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ABSTRACT: Aiming at the problems of poor population diversity, slow speed of late identification, and low identification accuracy of
traditional grey wolf algorithm (GWO), a chaotic adaptive search grey wolf optimization algorithm (CASGWO) for parameter iden-
tification of permanent magnet synchronous motor is proposed in this paper. Firstly, multiple low-dimensional chaotic mappings are
combined; a composite chaotic system Tent-Logistic-Cosine is obtained; uniform populations are generated. So the population diversity
and global search capability are improved. Then a segmented nonlinear search method is proposed, where the nonlinear decay factor
quickly converges to the vicinity of the optimal solution in the first segment and slows down the convergence rate for local search in the
second segment. Thus, the convergence rate is accelerated while the local search capability is enhanced. Finally, the adaptive inertia
weights are adjusted according to the fitness values of different wolf pack iterations, and ω wolves approach the leader wolf pack with
smaller fitness values at a faster speed. Therefore, the speed of search is again improved, and the local search ability of the algorithm
is again enhanced. Experiments show that when identifying multiple parameters of resistance, inductance, and permanent magnet flux
of a permanent magnet synchronous motor, the CASGWO method has good global and local search capability, with faster identification
speed and higher identification accuracy than the traditional grey wolf algorithm.

1. INTRODUCTION

Permanent magnet synchronous motor (PMSM) is widely
used in robotics, new energy vehicles, and wind power gen-

eration due to their high efficiency an high power density [1–
4]. The accuracy of parameter identification has a significant
impact on the control performance, speed regulation, and con-
trol prediction of PMSM [5–7]. However, the parameters of
PMSMs including stator resistance, stator inductance, and per-
manent magnet flux are affected by various factors such as the
degree of magnetic saturation, temperature, and load perturba-
tion during the actual operation [8–10]. Varying parameters can
lead to the reduction of control performance and safety reliabil-
ity of the motor. Therefore, the accurate identification of mul-
tiple parameters of PMSM is the key to improve the control
quality of permanent magnet synchronous motor control sys-
tem.
To achieve multi-parameter identification of PMSM, many

scholars have proposed different methods for online parame-
ter identification. The online parameter identification methods
include recursive least squares (RLS), extended Kalman filter
(EKF), model reference adaptive system (MRAS), and intelli-
gent algorithms. The method in [11] presents a dynamic decou-
pling control method for permanent magnet synchronous mo-
tors in a brake-by-wire system, but only inductance and mag-
netic chain can be identified. The method presented in [12]
combines EKF and LS with consideration of magnetic satura-
tion, and identifies only the magnetic chain and inductance in a
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stepwise manner, which takes a long time. The method in [13]
proposes a multi-parameter estimation method using a model-
referenced adaptive system to estimate and continuously up-
date the stator resistance and rotor magnetic chain in a closed-
loopmanner, thus eliminating the sensitivity tomulti-parameter
variations at low speed.
In addition to the traditional methods, intelligent algorithms

have emerged in recent years to be used to identify the parame-
ters of PMSM, and many scholars have improved different in-
telligent algorithms. In [14], a parameter identification method
based on an improved cuckoo search algorithm is proposed.
Cloud fuzzy logic and adaptive variable step size methods are
employed to change the parameters of the cuckoo search algo-
rithm, and the local and global optimisation search capability
is improved. An improved fuzzy particle swarm algorithm is
proposed in [15], where the velocity of each particle is changed
from being affected only by the optimal particle to being af-
fected by the surrounding particles. Convergence factors are
introduced, and this method ensures the accuracy of the algo-
rithm’s identification and the convergence performance of the
algorithm, which is capable of identifying the four parameters
of the PMSM simultaneously. In [16], a new variable step size
neural network algorithm was designed to introduce a veloc-
ity factor in the step function to ensure the performance of the
recognition algorithm at different speeds. The recognition pro-
cess is faster and more stable. The presented method in [17]
considers the voltage source inverter nonlinearity and designs
an immune operator based on chaotic logic. An adaptive speed
particle swarm algorithm was proposed in [18] to control the
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PMSM and optimise the objective function to find the best pa-
rameters in the weak magnetic region and to achieve the min-
imum error of the controller. The dynamic self-learning par-
ticle swarm optimisation algorithm in [19] introduces a non-
linear multi-scale interactive learning operator to speed up the
convergence of the particles, and it is capable of holistically
tracking the electrical parameters, mechanical parameters and
VSI of the PMSM transmission. In [20], grey wolf optimiza-
tion algorithm and particle swarm optimization algorithm were
combined, and multiple sets of test functions were used to com-
pare the performance of the algorithms, which proved to per-
form well in terms of quality of solution, stability of the solu-
tion, speed of convergence, and the ability to find a globally
optimal solution. Improved grey wolf algorithm using group-
ing strategy and convergence factor with nonlinear decay was
proposed in [21] to identify the parameters of generator excita-
tion system. The grey wolf optimisation algorithm in [22] was
used to perform state feedback control, and the results show
that the control results have the advantage of fast response and
no overshooting. The grey wolf algorithm and model reference
adaptive were combined in [23], using the grey wolf optimiza-
tion algorithm to optimize the proportional-integral controller
parameters for the speed adaptive law obtained from MRAS
which can obtain better speed performance.
In order to improve the convergence speed and recognition

accuracy of GWO and to improve the balance between its local
and global search abilities, a parameter recognition method of
PMSMbased on chaotic adaptive search greywolf optimisation
algorithm is proposed. The specific implementation method is
as follows:

1) According to the mathematical model of PMSM, the neg-
ative sequence current with id = −2 is injected into the
d-axis to construct the full rank equation containing the
parameters to be identified.

2) Multiple low-dimensional chaotic mappings are compos-
ited to generate a high-dimensional Tent-Logistic-Cosine
chaotic system, and the population generated by the com-
posite chaotic system ensures the diversity and traversal
of the initial population of GWO. As a result, the algo-
rithm’s global search capability and recognition speed are
enhanced.

3) A nonlinear decay factor is introduced into the GWO al-
gorithm for segmented nonlinear search of the population,
and the convergence speed at different stages is flexibly
adjusted, with rapid convergence in the early stage and de-
celerated search in the later stage. The accuracy and speed
of search are improved.

4) According to the distance and position of different leader
wolves and ω wolves, judge the size of the leadership abil-
ity of the leader wolves, calculate the value of iterative
fitness, and adaptively adjust the iterative inertia weights.
The local search ability and search speed of wolf packs are
improved.

5) The final experimental results show that the method is able
to identify the resistance, inductance, and magnetic flux
parameters of PMSM simultaneously online. Compared

with the traditional GWO, the convergence speed is faster,
the recognition accuracy stronger, and it has good global
and local search capability.

The remaining subsections of the paper are organised as fol-
lows. The mathematical model and full rank equations of the
permanent magnet synchronous motor are constructed in Sec-
tion 2. The principle and process of the method used are pre-
sented in Section 3. The fitness function is constructed in Sec-
tion 4, and the process and implementation of the parameter
identification of the described method are described. In Sec-
tion 5, the experimental conditions and experimental platform
are described, and a validation analysis is carried out based on
the experiments. In Section 6, conclusions are given based on
the theory and experiments.

2. MATHEMATICAL MODEL OF PMSM
Neglecting the effect of the core saturation loss of the PMSM,
the voltage equation of the PMSMunder the d-q coordinate sys-
tem is expressed as:{

ud = Rsid + Ld
did
dt − ωnLqiq

uq = Rsiq + Lq
diq
dt + ωnLdid + ωnψm

(1)

whereRs denotes the stator resistance; Ld andLq denote the d-
axis inductance and q-axis inductance; Ld = Lq = Ls; id and
iq denote the stator current; ωn denotes the electrical angular
velocity; ψm denotes the permanent magnet flux; ud and uq
denote the stator voltage.
When themotor is running steadily the current change is very

small, so the current differential component in (1) is close to 0
and can be ignored: {

did
dt = 0
diq
dt = 0

(2)

Then (1) can be simplified as:{
ud = Rsid − ωnLqiq
uq = Rsiq + ωnLdid + ωnψm

(3)

The negative sequence current with id = −2 is injected in
the d-axis, and the fourth order full rank equation is obtained
as:

ud0(k) = −ωn0(k)Lqiq0(k)

uq0(k) = Rsiq0(k) + ωn0(k)ψm

ud2(k) = Rsid2(k)− ωn2(k)Lqiq2(k)

uq2(k) = Rsiq2(k) + ωn2(k)Ldid2(k) + ωn2(k)ψm

(4)
where the variable with subscript 0 represents the voltage and
current of the d-axis and q-axis sampled at id = 0. The variable
with subscript 2 represents the voltage and current of the d-axis
and q-axis sampled at id = −2.

The k-th sampled data of current, voltage, and electrical an-
gular velocity collected under the two operating conditions of
the motor are shown in Figure 1.
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FIGURE 1. Data sampling diagram.

3. CHAOTIC ADAPTIVE SEARCH GREY WOLF OPTI-
MISATION ALGORITHM

3.1. Grey Wolf Optimization (GWO)
The GWO algorithm, a meta-heuristic optimization algorithm
by simulating grey wolf packs for collaborative predation, was
proposed in 2014 by by Seyedali Mirjalili et al. in [24]. It is
characterized by a simple structure, a few parameters to be
adjusted, and easy to implement. The existence of adaptive
convergence factors and information feedback mechanisms can
achieve a balance between local optimisation and global search,
thus providing good performance in terms of problem solving
accuracy and convergence speed.
The core idea of the grey wolf algorithm is to simulate the

hierarchy of a wolf pack, with α, β, and δ wolves leading ω
wolves to encircle, pursue, and attack the prey. Among them,
α, β, and δ wolves represent the optimal, suboptimal, and third-
best solutions, respectively, and ω wolves are moved so as to
achieve the global search.
In GWO, the lead wolf changes position to lead the pack to

encircle the prey, updating the position according to the follow-
ing formula:

{
D⃗ =

∣∣∣C⃗ · X⃗m(k)− X⃗(k)
∣∣∣

X⃗(k + 1) = X⃗m(k)− A⃗ · D⃗
(5)

D⃗ is the distance between the grey wolf and the prey; X⃗m and
X⃗ are the position vectors of the prey and the grey wolf respec-
tively; k is the number of current iterations; A⃗ and C⃗ are the
change coefficient matrices in each iteration. The calculation
formulas are designed as:

a = 2

(
1− t

M

)
(6)

{
A⃗ = a (2r⃗1 − 1)

C⃗ = 2r⃗2
(7)

where r⃗1 and r⃗2 are two vectors of random numbers with val-
ues in [0, 1]; t is the number of iterations;M is the maximum
number of iterations, and the values decrease linearly from 2 to
0 as the number of iterations increases.

Then the distance between wolves is calculated as:
D⃗1 =

∣∣∣C⃗1 · X⃗α − X⃗
∣∣∣

D⃗2 =
∣∣∣C⃗2 · X⃗β − X⃗

∣∣∣
D⃗3 =

∣∣∣C⃗3 · X⃗δ − X⃗
∣∣∣

(8)

D⃗1, D⃗1, and D⃗1 represent the distance of other individual
grey wolves from the α, β, and δ packs, respectively. X⃗ is the
current position of the grey wolf.
The location and direction of wolf pack adjustments are ex-

pressed as: 
X⃗1 =

∣∣∣X⃗α − A⃗1 · D⃗1

∣∣∣
X⃗2 =

∣∣∣X⃗β − A⃗2 · D⃗2

∣∣∣
X⃗3 =

∣∣∣X⃗δ − A⃗3 · D⃗3

∣∣∣ (9)

where X⃗1, X⃗2, and X⃗3 denote the step length and direction of
approach to the α, β, and δ packs, respectively.
X⃗(t+1) denotes the position of the individual grey wolf that

needs to be adjusted. Here the mean value is expressed as:

X⃗(t+1) =
X⃗1 + X⃗2 + X⃗3

3
(10)

A schematic diagram for the way of updating the position of
a grey wolf is shown in Figure 2.

3.2. Tent-Logistic-Cosine Combined Chaotic Grey Wolf Algo-
rithm (CGWO)
Swarm intelligence algorithms in meta-heuristic algorithms
generally use a random population generation strategy, but the
population is usually disordered which can lead to uneven dis-
tribution and poor diversity of the initial population. The distri-
bution state of the population directly determines the process of
wolf search, and random, unevenly distributed as well as regu-
lar populations will limit the search range of wolves. This has
a great impact on the accuracy of identification. Chaotic map-
ping has good traversal and randomness. To improve the diver-
sity and uniformity of the population, separate low-dimensional
chaotic mappings are employed to initialise the population.
In this paper, multiple low-dimensional chaotic mappings are
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FIGURE 2. Updated schematic of grey wolf location.

combined to generate composite chaotic systems with better di-
versity. A CGWO algorithm based on the Tent-Logistic-Cosine
composite chaotic system is proposed to initialise the popula-
tion, and its expression is devised as:

x(k+1)=


cos(π(2cx(k)+4(1−c)x(k)
(1−x(k))−0.5)), x(k) < 0.5
cos(π(2c(1−x(k))+4(1−c)x(k)
(1−x(k))−0.5)), x(k) ≥ 0.5

, c ∈ [0, 1]

(11)
The composite chaotic system was added to the grey wolf al-

gorithm to generate diverse and evenly distributed populations.
The location of the lead pack was evenly dispersed; the num-
ber of hunting paths increased; the hunting range increased; the
location of prey was more accurately localised; consequently,
the global search ability and convergence speed of the pack was
improved.

3.3. CNGWO Algorithm Based on Nonlinear Decay Factor
In the standard GWO algorithm, the convergence factor a de-
termines the predation speed of the wolves, and the value of the
convergence factor a decreases linearly from 2 to 0. Since the
search process of the GWO algorithm is nonlinear and highly
complex, the linear decay strategy is not flexible. Therefore,
this paper proposes a new nonlinear exponential decay factor
strategy to search in segments according to the progress of con-
vergence. The nonlinear decay factor converges quickly to the
neighbourhood of the optimal solution by exponential decay in
the first segment and slows down the convergence by quadratic
decay in the second segment for local search, and the arithmetic
is expressed as:

T =
t

M
(12)

a(k+1) =


ai + (af − ai)e

−KT ,
0 < T ≤ 0.7
− 100

9 e−0.7K(T 2 − 1.4T + 0.4),
0.7 < T < 1

(13)

Combining (6), (7), (12), (13) and substituting into (5), the
equation of the lead wolf pack can be updated as:

X⃗(k+1)=



−−→
Xm(k)− 2(1 + e−KT )(2−→r1 − 1)∣∣∣2−→r2−−→Xm(k)− X⃗(k)

∣∣∣ , 0 ≤ T ≤ 0.7
−−→
Xm(k) + 200

9 e−0.7K(T 2 − 1.4T + 0.4)∣∣∣2−→r2−−→Xm(k)− X⃗(k)

∣∣∣ , 0.7 ≤ T ≤ 1

(14)

t represents the current number of iterations; M is the max-
imum number of iterations; T is the ratio of t to M ; K is a
constant with a value greater than 1 and can be adjusted to the
segmentation threshold; ai and af represent the initial and ter-
mination values of the control parameter a, respectively, with
the initial value set to 2 and the termination value set to 0.
For the speed of wolf hunting and searching to take seg-

mented convergence, wolves can flexibly regulate the speed
and path of searching. The pre-hunting period needs to be quick
to narrow down the hunt and speed up the search. In the post-
hunting period it is necessary to search more carefully andmore
precisely at a localised scale to ensure that the prey is accurately
located. The value of K can adjust the value of the segmenta-
tion point; the larger the value of K is, the smaller the critical
value is; the first segment converges faster; the second segment
slows down; and the local search scope is reduced. The smaller
the value of K is the larger the critical value is; the first seg-
ment searches slower; the second segment searches faster; and
the local search scope is enlarged.

3.4. CASGWO Algorithm Based on Chaotic Adaptive Search
From (11), the GWO algorithm hunts for the optimal solution,
the second best solution, and the third best solution represented
by α, β and δ wolves, respectively, using the average value.
However, since the fitness values of the solutions are differ-
ent, the use of the average value does not reflect the real prey
location. In order to approach the prey more quickly and ac-
curately, an adaptive inertia weighting method is proposed. ω
wolves approach the leader wolf with a smaller value of fitness;
the search for optimality approaches the optimal solution at a
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FIGURE 3. Schematic diagram for identification.

faster speed; and the arithmetic is designed as:
f = |f1|+ |f2|+ |f3|
w1 = |f3|

f , w2 = |f2|
f , w3 = |f1|

f , f ̸= 0

w1 = w2 = w3 = 1
3 , f = 0

(15)

where f1, f2, and f3 represent the fitness values of α, β, and δ
wolves, respectively, andw1,w2, andw3 represent the adaptive
inertia weighting coefficients associated with the fitness.
According to (15), Equation (10) for grey wolf hunting can

be updated as:

X⃗(t+1) =

{
w1X⃗1 + w2X⃗2 + w3X⃗3

, f ̸= 0
X⃗1+X⃗2+X⃗3

3 , f = 0
(16)

Due to the different positions of α, β, and δ wolves, the
movement of ω wolves according to the command of the leader
wolf is affected differently; however, adaptive inertia weights
can help ω wolves to judge the position of their prey more ac-
curately. Each time the position of the moving leader is up-
dated, the adaptability value is updated simultaneously. The
wolves can instantly adjust the direction of their search towards
the leader closer to the prey to speed up the hunt.

4. EXPERIMENTAL VERIFICATION
Parameter identification can be translated into regulating the
adjustable model by comparing the magnitude of the error be-
tween the adjustable model and actual model, and ultimately it
is transformed into an optimisation problem. The principle of
parameter identification is expressed in Figure 3. The system
control diagram is shown in Figure 4.
The control of the PMSM ultimately boils down to the con-

trol of the two-phase currents, so the accuracy of the discrimina-
tion values can be judged by constructing the fitness function
using the errors of the d-axis currents and q-axis currents. A
smaller value of fitness indicates a more accurate discrimina-
tion value and is represented as:

Fitness = c1(id0 − îd0)
2 + c2(iq0 − îq0)

2

+c3(id1 − îd1)
2 + c4(iq1 − îq1)

2 (17)

where c1, c2, c3, c4 are constants in the range (0, 1).
The steps to improve the grey wolf algorithm are:

Step 1: Acquisition of current, voltage, and angular veloc-
ity electrical signals at id = −2 and id = 0;

Step 2: Tent-Logistic-Cosine chaotic mapping is used to
generate initialised populations;
Step 3: Calculate the nonlinear convergence factor a ac-
cording to (12) and (13), generate matrix A, matrix C ac-
cording to (6) and (7), and calculate the distance with po-
sition of each wolf pack according to (8) and (9) as well
as record them;
Step 4: Calculate the fitness value of each wolf pack, cal-
culate the inertia weight and update the ω wolf pack po-
sition according to (16) and (17), and replaced with the
values of α wolf pack, β wolf pack, and δ wolf pack if
they are smaller than the fitness value of the previous iter-
ation, and return to step 3 to update if they are larger than
the fitness value of the previous iteration;
Step 5: The iteration is completed, and the optimal solu-
tion is output.

The flowchart of CASGWO is shown in Figure 5.

5. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the feasibility of the proposed method, the
hardware experimental platform RT-LAB is used in this pa-
per, as shown in Figure 6. The RT-LAB hardware in the
loop system configuration is shown in Figure 7 and includes
TMS320F2812 DSP controller, RT-LAB (OP5600) simulator,
motor drivemodel built in RT-LAB, and the host computer. The
DSP controller uses TMS320F2812 as the running algorithm
and RT-LAB to implement the inverter and permanent magnet
synchronous motor. The sampling frequency of the experimen-
tal system is 10 kHz. The parameters of the PMSM are shown
in Table 1.
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FIGURE 4. Diagram of system control.

TABLE 1. Motor parameters.

Parameter Value
Pole Pairs 4

Rated Speed/rpm 1000
Rated Torque/N ·m 12

Moment of Inertia/(kg ·m2) 0.003
Stator resistance/Ω 1

D-axis inductance/mH 5.6
Q-axis inductance/mH 5.6

Permanent magnet flux/Wb 0.2

In order to effectively compare the experimental results of
the algorithms, the initial populations of the tested algorithms
were all set to 50, and the boundary values of the algorithms’ to
be recognised values were set the same. The maximum number
of iterations is the ratio of the running time to the sampling time.
The experimental running time is 0.3 s, and the number of cur-
rents, voltages, and rotational speeds of the d-axis and q-axis
are sampled. To prevent errors due to chance results, GWO,
CGWO, CNGWO, and CASGWO were run 10 times, and the
averages of each algorithm were taken as the outputs.
The identified results of the four methods are shown in Fig-

ures 8–10. The identified stator resistance is shown in Fig-
ure 8. The experimental results can be analysed in terms of

both the magnitude of the error in the curves and the conver-
gence time. The errors of GWO, CGWO, CNGWO, and CAS-
GWO are 3.80%, 3.10%, 2.58%, and 1.50%, and the conver-
gence times are 0.27 s, 0.18 s, 0.11 s, and 0.09 s, respectively.
The error of the identification decreases in turn and the speed
of convergence is gradually accelerated. The CASGWOhas the
shortest recognition time and the highest recognition accuracy.
The identified stator inductance is shown in Figure 9. GWO

is slow to recognise and easy to fall into local optimum, and
the improved algorithm is significantly faster. The convergence
time is 0.2 s for GWO, 0.13 s for CGWO, 0.08 s for CNGWO,
and 0.07 s for CASGWO. CASGWO identifies the fastest, with
a discrimination error of 0.89%, and the discrimination value is
closest to the reference value.
The recognised magnetic flux is shown in Figure 10. CAS-

GWO tends to stabilise in the shortest time with the smallest
amount of overshooting, reflecting good recognition speed and
robust performance. The convergence time of GWO is 0.24 s
and the discrimination error is 3.10%. Compared to GWO,
CGWO has a convergence time of 0.18 s with an error reduc-
tion of 0.35%; CNGWO has a convergence time of 0.14 s with
an error reduction of 1.80%; and CASGWO has a convergence
time of 0.12 s with an error reduction of 2.95%.
The experimental discrimination averages and convergence

times for the four methods are shown in Table 2.
Based on the experimental figures and data, it can be seen

that the maximum errors of GWO, CGWO, CNGWO, and
CASGWO identification are 3.80%, 3.10%, 2.58%, and 1.50%,
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TABLE 2. Experimental results.

Parameter GWO CGWO CNGWO CASGWO
R/Ω 1.0380 1.0310 1.0258 1.015

Error/% 3.80% 3.10% 2.58% 1.50%
Time/s 0.27 0.18 0.11 0.09
LS /mH 5.760 5.696 5.689 5.650
Error/% 2.86% 1.71% 1.58% 0.89%
Time/s 0.20 0.13 0.08 0.07
Ψf /Wb 0.2162 0.2055 0.2026 0.1997
Error/% 3.10% 2.75% 1.30% 0.15%
Time/s 0.24 0.18 0.14 0.12
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FIGURE 5. CASGWO flowchart.
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FIGURE 9. Identification curves for inductance.

and the minimum errors are 2.86%, 1.71%, 1.30%, and 0.15%,
respectively. The minimum convergence times are 0.20 s,
0.13 s, 0.08 s, and 0.07 s. The improved CGWO, CNGWO,
and CASGWO recognition accuracy and speed are improved.
Among them, CASGWO has the best performance with a max-

imum identification error of 1.50% and a minimum of 0.15%.
The convergence time is less than 0.12 s. From the experimen-
tal results, it can be concluded that CASGWO has good robust-
ness and better identification speed and identification accuracy
than the other three algorithms.
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FIGURE 10. Recognition curves for magnetic flux.

6. CONCLUSION
In this paper, for the problems of poor population diversity,
long convergence time and poor recognition accuracy of the
grey wolf algorithm, a parameter recognition method of CAS-
GWO is proposed, and it can achieve the online recognition of
resistance, magnetic flux, as well as inductance of PMSM. The
following conclusions can be drawn from the theoretical and
experimental validation results:
1) The improved CGWO, CNGWO, and CASGWO have

better population diversity and improved global and local
search capabilities. As a result, the accuracy and speed
of the recognition are improved. The minimum errors of
GWO, CGWO, CNGWO, and CASGWO recognition are
2.86%, 1.71%, 1.30%, and 0.15%, respectively, and the
shortest convergence times are 0.20 s, 0.13 s, 0.08 s, and 0.07 s,
respectively. Among them, CASGWO achieves the best
identification.
2) The recognition time of the CASGWO algorithm is con-

trolled within 0.12 s, and the recognition error is less than
1.50%. Compared with GWO, the errors of PMSM resistance,
inductance, and magnetic chain identification are reduced by
2.30%, 1.97%, and 2.95%, and the identification time is short-
ened by 0.18 s, 0.13 s and 0.12 s, respectively. The CASGWO
algorithm has the advantages of fast identification speed, high
identification accuracy, and good robustness.
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