is primarily on the digital RIS, which has limited states. Therefore, the
acquisition of Cy can be achieved through a traversal process.
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The posterior probability p(xi|yj) can be readily estimated
following the Bayesian rule [59]:

p(xi|yj) =
p(xi)p(yj |xi)∑Nx

m=1 p(xm)p(yj |xm)
, (6)

where the sum in the denominator is performed over the set of
all possible hardware codes of the DDM cell grid. Recall that
the observation value yj cannot be taken arbitrarily. Its possible
values are calculated using the EMmodel, c.f. Eqs. (2), (3), and
from the traversal of all the metasurface hardware codes.
It is natural then to define the set of source codes with the

same observation value yj as,

Ax(yj) :=
{
xm| yj = f(xm),m = 1, 2, 3, . . . , 2Nx

}
. (7)

Therefore, in the special case of equi-probably distributed
sources, the posterior probability can be simplified as,

p(xi|yj)=
p(yj |xi)∑
m p(yj |xm)

=


1

N [Ax(yj)]
,

0,

yj=f(xi),

yj ̸=f(xi).
(8)

where N [·] is the cardinality (number of elements) of the set.

3. AVERAGE MUTUAL INFORMATION AND INFOR-
MATION TRANSMISSION WITH A SINGLE OBSERVA-
TION

3.1. Average Mutual Information
By employing Eqs. (5) and (6), we obtain the corresponding
posterior probability associated with each source and receiv-
ing value, under a specific source prior probability distribution.
Following the Shannon information theory, the conditional en-
tropy H(X|Y ) can be subsequently calculated from [51],

H (X|Y ) =

Ny∑
j=1

Nx∑
i=1

p (yj) p (xi|yj) log2
1

p (xi|yj) .
(9)

The quantityH(X|Y ) is the loss entropy, which represents the
average uncertainty of the source random variableX given the
observation Y .
Next, the average mutual information (AMI), denoted by

I(X;Y ), is defined as the difference between the source en-
tropy H(X) and the conditional entropy H(X|Y ), giving rise
to:

I (X;Y ) =

Ny∑
j=1

Nx∑
i=1

p (xi) p (yj |xi) log2
p (xi|yj)
p(xi)

. (10)

This quantity has a symmetry relation,

I (X;Y )=H(X)−H(X|Y )=H(Y )−H(Y |X)=I (Y ;X) .
(11)

This means that the evaluation of information flow in one di-
rection is sufficient for determining the flow mechanism in the
reverse direction.

In the original formulation by Shannon [51], the AMI is used
to describe the average uncertainty in a system, i.e., the amount
of information transmitted between the source and the receiver
at a specific direction at an observation site that remains after
the irreversible destruction of some of the original source’s in-
formation due to uncertainty, mainly caused by noise in typical
communication systems. In error-free communication, the re-
ceiver can eliminate all uncertainties of the source by observa-
tions, resulting in the AMI being identical to the source entropy.
Figure 7 depicts the distribution of AMI for the noiseless

4 × 4 metasurface system with respect to the observation di-
rections under equi-probability sources. It is important to note
that in a noiseless system, the received signals yj of the DDM
system are uniquely determined for a specific source coding
pattern, resulting in complete determinism. Therefore, in this
case, H(Y |X) = 0, and the AMI reduces to exactly the en-
tropy of the observation value, H(Y ). The results presented
in Fig. 7 show relatively high AMI values along the four main
lobes. However, these values are less than the source entropy
H(X) = 16 bit, indicating an ineffective communication con-
figuration with potential decoding errors.

FIGURE 7. AMI angular distribution for equi-probability source coding
4×4 metasurface DDM system.

3.2. Information Transmission through Noiseless DDM Sys-
tems
To construct an effective information transmission system, we
select only one code from those with the same scattering far-
field value yi to form a source coding set. The probabilities
of other codes are set to zero, allowing us to construct a viable
one-to-one correspondence mechanism. With this new config-
uration, the sourceX and receiver random variables Y have the
same number of codes, and p (yi) is the same as p(xi). There-
fore, we have,

I (X;Y ) = H(Y ) = H(X), (12)

which is equivalent to an error-free communication scenario.
Let us take the 4× 4 metasurface DDM system as an example
and set the observation direction along θ = 45◦, ϕ = 0◦. From
the far-field results, we count Ny = 120 different y values.
Codes with the same observation values are indistinguishable.
Therefore, we are free to choose any hardware code from the set
Ax(yj) corresponding to a given measured far-field value yj .
We choose the hardware code with the smallest code number
in each group Ax(yj) and use it to carry information. Fig. 8(a)
shows the selected hardware code numbers and the related scat-
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(a)

(b)

FIGURE 8. (a) Source coding and the related far field magnitude for
an effective communication system. (b) AMI in different observation
directions.

tering field magnitudes (recall that distinct values of y belong-
ing to the same random variable Y at one far-field direction are
indexed by j = 1, . . . , Ny). Each selected code is assigned an
equal probability distribution.The source entropy in this case
is evaluated using Eq. (4) as 6.91 bit, same as the AMI in the
chosen observation direction. This illustrates the fundamental
information-theoretic measures in a basic digital communica-
tion system based on scattering information metasurfaces. The
work in [36] provides an experimental realization of such sys-
tems.
Measures such as AMI may be utilized to assess the effec-

tiveness of specific communication strategies against observa-
tion directions. Moreover, it can also provide information on
the quality of detection at other directions. For the 6.91 bit
source coding system for measuring at θ = 45◦, ϕ = 0◦, the
AMI in different observation directions is calculated and shown
in Fig. 8(b). It is noted that AMI reaches the maximum value of
the source entropy only at θ = 45◦, ϕ = 0◦. At other locations,
AMI is smaller thanH(X), hence degrading the quality of deci-
sion at the receiver side. This results from the fact that the cho-
sen source codes for carrying information in the DDM system
lead to mutually different far-field values only along the direc-
tion θ = 45◦, ϕ = 0◦, and the direction θ = 45◦, ϕ = 180◦ due
to symmetry considering the normal incidence configuration,
yet along other far-field directions some of these transmitting
configurations yield identical far-field values. Meanwhile, rel-
atively lower AMIs can be observed at directions ϕ = 90◦ and

ϕ = −90◦ in ϕ directions orthogonal to the optimized direction
of interest, again due to symmetry relations.

3.3. Information Transmission through a Noisy DDM Channel
As discussed in Section 2.2, for the noiseless system ana-
lyzed above, the conditional probability p(yj |xi) is 1 when yj
matches the scattering field value under source code xi, while
for all other values of yj , the conditional probability is 0. But
for a communication channel with noise, a non-zero probabil-
ity is linked to receiving other values. To maintain the discrete
random variablemath structure that we developed in earlier ses-
sions, we discretize the receiver end and define an eventRj for
the observation yj falling within a range yL ≤ yj < yH as
follows

Rj = {yL ≤ yj < yH} , (13)
where yH and yL are the decision bounds to be determined.
The decision bounds are related to the adopted communication
schemes. A maximum likelihood (ML) estimation for eventRj

yields (please refer to the appendix for proof),

yH =
yj+1 + yj

2
, yL =

yj−1 + yj
2

, (14)

with yj , j = 1, . . . , Ny , ordered in an increasing order as dis-
cussed in Section 2.2. The yL corresponding to R1 is taken as
0, and the yH corresponding to RNy

is taken as infinite. The
noise properties are yet to be carefully examined. In a first at-
tempt, we assume an additive Gaussian noise with variance σ2

and ignore potential channel fading effects. Then the condi-
tional probability p(Rj |xi) is expressed as

p(Rj |xi) =

∫ yH

yL

1√
2πσ

e
− 1

2

(
y−y(xi)

σ

)2

dy, (15)

where y(xi) = f(xi) is the ideal observation value correspond-
ing to the chosen source xi. The standard deviation σ measures
the noise level as linked to the signal-to-noise ratio (SNR). The
variance σ2 relates to the product of the receiver bandwidth and
the noise power spectral density. For specifying the SNR level,
the average value of the estimated scattering field random vari-
able Y at the receiver under each selected code in the noise-free
case is taken as the signal strength.
In lieu of Eq. (10), the AMI corresponding to the decision

rule as specified by Rj is calculated by replacing yj with the
event Rj ,

I (X;R) =

NR∑
j=1

Nx∑
i=1

p (xi) p (Rj |xi) log2
p (xi|Rj)

p(xi)
, (16)

and it still follows relation (11). It is worth to mention that the
AMI linking X and R, I(X;R), is related to a specific deci-
sion rule at the receiver end, i.e., how we specify Rj’s. It is
also possible to define an AMI linkingX and Y , I(X;Y ), that
is independent of a certain decision rule following the continu-
ous distribution nature of Y in a noisy channel. Both I(X;R)
and I(X;Y ) are of interest to analyze the communication sys-
tem performance. The AMIs represent the potential capacity of
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a communication system under a given source probability as-
signment, i.e., p(xi)’s, and certain channel characteristics. In
the following, we adopt I(X;R) to characterize the AMI of a
noisy communication system under specific decision rules to
guide practical applications.
As discussed in Subsection 3.1, in a noiseless system,

H(Y |X) is equal to 0. However, in the presence of noise and
with a specific source configuration, the event R becomes un-
certain. As a result, the quantityH(R|X) will have a non-zero
value. Therefore, based on formula (11), the average mutual
information of noisy systems under the same source code se-
lection strategy will be lower than that of the noiseless system.
As an example, for a noisy DDM system with observations
conducted along the direction θ = 45◦ ϕ = 0◦, if the same
code selection strategy is used as the constructed one-to-one
correspondence machanism discussed in Section 3.2, the AMI
following Eq. (16) is calculated as 2.21 bit for a 20 dB SNR
which is considerably smaller than the noiseless AMI, which is
just the source entropy H(X) = 6.91 bit as shown in Table 2.
Even if the SNR is increased to 30 dB, the AMI only reaches
3.35 bit for I(X;R). Obviously, under such coding scheme
and noise level, information transmission cannot be carried out
efficiently. Therefore, a better source coding strategy needs to
be implemented.

TABLE 2. Entropy, AMI/JAMI and capacity for single and joint obser-
vations with various noise levels and coding strategies.

Observation
directions

Noise
level

Coding
strategy

H(X)
AMI/
JAMI

C

θ = 45◦,
ϕ = 0◦

No all codes 16 5.47
6.91codes with

all yi’s
6.91 6.91

SNR=
20 dB

codes with
all yi’s

6.91 2.21

2.45code
selection
d/σ = 4

2.32 1.94

SNR=
30 dB

codes with
all yi’s

6.91 3.35

3.67code
selection
d/σ = 4

3.59 3.36

θ = 45◦,
ϕ = 0◦

and θ = 54◦

, ϕ = 72◦

No all codes 16 5.47
13.66codes with

all yi’s
13.66 13.66

SNR=
20 dB

code
selection
d/σ = 4

4.7 3.54 3.54-
13.66

SNR=
30 dB

code
selection
d/σ = 4

7.14 6.34 6.34-
13.66

In the following, we propose an alternative source code se-
lection scheme to improve the DDM communication system
performance, and the decision rule in the receiver still follows
Eq. (14) to obtain corresponding receiving events. Note that
the code selection method presented herein is practical and rel-

atively superior, although it is not necessarily deemed as the
strictly optimal solution.

1. All the possible noiseless far field values are sorted from
smallest to largest, i.e., yj , j from 1 toNy as discussed in
Subsection 2.2.2.

2. y1 is selected as the first selected noiseless receiving value,
and the smallest RIS code in Ax(y1) is chosen as the first
selected source code. Recall that Ax(y) is defined as the
set of source codes with the same observation value y as
described in Eq. (7).

3. Select the next noiseless receiving value y, which is the
nearest scattering field value that differs from the previous
selected noiseless receiving value greater than d = 4σ.
And the smallest RIS code in Ax(y) is chosen as the next
selected code. d is the difference value of the selected two
adjacent receiving far-fields3. Furthermore, the impact of
d will be discussed following in this subsection.

4. This procedure is repeated to produce all the selected
codes.

5. These chosen codes are then assigned equal probability
distribution.

Following this method, the number of selected codes un-
der 20 dB SNR is 5 (with hardware code number of 248, 305,
2033, 4100, and 13108, respectively) for observation in θ = 45
ϕ = 0◦, as illustrated in Fig. 6(a), where the solid lines are
the corresponding receiver event boundaries (decoding bound-
aries) under our code selection strategy. The corresponding
source entropy and AMI are 2.32 and 1.94 bits, respectively.
For observation in θ = 13.5◦ ϕ = 36◦, the source entropy and
AMI are 2.81 and 2.37 bit, respectively. After the code selec-
tion process, the transmission rate is decreased, but the trans-
mission quality has been significantly improved as the AMI ap-
proaches the source entropyH(X).
It is expected that adjusting d in the code selection rule bal-

ances the information carrying capability and decoding noise.
In Fig. 9, the source entropy and AMI under different source
selection rules for observation in θ = 45◦ and ϕ = 0◦ are re-
ported. It can be seen that as d increases, the number of the se-
lected codes decreases, and thus the source entropy decreases,
eventually converging toward the AMI. It is interesting to note
that AMI exhibits a weak convex dependence with respect to
d/σ. This can be explained by the fact that the AMI is upper-
bounded by both the source entropy and the signal to noise ratio
(SNR) at the receiver. The SNR relates to the distinguishability
of the signal at the receiver end. These relations are embod-
ied in the results shown in Fig. 9. When d/σ is small, i.e., the
source entropy is large, the AMI is largely connected to SNR
and thus does not change much. When d/σ becomes large, i.e.,
the source entropy decreases, the AMI is largely linked to and

3The variable d is adjustable in the code selection process, which will affect
the information carrying capability and the decoding accuracy. In this article,
we have selected the rule d = 4σ, which corresponds to a 95.44% (using the 2σ
principle) assurance that the received value will fall within the correct judgment
range.
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FIGURE 9. Source entropy and AMI against d/σ in the source code
selection rules observed in θ = 45◦ ϕ = 0◦.

limited by the source entropy. On the other hand, the source en-
tropy reaches a staircase decreasing pattern with a larger d/σ
due to the clustered distribution nature of the scattering field
values, as indicated in Fig. 6. Thus a relatively larger d/σmight
be desired to reduce the error of the symbol decisionmade at the
receiver side while not decreasing the AMI significantly. The
analysis above shows that different noise levels and code selec-
tion strategies severely affect the information handling capac-
ity of the DDM system. Table 2 summarizes the source entropy
and average mutual information for several different observa-
tion noise and coding settings. The capacity for each observa-
tion and noise configuration is also reported. The concepts of
joint AMI (JAMI) and capacity are to be discussed as follows.
It can be seen by comparing the difference of AMI and entropy
that the presence of noise hinders the information transmission
capability of proposed DDM system, while the code selection
strategies facilitate an improved performance.

3.4. Information Transmission Experiment: A Simulation
To demonstrate the performance of the DDMprototype with the
proposed code selection strategy in a noisy environment, a sim-
ulated transmission experiment was conducted transmitting an
example image with a procedure as illustrated in Fig. 10. The

FIGURE 10. Flowchart depicting the experimental process of image
transmission utilizing the DDM system.

test image (Fig. 11(a)) is with a size of 531k bytes. The observa-
tion direction was set to θ = 13.5◦ and ϕ = 36◦. Based on the
code selection strategy described in Section 3.3with d/σ = 4, 7
hardware codes with code numbers 9, 54, 570, 577, 686, 1871,
and 26514 are selected for a 20 dB SNR noise setting, and the
decoding boundaries are shown in Fig. 6(b). During the trans-
mission process, the information stream of each image frame,

i.e., the 8-bit binary gray value of each pixel, was converted
to a 3-bit septenary form. For instance, ‘215’ was treated as
‘425’, and the hardware codes for the metasurface were coded
in the order of 577, 54, and 686 to transmit the information.
The image received under a system with 20 dB SNR is dis-
played in Fig. 11, and it shows clear recovery to the original
image. However, the same coding strategy used in a system
with 10 dB SNR and a system with 5 dB SNR resulted in vague
images, as shown in Fig. 11(c) and (d), respectively, indicating
the need for more effective code selections. The corresponding
bit/symbol error rates (BER) as evaluated on the septenary dig-
its are 0.0328, 0.0409, and 0.3859, respectively, for the three
SNR settings. These characteristics are summarized in Table 3
(Cases for joint observation will be discussed following in Sec-
tion 4.3). This observation is also supported by the comparison
of the AMI and source entropy. In the 20 dB system, the source
entropy and AMI are 2.81 and 2.37 bits, respectively, which are
close to each other. However, for the 10 dB and 5 dB systems,
if the same coding strategy is applied, the resulting AMIs are
1.14 and 0.56 bits, respectively, which are much lower than the
source entropy of 2.81 bits, leading to higher bit error ratios.
Therefore, the significance of the proposed parameters in the
analysis of the coding strategies of the DDM system is clearly
demonstrated.

(a) (b)

(c) (d)

FIGURE 11. Simulation experiment of the DDM communication sys-
tem. The hardware codes are selected with d/σ = 4 and a 20dB SNR
assumption. (a) Image to be transmitted. (b) The received image un-
der a 20 dB SNR. (c) The received image under a 10 dB SNR. (d) The
received image under a 5 dB SNR.

4. AVERAGE RECEIVER MUTUAL INFORMATION AND
JOINT OBSERVATIONS

4.1. Average Receiver Mutual Information
Compared to single-point observation schemes, in DDM sys-
tems, a joint observation strategy that simultaneously observes
two or more points in the far-field zones is expected to increase
the information handling capacity, but at the cost of increased
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TABLE 3. Entropy, AMI, and BER at different noise levels under the
same code selection strategy. (The fixed code selection strategy is ob-
tained in a 20dB SNR system with d/σ = 4.) The single observation
direction is θ = 13.5◦, ϕ = 36◦; The joint observation directions are
θ = 45◦, ϕ = 0◦ and θ = 54◦, ϕ = 72◦.

SNR
Entropy
(Single)

AMI BER
Entropy
(Joint)

JAMI BER

20 dB 2.81 2.37 0.0328 4.7 3.54 0.0711
10 dB 2.81 1.14 0.0409 4.7 1.82 0.3204
5 dB 2.81 0.56 0.3859 4.7 0.89 0.5007

complexity and cost. Here, we first investigate the degree of
correlation between different far-field directions under a spe-
cific source coding strategy.
To express the correlation degree of different observation di-

rections, considering two receiving directions Oy and Oz with
observation values y and z, we define the average receiver mu-
tual information (ARMI) as,

I (Y ;Z) =

Nz∑
j=1

Ny∑
i=1

p (zj) p (yi|zj) log2
p (yi|zj)
p(yi)

. (17)

To compute p (yi|zj), we use Ax(zj), which is defined as in
Eq. (7), in order to express the set of source codes in terms
of the same observation value zj . Similarly, Ax(yi, zj) is de-
ployed to capture the source codes set corresponding to scatter-
ing far-field values yi and zj along the chosen two observation
directions. Consequently, we may write,

p(yi|zj) =
p(yj , zi)∑Nx

m=1 p(xm)p(zj |xm)

=

∑Nx

m=1 p(yi, zj |xm)∑Nx

m=1 p(zj |xm)

=

{
C[Ax(yi,zj)]
C[Ax(zj)]

,

0 ,

Ax(yi, zj) ̸= ∅,

Ax(yi, zj) = ∅,
(18)

where the third equal sign follows from the assumption of equal
probability of each source code. The measure ARMI in (18)
provides information about the eliminated average uncertainty
for the information in Oy from the observation in Oz direc-
tion; thus, it describes the correlation between two different ob-
servation directions. A larger ARMI indicates smaller mutual
independence between two observations, while a smaller one
represents a weaker correlation. When choosing another joint
observation direction for improving the observation capability,
we shall select the direction with a small ARMI, for locations
with small correlations can provide more information for the
source. Still, taking the 4 × 4 metasurface DDM system with
16 bit equi-probability encoding as an example, we choose the
direction θ = 45◦, ϕ = 0◦ as the Oy direction, and the ARMI
in differentOz directions can be calculated as shown in Fig. 12

(a) (b)

FIGURE 12. ARMI for a 4 × 4 metasurface DDM system. (a) y in
θ = 45◦, ϕ = 0◦. (b) y in θ = 54◦, ϕ = 72◦.

(a). It can be seen then that ARMI is larger at directions hav-
ing the same or symmetrical ϕ with respect to theOy direction,
which implies the presence of a high degree of correlation be-
tween these directions and Oy .

4.2. Joint Observations for Noiseless Systems
As stated earlier, if all available transmitting binary codes were
to be used for sending information from an information source
whose entropy is 16 bit, a single-point observation along θ =
45◦, ϕ = 0◦ can only reach a 5.47 bit AMI as there are differ-
ent transmitting binary source patterns eventually leading to the
same far-field observation value. If multiple observation direc-
tions are applied, more source code patterns may be separated
due to the introduction of independent observations. This sim-
ple concept is associated with the increasing AMI with more
observation directions. It is possible for the AMI to approach
the source entropy with enough independent observations. The
measure of the joint average mutual information (JAMI) is in-
troduced to quantitatively evaluate the information transmis-
sion capability of the DDM system under joint observations, by
generalizing Eq. (10). While the JAMI shares the same physi-
cal significance as AMI, the main difference is that the receiver
value becomes a vector composed of observations at multiple
directions. The JAMI I(X;Y, Z) associating sourceX and two
independent observations Y and Z is defined as follows,

I (X;Y, Z) =

N(y,z)∑
j=1

Nx∑
i=1

p (xi) p[(y, z)j |xi]

log2
p[xi|(y, z)j ]

p(xi)
, (19)

where (y, z)j represents the jth observation value combination,
while N(y,z) is the number of far-field observation values ob-
tained for the joint measurement at the directions associated
with y and z. The JAMI I(X;Y, Z) can be further generalized
to handle more than two observation directions.
In order to illustrate the significance of JAMI, we provide an

example where all transmitting metasurface patterns (hardware
codes) are assumed equi-probable. The JAMI of aDDMsystem
is evaluated and reported in Table 4 with a fixed observation
Oy along θ = 45◦◦, ϕ = 0◦◦ and a varying direction Oz along
three different angular directions z1 (θ = 45◦, ϕ = −180◦),

11 www.jpier.org



Bai et al.

z2 (θ = 22.5◦, ϕ = −90◦), and z3 (θ = 54◦, ϕ = −72◦),
repectively.
as shown in Table 4. The correlation degree between those

three Oz directions with the Oy direction can be described by
the ARMI as defined in Section 4.1, whose value is shown in
the third column of Table 4. Calculations confirm that joint
observations with smaller ARMI directions are associated with
a larger JAMI. The AMI increases to a higher value of 13.17
bit for joint observations in θ = 45◦, ϕ = 0◦ and θ = 54◦,
ϕ = 72◦. We can further calculate the ARMI between other
locations with θ = 54◦, ϕ = 72◦ as shown in Fig. 12(b). Com-
bining with Fig. 12(a), we may select another angular sector
θ = 63◦, ϕ = 108◦ that has small ARMI with both θ = 45◦,
ϕ = 0◦ and θ = 54◦, ϕ = 72◦. This is a direction that provides
relatively independent observations to the source compared to
the other two chosen directions. The JAMI combining all these
three directions reaches 14.28 bit, which is quite close to the
source entropy. This indicates that it is possible to select an
optimum or near-optimal set of directions for a specialized pro-
grammable DDM joint observation scheme whose combined
JAMI can be sufficiently close to the source entropy.

TABLE 4. JAMI and ARMI for joint observations.

Cases
AMI
for x

ARMI
with y

JAMI
for x

y: only θ = 45◦ ϕ = 0◦ 5.47 / /
with z1: θ = 45◦ ϕ = −180◦ 5.47 5.46 5.48
with z2: θ = 22.5◦ ϕ = −90◦ 6.33 1.44 10.35
with z3: θ = 54◦ ϕ = 72◦ 8.36 0.66 13.17

The above analyses are based on applying ARMI measures
to select observation directions for better information trans-
mission and processing capabilities. On the other hand, when
the observation directions are given, one can select the source
codes following a similar strategy as mentioned in Subsec-
tion 3.2 originally presented for the single observation scenario.
The purpose is to establish a one-to-one correspondence be-
tween the source code transmitting pattern on one end, and the
observation field vector on the other end, with the final ob-
jective to satisfy the information-theoretic requirement that the
AMI and the source entropy be as close to each other as possi-
ble for an effective transmission over noiseless channels. Tak-
ing joint observations along θ = 45◦, ϕ = 0◦ and θ = 54◦,
ϕ = 72◦ as an example, the number of selected coding is 12901
with a source entropy and JAMI of 13.66 bits. This calcula-
tion demonstrates a significant improvement over the single-
observation scenario whose corresponding source entropy and
AMI is only 6.91 bits. The results are summarized in Table 2.

4.3. Noisy Joint Observation Schemes for DDM Systems and
Optimized Codes
We then consider the code selection process for a noisy system
with two joint observations at Oy and Oz . Let us again assume
an additive Gaussian noise superimposed on both observation
directions, and we use the average field magnitude at direction
Oy as the reference in defining the SNR. The decision bound-

aries on the y and z observation plane are determined by apply-
ing the strategy as developed in Subsection 3.3 twice. First, we
apply the same hardware code selection strategy for the single
observation scenario (Subsection 3.3) in order to compute the
received signal y’s decision region boundaries. Next, for the
codes falling within each subdomain of a y decision region, we
employ the strategy again to obtain the decision boundaries as-
sociated with the received (observed) signal z. These decision
boundaries are illustrated in Fig. 13 as solid lines with d/σ = 4.
Finally, the hardware code whose far-field observation value is
closest to the center of each rectangular subdomain is chosen
as a selected code. Following this strategy, a 20 dB SNR sys-
tem has a source entropy of 4.70 bits and a JAMI of 3.54 bits.
If the SNR is increased to 30 dB, an improved communication
capability with source entropy of 7.14 bits and JAMI of 6.34
bits is obtained. These values are also included in Table 2 for
comparison. The source entropy and AMI/JAMI for both sin-
gle observation and joint observation scenarios performed after
code selections are shown in Fig. 14 against varying noise lev-
els. It is clear that the joint observation scenario is linked to a
higher mutual information transfer capability compared to the
single observation case. It is also noted that under a given noise
level, the absolute difference between the JAMI and the entropy
H(X) for the joint observation case is larger than that between
the AMI andH(X) for the single observation case. This is due
to the increased constellation density in the observation plane
and the associated increase in decision errors.
A numerical experiment is also constructed to demonstrate

the proposed code selection strategy and the significance of the

(a)

(b)

FIGURE 13. Code optimization boundaries overlaid on the 2D scat-
tering field plot observed in directions Oy(θ = 45◦, ϕ = 0◦) and
Oz(θ = 54◦, ϕ = 72◦). (a) SNR = 20 dB. (b) SNR = 30 dB.
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FIGURE 14. Noisy system AMI and entropy for single observations
and joint observation after source code selections.

proposed parameters under joint observations extending the ex-
ample discussed in Subsection 3.4. The observation directions
are assumed in θ = 45◦, ϕ = 0◦ and θ = 54◦, ϕ = 72◦,
and a system with SNR of 20 dB is considered. A code selec-
tion with d/σ = 4 leads to 26 available hardware codes, much
larger than 7 for the single observation case. The transmission
experiment yields the received image as shown in Fig. 15(b), il-
lustrating good transmission quality with a JAMI of 3.54 bit, an
entropy of 4.7 bit, and a bit error rate (BER) of 7.11%, respec-
tively. These statistics are summarized in Table 3. The larger
JAMI versus the AMI indicates an improved transmission effi-
ciency as compared to the single observation scheme discussed
in Subsection 3.4.
Table 3 also compiles the characteristics to transmit the im-

age following the joint observation scheme with the same set of
hardware codes and decision rules while the SNR is decreased
to 10 dB and 5 dB, respectively. The corresponding transmitted
images are illustrated in Fig. 15 (c) and (d), respectively. The
achieved JAMI’s are only 1.82 bit and 0.89 bit, respectively,
much less than the source entropy. The corresponding BERs
are large of 32.04% and 50.07%, respectively, consistent with
the blurred images received. The BERs for the joint observa-
tions are much larger than those for single observations, (i.e.,
4.09% and 38.59%, respectively, for SNRs of 10 dB and 5 dB,
cf. Table 3) accompanying relatively larger differences between
the source entroy and the JAMI/AMI’s.

5. CHANNEL CAPACITY

5.1. Channel Capacity for Noiseless Systems
The AMI and JAMI described above provide quantitative as-
sessment of the level of the information transmitted along one
or more directions under a given coding strategy. The maxi-
mum amount of information that a channel can transmit, i.e.,
the channel capacity, is another fundamental parameter [51]
to guide the choice of observation directions and settings for
higher transfer capabilities [2]. In the DDM system presented,
the Shannon information capacity can be defined as the maxi-
mum value of AMI optimized over all possible a priori proba-
bility distributions assigned to the digital source codes. From

(a) (b)

(c) (d)

FIGURE 15. Simulation experiment of the DDM communication sys-
tem under joint observation. (a) Image to be transmitted. (b) The
received image under a 20 dB SNR with 20 dB SNR code selection
strategy. (c) The received image under a 10 dB SNR with 20 dB SNR
code selection strategy. (d) The received image under a 5 dB SNRwith
20 dB SNR code selection strategy.

the aforementioned analysis, the AMI of a noiseless DDM sys-
tem is equal to its receiver entropyH(Y ). Its channel capacity
C then follows [2, 51, 60]

C = max
p(yi)

H(y) = max
p(yi)

Ny∑
i=1

[−p(yi) log2 p(yi)] . (20)

The capacity C, i.e., the maximum entropy H(y), is achieved
with a uniform distribution of yi and a maximum Ny , follow-
ing the maximum entropy theorem [60], giving rise to C =
log2 Ny . For the DDM system presented, Ny , and thus C,
varies with the choice observation direction and the metasur-
face complexity. The directional patterns of C for a 3 × 3 and
4× 4 metasurfaces are shown in Fig. 16. The channel capacity
of the 4× 4 metasurface is consistently higher than that of the
3 × 3 system due to a higher degree of source patterning free-
dom. The directional patterns ofC is related to the symmetry of
the observation direction in the frame of the metasurface place-
ment. Some observation directions are corresponding to richer

(a) (b)

FIGURE 16. Capacity distributions for noiseless system. (a) 4 × 4
metasurface. (b) 3× 3 metasurface.
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sets of scattering field diversities. This is also evident in Fig. 6
as we compare the scattering field statistics at two chosen di-
rections. The maximum value of the capacity over all possible
observation directions,Cmax, is defined to characterize themax-
imal information carrying capability of the metasurface, and it
amounts to 7.33 and 9.11 bits for the 3 × 3 and 4 × 4 meta-
surfaces, respectively. To characterize the overall information
carrying capability of the metasurface over all possible direc-
tions, the capacity C can be averaged over the half-space of the
solid angle to yield an average capacity Cave, which amounts
to 6.17 and 8.23 bits for the 3 × 3 and 4 × 4 metasurfaces,
respectively. It is always of interest to define the maximum ca-
pacity per unit area of the metasurface, C̃max, and the average
capacity per unit area of the metasurface, C̃ave, to characterize
the information carrying capability per unit area of the recon-
figurable metasurface, which amounts to 16623.4 and 13988.8
bits/m2 for C̃max, and 11614.7 and 7868.7 bits/m2 for C̃ave, for
the 3 × 3 and 4 × 4 metasurfaces, respectively. The unit cell
size of the metasurface is taken as 7mm × 7mm as described
in Section 2.1. These characteristics are also summarized in Ta-
ble 5. It is noted that a lager metasurface exhibits an increased
average capacity, yet its efficiency represented by the average
capacity per unit area diminishes.

TABLE 5. The maximum capacity, average capacity, maximum capac-
ity per unit, and average capacity per unit for 3×3 and 4×4metasur-
faces under noiseless and noisy system. The maximum and average
operator is managed over the half-space of the solid angle. A decision
rule derived with d/σ = 4 is in use for the noisy system.

MS Noise
Cmax

(bits)
Cave

(bits)
C̃max

(bits/m2)
C̃ave

(bits/m2)

3× 3

No 7.33 6.17 16623.4 11614.7
30 dB 3.27 2.86 7422.7 6486.4
20 dB 1.87 1.54 4236.6 3498.9

4× 4

No 9.11 8.23 13988.8 7868.7
30 dB 4.14 3.76 5284.1 4791.9
20 dB 2.64 2.32 3362.2 2957.7

We also examine the effects of metasurface element size
on the capacity characteristics. The capacity parameters
Cmax, Cave are plotted versus the metasurface element size in
Fig. 17(a) for a 3 × 3 and 4 × 4 metasurface, respectively,
while the capacity parameters C̃max and C̃ave are illustrated
in Fig. 17(b). It is noted that a larger element size associates
with a higher capacity and a reduced capacity per unit area.
These observations are linked to the physical scattering
characteristics of the metasurface, highlighting the necessity
to combine electromagnetic scattering analysis and the in-
formation characterization. Note that in practice, the chosen
metasurface element size must follow the physical requirement
in designing the reconfigurable metasurface with desired
scattering properties [33, 44]. In this paper, we have assumed
that the PO assumption of formula (2) holds valid for the
range of the metasurface element sizes being investigated. The

details in tuning the metasurface structure to meet the phase
change properties are beyond the scope of this paper.

(a) (b)

FIGURE 17. (a) Average/Maximum capacity under different metasur-
face element size. (b) Average/Maximum capacity per unit area under
different metasurface element size.

The channel capacity C defined in Eq. (20) for a single ob-
server in a noiseless system is ready to be generalized to han-
dle joint observations in a noiseless environment. The channel
capacity of the 4 × 4 metasurface with joint observations at a
fixed direction of θ = 54◦, ϕ = 72◦ and a varying second
direction is illustrated in Fig. 18. It is overall larger than that
derived from a single observer at the fixed direction. It is also
noted from Fig. 18 that the joint observation capacity is lower
at directions having the same or symmetrical ϕ with respect to
the fixed direction. This is attributed to the high degree of cor-
relation in those directions, as demonstrated in Subsection 4.1
and Fig. 12. Therefore, such highly correlated directions shall
be avoided in practical configuration of joint observations with
the aim to improve capacity.

FIGURE 18. The capacity of joint observations at two directions includ-
ing a fixed direction of θ = 54◦, ϕ = 72◦ and another direction.

5.2. Channel Capacity for Noisy Systems
To compute channel capacity with noise given a set of receiv-
ing events Rj’s corresponding to the selected code xj’s, let us
introduce a transition probability matrix P , considering the dis-
crete nature of the DDM system,

P =


p(R1|x1) p(R2|x1) · · · p(RNR

|x1)

p(R1|x2) p(R2|x2) · · · p(RNR
|x2)

· · · · · · · · · · · ·
p(R1|xNR

) p(R2|xNR
) · · · p(RNR

|xNR
)

 (21)
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where p(Rj |xi) is the transition probability from the ith input to
the jth receiving event. For a channel with an invertible transi-
tion probability matrix, we apply the channel capacity theorem
and the Bluhat-Arimoto iterative algorithm to obtain its chan-
nel capacity [60, 61]. The capacity is reached when the p(x)′s
are arranged such that the following conditions are satisfied per
the channel capacity theorem,

I (X = xi;R) = C, ∀ p (xi) > 0, (22)

I (X = xi;R) ≤ C, ∀ p (xi) = 0, (23)

where C is the channel capacity, and

I (X = xi;R) =

Ny∑
j=1

p(Rj |xi) log
p(Rj |xi)

p(Rj)
(24)

is the average mutual information between a single symbol xi

and the receiving event R.

(a) (b)

FIGURE 19. Capacity for noisy systems. The structure of metasurface
is 4× 4. (a) 30 dB SNR. (b) 20 dB SNR.

Figure 19 shows the angular distribution of such estimated
channel capacity for a 4×4metasurface in a system with 30 dB
SNR and 20 dB SNR, respectively, following the code selection
strategy discussed in Subsection 3.3. The directional averaged
channel capacity, Cave, amounting to 3.76 bit and 2.32 bit for
the two noise levels, respectively, is much lower than that of the
noiseless system, 8.23 bit, as depicted in Fig. 16(a). The max-
imum channel capacity, Cmax, amounting to 4.14 bit and 2.64
bit, respectively, is also much lower than that of the noiseless
system, 9.11 bit. These characteristics are also summarized in
Table 5. Furthermore, comparing with Fig. 16, it is noted that
the angular distribution of the channel capacity becomes more
uniform as SNR decreases, a result of the more uniform distri-
bution of the far fields and less decision boundaries.
In a noisy communication environment, it is of interest to

compare the channel capacity and the achieved AMI/JAMI un-
der a specific coding strategy. A coding strategy represents a
specific set of p(x)’s being assigned to the hardware source pat-
terns. Following definition, the AMI will be upper-bounded
by the capacity (C). For an effective communication system,
we expect the achieved AMI approaching the capacity, imply-
ing that the channel capacity is fully exploited, while the AMI
and capacity approach the source entropy corresponding to the
deployed p(x)’s, indicating a lower error rate of information
transmission. These are illustrated in Table 2 by comparing

the AMI and the source entropy corresponding to the equal-
probable p(x)’s coding strategy and the channel capacity. The
obtained AMI after source code selection is near the capacity,
and it also approaches the entropy, indicating the effectiveness
of the strategy. The same set of relations are utilized to esti-
mate the ranges of the capacity C for the joint observation sce-
narios, where rigorous calculation becomes difficult due to the
substantially expanded degrees of freedom.

6. CONCLUSIONS
This study provided a comprehensive investigation into electro-
magnetic information characterization techniques in the context
of RIS-enabled DDM communication systems where a conven-
tional linear channel matrix H based analyzing method would
fail. To this end, we introduced four key parameters, namely
AMI, ARMI, JAMI, and channel capacity, established their re-
lationship with the scattering characteristics of the metasurface,
and demonstrated these relations and the behavior of the param-
eters. We also examined the efficacy of different coding strate-
gies for information transmission in scenarios involving single
or multiple observations, and with or without noise.
Our investigation of RIS used in DDM systems yielded sev-

eral noteworthy findings. We established that AMI can effec-
tively capture the average observation capability of a particular
direction for a given coding strategy. The ARMI is proved to be
an effective measure of the correlation of observations across
different directions. Our results suggest that directions with low
ARMI values can be jointly taken to enhance the quality of in-
formation transfer, as compared to single observations. Our
study underscored the significance of code selection in satisfac-
tory DDM system operation for practical information process-
ing and transmission. These findings provide valuable insights
into the design and implementation of RIS-enabled DDM com-
munication systems, with potential implications for future re-
search in this field. While noise degrades communication sys-
tem performance, proper code selection strategy improves com-
munication reliability and accuracy. We established that the
channel capacity of the RIS-enabled DDM communication sys-
tem can be estimated using the receiver entropy for a noiseless
system or the transition probability matrix for a noisy system
under a specific decision rule. Our analysis further revealed that
the channel capacity is significantly influenced by multiple fac-
tors, including the observation directions, metasurface element
numbers and cell sizes, configuration of joint observations, and
noise levels. These findings suggest that optimization of the
information system performance can be achieved by appropri-
ately configuration of all these parameters. Relations among
the source entropy, AMI/JAMI, and channel capacity are also
illustrated as performance indicators of a practical communica-
tion system.
The developed approach enables us to gain insights into the

behavior of the novel DDM system under varying conditions,
facilitating the design and implementation of efficient and re-
liable communication systems. It is worth noting, however,
that accurately analyzing the electromagnetically-aware statis-
tics of joint observation scenarios requires significant compu-
tational resources owing to the large number of degrees of free-
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dom involved. Nonetheless, by leveraging appropriate com-
putational tools and techniques, such as machine learning and
optimization algorithms, these challenges can be potentially ad-
dressed. It is also noteworthy that much of the analysis carried
in this paper is in its primitive stage. The purpose of the pa-
per is more on presenting EM information characterization of
scattering reconfigurability enabled information system as an
emerging new field to the audience with interest. Much is yet
to be done: a more rigorous characterization of noise, envi-
ronment, and channel fluctuation on the system performance
is desired; more accurate EM scattering analysis of the RIS
scattering, fully incorporating the near fields and polarization
effects, is on the way to clarify its impact on the information
metrics; multiple variants of the DDM systems, including high
degree-of-freedom RISs and continuous controllable RISs, are
being designed and to be analyzed and optimized in terms of
their information characteristics; a theoretical interpretation for
the spatial distribution of communication capacity in the RIS-
DDM system, especially through the spatial harmonic analysis
is desired. We believe that the insights gained from our study
hold significant promise for advancing the field of information
metasurface-enabled communication systems, as well as other
areas of electromagnetic information processing and transmis-
sion. Our proposed parameters and approaches offer insights
for designing and analyzing RIS-enabled DDM systems, and
can be extended to other EM information systems.
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APPENDIX A. PROOF OF THE ML DETECTOR CONDI-
TION FOR THE DDM SYSTEM
The ML detector of the system is given by,

x̂ = arg max
x∈Cx

p(y|x) = arg min
x∈Cx

|y − f(x)|2 , (A1)

where, Cx is the set of all possible realizations of x, while y is
the receiving value. For any specific source xp, and its corre-

sponding receiving value yj = f(xp), the value |y − f(xp)|2,

or equivalently |y − yj |2, achieves its minimum when the fol-
lowing conditions are met:

|y − yj |2 < |y − yj+1|2 and |y − yj |2 < |y − yj−1|2 (A2)

where, yj+1 and yj−1 represent the larger and smaller possible
receiving values adjacent to yj . The solution to these conditions

is finally given by,

yj + yj−1

2
< y <

yj + yj+1

2
. (A3)
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