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ABSTRACT: Electromagnetic wave scattering (EMWS) is one of the complexities in electromagnetism. Traditionally, three numerical
methods are used to solve this problem which are finite element method, finite difference method, and method of moments. Recently,
artificial neural networks (ANNs) have gained popularity as tools to solve different problems in a wide variety of disciplines, including
electromagnetism. This paper shows that the second order differential equation that represents EMWS from one-dimensional, two-
dimensional, and three-dimensional homogeneous mediums and deals with complex numbers can be solved using ANN. This is done by
reducing the error between the trail solution at the output of the ANN and the second ordinary differential equation that represents the
scattered field. The results from solving classical examples using the suggested approach are accurate.

1. INTRODUCTION

Electromagnetic wave scattering problem (EMWS) is one
important class of electromagnetic boundary value prob-

lems (EMBVPs) [1]. Traditionally, it has been solved using
the finite element method (FEM) [2, 3] and finite difference
method [4, 5] if Maxwell’s equations are formulated in terms
of partial differential equations or method of moments [6, 7]
if they are formulated in terms of integral equations. Solving
the EMWS using these methods requires a discrete grid sys-
tem which will produce matrix equations that are solved using
inversions or iterative methods [8].
Originally, artificial neural networks (ANNs) were used to

solve simple problems such as regression, classification, and
clustering [9]. However, the fast growth in computer and data
sciences has inspired researchers to test the potential of using
ANNs in more varied and complex applications such as image
classification [10] and segmentation [11], language processing
[12], human-centered robotics [13], and optical imaging sys-
tem [14–16]. Recently, a limited number of researchers have
started using ANNs to solve some problems in electromag-
netics [17–19], antenna design [20], radar, and remote sens-
ing [21, 22].
For EMBVPs, [23] suggests a solution for both partial dif-

ferential equations and ordinary differential equations using
ANNs. However, their method is limited to homogeneous
medium, dealing with real numbers and uniform boundaries.
While [24] suggests a method based on ANNs that deals with
the case of irregular boundaries, [25] deals with mixed Dirich-
let and/or Neumann boundary conditions (BCs) with irregular
boundaries. However, both methods are limited to homoge-
neous mediums and deal with real numbers. In [26], the authors
solved Poisson’s equation and Helmholtz’s equation. How-

* Corresponding author: Mohammad Ahmad (mohd.ahmad@asu.edu.bh).

ever, the proposed method deals with homogeneous mediums.
In [27], the authors dealt with inhomogeneous mediums and
complex numbers by solving second order differential equa-
tions (2-ODE) with analytical solution first for several values
of given εr where εr is the relative permittivity of a medium
and then using ANNs to predict the solution based on the ana-
lytical solution of other values of εr. Different from [27], the
proposed approach in this paper does not predict the solution
based on previously solved samples and then feeds them to the
ANNs. It solves the 2-ODE by reducing the error between the
trail solution at the output of the ANNs and the 2-ODE that
represents the scattered field.
The contribution of this paper can be summarized as the

first work dedicated solely to solving the 2-ODE that rep-
resents EMWS from one-dimensional (1D), two-dimensional
(2D), and three-dimensional (3D) homogeneous mediums and
deals with complex numbers using ANN.
The framework of this manuscript is as follows. The general

2-ODE that represents the 3D EMWS is presented, with 1D and
2D problems being special cases of the 3D problem. Next, the
solution of the 2-ODE using ANNs is discussed in detail. Fi-
nally, EMWS from 1D, 2D, and 3D perfect electric conductors
(PECs) and dielectric objects are solved using the proposed ap-
proach and FEM for the sake of comparison.

2. FORMULATION OF THE PROBLEM

2.1. General Second Order Differential Equation
Consider a 3D PEC or dielectric object of arbitrary cross-
section, illuminated by a plane wave centered at the origin as
shown in Fig. 1. For an isotropic and non-magnetic medium
(µr = 1 where µr is relative permeability) and TMe where e
represents the electric field direction of polarization (x, y or z),
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FIGURE 1. 3D electromagnetic scattering problem.
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FIGURE 2. Structure of multilayer ANN.

the scattered field satisfies the following 2-ODE [3]

−∂2Escat
e

∂x2
− ∂2Escat

e

∂y2
− ∂2Escat

e

∂z2
− k20εrcE

scat
e

= k20 (εrc − 1)Einc
e (1)

where (x, y, z) ∈ Ω, Escat
e is the unknown scattered field to be

determined; k0 = ω
√
ε0µ0 is the free-space wavenumber with

ω = 2πf ; f is the frequency; ε0= 8.85×10−12 F/m; µ0 =
4π × 10−7 H/m; εrc = εr−jσ/ωε0 is the complex relative
permittivity; σ is the conductivity; Einc

e is the incident field.

2.2. Structure of the ANNs
The following solution is proposed by [23] to solve ordinary
and partial differential equations with real numbers only and
homogenise mediums. Since most EMWS problems deal with
complex numbers, their method is modified to accommodate
them with the help of [28]. The design of an ANN contains a

three-input node x, y, and z along with biases uj , a hidden layer
containing m neurons, and one output node at the output layer.
The weights from the input layer to the hidden layer are wjx,
wjy , and wjz and from the hidden layer to the output layer are
vj where j = 1, 2, . . . ,m as shown in Fig. 2.
The output from the output layer is

N (x,y,z,p) =
∑m

j=1
vjfC(Yj) (2)

where p are the adjustable parameters (weights and biases),
Yj = wjxx+wjyy+wjzz+uj , and fC(Yj) is the activation
function. Note thatwjx,wjy ,wjz , vj , and uj are complex num-
bers.

2.3. Solution of 2-ODE Using ANNs
The trial solution of (1) is

yt (x,y,z,p) = A (x,y,z)+F (x, y, zN(x, y, z, p)) (3)
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FIGURE 3. Geometry of 1D EM scattering from a lossy dielectric slab.

where A (x,y,z) satisfies the BCs. The term
F (x, y, z,N(x, y, z, p)) is the output of the ANN whose
biases and weights are updated to reduce the error function to
get the best ANN solution. The error function for 2-ODE is:

E (x,y,z,p) =
∑hz

cz=1

∑hy

cy=1

∑hx

cx=1

1

2

((
−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂x2

−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂y2

−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂z2

−k20εrcyt
(
xcx ,ycy ,zcz ,p

) )

−k20(εrc−1)Einc
e

)2

(4)

where hx, hy , and hz are the amount of data for x, y, and z,
respectively.
The weights and biases should be modified according to the

following equations:

wn+1
jh = wn

jh−η

(
∂E(x,y,z,p)n

∂Re[wn
jh]

+i
∂E(x,y,z,p)

n

∂Im[wn
jh]

)
(5a)

vn+1
j = vnj −η

(
∂E(x,y,z,p)

n

∂Re[vnj ]
+i

∂E(x,y,z,p)
n

∂Im[vnj ]

)
(5b)

un+1
j = un

j −η

(
∂E(x,y,z,p)

n

∂Re[un
j ]

+i
∂E(x,y,z,p)

n

∂Im[un
j ]

)
(5c)

where h represents x, y, and z, respectively in three versions;
Re represents a real part; Im represents an imaginary part; η is
the learning parameter; and n is the iteration step.

3. RESULTS AND DISCUSSION
All numerical examples were solved on a Laptop with an In-
tel Core i5-4300U CPU equipped with 8GB RAM. The mean
percentage error (MSE) is

MSE =

∑N
n=1

[
V proposed method solution
n −V reference solution

n

]2
⌈
V reference solution
n

⌉2
where V reference solution

n in all examples is the solution for the
same problem using FEM. Also, the activation function that
has been used in all examples is the sigmoid which is given
by fc (Y ) = 1/(1+e−Y ). In addition, the number of nodes in
the hidden layer is assumed to be m= 5. Finally, the learning
parameter η= 0.1 is selected for all examples.

3.1. One Dimensional EMWS
The problem to be considered is shown in Fig. 3. A uniform
plane wave is propagating along the +x direction and incident
upon an homogeneous and lossy dielectric slab occupying the
region xa≤x≤xb. When the plane wave is incident onto the
slab, some will reflect Eref

z , and the rest wave will transmit
through the slab Etrans

z .
The total field, i.e., Etotal

z , is defined as [3]

Etotal
z = Escat

z +Einc
z .

Equation (1) becomes

−∂2Escat
z

∂x2
−k20εrcE

scat
z = k20 (εrc−1)Einc

z (6)

where Einc
z = exp (−jk0x), and âz is the unit vector along the

direction of incidence.
The problem is unbounded. Hence, a uniaxial perfectly

matched layer (UPML) is used to absorb the outgoing fields.
Incorporating UPML in the solution is described in detail for
3D general case in [1, pp. 96-102].
The solution of (6) using the proposed method for this exam-

ple is done as follows:
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FIGURE 4. Absolute value for the scattered field solved by ANN method and FEM.

1. Initialize values forwjx, vj , and uj using MATLAB func-
tion “rand” where j= 1, 2, . . . , 5. The ANN was trained
using a grid of hx =1000 equidistant points in x∈ [0,L],
i.e., cx= 1, 2, 3, . . . ,hx in (4).

2. Determine the trial solution using (3)

yt (x,p) = Escat
ztrial = N (x,p)

where N (x,p) = v1
1+e−(w1xx+u1)+

v2

1+e−(w2xx+u2)

+ v3
1+e−(w3xx+u3)+

v4
1+e−(w4xx+u4)+

v5
1+e−(w5xx+u5) and

A (x) = 0.

3. Use (4) to find the error, i.e.,

E (x,p) =
∑hx=1000

cx=1

1

2

((
−∂2yt (xcx ,p)

∂x2
−k20εrcyt (xcx ,p)

)
−k20(εrc−1)Einc

z

)2

.

4. Check the error, if the error≤ the required error, stop. Oth-
erwise, use (5) to adjust the old values of wjx, vj , and uj .

5. Repeat step 3 until you get the required error.

The following parameters are used, the frequency is
300MHz,L = 2m, d = λ/4, εr = 2.7, and σ = 5×10−3 S/m.
The scattered field has been found using the proposed method.
MSE = 7.69×10−3 for all points of solution. Fig. 4 shows
the absolute value for the scattered field solved using ANN
method and FEM.

3.2. Two Dimensional EMWS
The problem to be considered is EMWS from PEC or a dielec-
tric circular cylinder. Since the domain of interest extends to
infinity, UPML is used. The incident field for this example is
assumed to be Einc

z = exp (jk0x)âz . Also, f = 3×108
/
λ Hz

and λ = 1m are assumed.
Equation (1) becomes

−∂2Escat
z

∂x2
−∂2Escat

z

∂y2
−k20εrcE

scat
z = k20 (εrc−1)Einc

z . (7)

The solution of (7) using the proposed method for this example
is done as follows:

1. Initialize the values for wjx, wjy , vj , and uj using MAT-
LAB function “rand” where j= 1, 2, . . . , 5. The ANNwas
trained using a grid of 1000× 1000 equidistant points in
ρ∈ [0,

√
50] and ∅ ∈ [0, 2π], i.e., hx= 1000, hy= 1000,

cx = 1, 2, 3, . . . , hx and cy = 1, 2, 3, . . . , hy in (4).

2. Determine the trial solution using (3). For 2D given ex-
amples, the problem is converted to cylindrical coordinate,
and the trial solution in cylindrical coordinate for PEC case
is

yt (∅,ρ,p)=Escat
ztrial (∅,ρ,p)

=A1
(ρ−ρ2) (ρ−ρ3) . . . (ρ−ρn)

(ρ1−ρ2) (ρ1−ρ3) . . . (ρ1−ρn)

× (∅−∅2) (∅−∅3) . . . (∅−∅n)
(∅1−∅2) (∅1−∅3) . . . (∅1−∅n)

+A2
(ρ−ρ1) (ρ−ρ3) . . . (ρ−ρn)

(ρ2−ρ1) (ρ2−ρ3) . . . (ρ2−ρn)
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FIGURE 5. Absolute value for the scattered field solved by ANN method and FEM.

× (∅−∅1) (∅−∅3) . . . (∅−∅n)
(∅2−∅1) (∅2−∅3) . . . (∅2−∅n)

+ . . .+An
(ρ−ρ1) (ρ−ρ2) . . . (ρ−ρn−1)

(ρn−ρ1) (ρn−ρ2) . . . (ρn−ρn−1)

× (∅−∅1) (∅−∅2) . . . (∅−∅n−1)

(∅n−∅1) (∅n−∅2) . . . (∅n−∅n−1)

+ (ρ−ρ1) (∅−∅1) (ρ−ρ2) (∅−∅2) (ρ−ρ3)

(∅−∅3) . . . (ρ−ρn) (∅−∅n)N (∅,ρ,p)
where ρ and ∅ are the standard cylindrical coordinate sys-
tem [1]; A1, A2, . . ., An are the BC values at the surface
of the scatterer and found using Escat

z = −Einc
z , (ρ1,∅1);

(ρ2, ∅2), . . ., (ρn, ∅n) are the locations of the BCs; n is the
number of BC points,

N (∅,ρ,p) =
v1

1+e−(w1xρ cos ∅+w1yρ sin ∅+u1)

+
v2

1+e−(w2xρ cos ∅+w2yρ sin ∅+u2)

+
v3

1+e−(w3xρ cos ∅+w3yρ sin ∅+u3)

+
v4

1+e−(w4xρ cos ∅+w4yρ sin ∅+u4)

+
v5

1+e−(w5xρ cos ∅+w5yρ sin ∅+u5)

where the coordinate transformation equations are used,
i.e., x = ρ cos ∅ and y = ρ sin ∅ [1].

3. Use (4) to find the error, i.e.,

E (x,y,p) =

∑hy

cy=1

∑hx

cx=1

1

2

((
−
∂2yt

(
xcx ,ycy ,p

)
∂x2

−
∂2yt

(
xcx ,ycy ,p

)
∂y2

−k20εrcyt
(
xcx ,ycy ,p

) )
−k20(εrc−1)Einc

z

)2

.

4. Check the error, if the error≤ the required error, stop. Oth-
erwise, use (5) to adjust the old values ofwjx,wjy , vj , and
uj .

5. Repeat step 3 until you get the required error.

For dielectric case, the same discussed procedure is used except
A (∅,ρ)= 0, and the trial solution is

yt (∅,ρ,p) = Escat
ztrial (∅,ρ,p) = N (∅,ρ,p)

where the same training set for the previous example is used.
The proposed method is used to find Escat

ztrial for a PEC and
dielectric (εr= 4) cylinder with radius = λ. The MSEs are
1.38×10−3 and 2.09×10−3 for a PEC and dielectric cylinder,
respectively for all points of solution. The problem has been
solved with −5 ≤ x ≤ 5m and −5 ≤ y ≤ 5m. Figs. 5 and
6 show the absolute of the scattered field at the middle of the
problem, i.e., −5 ≤ x ≤ 5m and y = 0m.

3.3. Three Dimensional EMWS
The problem to be considered is EMWS from PEC or a dielec-
tric sphere. Since the domain of interest extends to infinity,
UPML is used. The incident field for this example is assumed
to be Einc

x = exp (−jk0z)âx where âx is the unit vector along
the direction of incidence. Also, f = 3×108

/
λHz and λ= 1m

are assumed.
The solution of (1) using the proposed method for this exam-

ple is done as follows:
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FIGURE 6. Absolute value for the scattered field solved by ANN method and FEM.

FIGURE 7. Absolute value for the scattered field solved by ANN method and FEM.

1. Initialize the values for wjx, wjy , wjz, vj ,
and uj using MATLAB function “rand” where
j= 1, 2, . . . , 5. The ANN was trained using a grid
of 1000× 1000× 1000 equidistant points in r∈ [0,

√
50],

θ∈ [0, 2π] and ∅ ∈ [0,π], i.e., hx= 1000, hy= 1000,
hz= 1000, cx= 1, 2, 3, . . . ,hx, cy= 1, 2, 3, . . . ,hy and
cz= 1, 2, 3, . . . ,hz in (4).

2. Determine the trial solution using (3). For PEC case, the
problem is converted to spherical coordinate, and the trial
solution in spherical coordinate is

yt (r,θ, ∅,p)=Escat
ztrial (r,θ, ∅,p)

=A1
(r−r2) (r−r3) . . . (r−rn)

(r1−r2) (r1−r3) . . . (r1−rn)

× (θ−θ2) (θ−θ3) . . . (θ−θn)

(θ1−θ2) (θ1−θ3) . . . (θ1−θn)

× (∅−∅2) (∅−∅3) . . . (∅−∅n)
(∅1−∅2) (∅1−∅3) . . . (∅1−∅n)

+A2
(r−r1) (r−r3) . . . (r−rn)

(r2−r1) (r2−r3) . . . (r2−rn)

× (θ−θ1) (θ−θ3) . . . (θ−θn)

(θ2−θ1) (θ2−θ3) . . . (θ2−θn)

36 www.jpier.org



Progress In Electromagnetics Research M, Vol. 122, 31-39, 2023

FIGURE 8. Absolute value for the scattered field solved by ANN method and FEM.

× (∅−∅1) (∅−∅3) . . . (∅−∅n)
(∅2−∅1) (∅2−∅3) . . . (∅2−∅n)

+ . . .

+An
(r−r1) (r−r2) . . . (r−rn−1)

(rn−r1) (rn−r2) . . . (rn−rn−1)

× (θ−θ1) (θ−θ2) . . . (θ−θn−1)

(θn−θ1) (θn−θ2) . . . (θn−θn−1)

× (∅−∅1) (∅−∅2) . . . (∅−∅n−1)

(∅n−∅1) (∅n−∅2) . . . (∅n−∅n−1)

+ (r−r1) (θ−θ1) (∅−∅1) (r−r2) (θ−θ2)

(∅−∅2) . . . (r−rn) (θ−θn) (∅−∅n)
N (r,θ, ∅,p)

where r, θ, and ∅ are the standard spherical coordinate sys-
tem [1]; A1, A2, . . ., An are the BC values at the surface
of the scatterer and can be found using Escat

z = −Einc
z ;

(r1, θ1, ∅1), (r2, θ2, ∅2), . . ., (rn, θn, ∅n) are the locations
of the BCs; n is the number of BC points, where

N (r,θ, ∅,p)

=
v1

1+e−(w1xr sin θ cos ∅+w1yr sin θ sin ∅+w1zr cos θ+u1)

+
v2

1+e−(w2xr sin θ cos ∅+w2yr sin θ sin ∅+w2zr cos θ+u2)

+
v3

1+e−(w3xr sin θ cos ∅+w3yr sin θ sin ∅+w3zr cos θ+u3)

+
v4

1+e−(w4xr sin θ cos ∅+w4yr sin θ sin ∅+w4zr cos θ+u4)

+
v5

1+e−(w5xr sin θ cos ∅+w5yr sin θ sin ∅+w5zr cos θ+u5)

where coordinate transformation is used, i.e.,
x = r sin θ cos ∅, y = r sin θ sin ∅, and z = r cos θ [1].

3. Use (4) to find the error, i.e.,

E (x,y,z,p) =
∑hz

cz=1

∑hy

cy=1

∑hx

cx=1

1

2

((
−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂x2

−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂y2

−
∂2yt

(
xcx ,ycy ,zcz ,p

)
∂z2

−k20εrcyt
(
xcx ,ycy ,zcz ,p

) )
−k20(εrc−1)Einc

x

)2

.

4. Check the error, if the error ≤ the required error, stop. If
not, use (5) to adjust the old values of wjx, wjy , wjz , vj ,
and uj .

5. Repeat step 3 until you get the required error.
For dielectric case, the same procedure for the previous
example is used, but the trial solution is

yt (r,θ, ∅,p) = Escat
ztrial (r,θ, ∅,p) = N (r,θ, ∅,p) .

The Escat
ztrial for a PEC and dielectric (εr= 4) sphere with ra-

dius= λ at z= 0 are solved using the proposed method, and the
MSEs are 1.87×10−3 and 8.04×10−3 for a PEC and dielectric
sphere, respectively for all points of the solution. The problem
has been solved with −5 ≤ x ≤ 5m, −5 ≤ y ≤ 5m, and
−5 ≤ z ≤ 5m. Figs. 7 and 8 show the absolute values of the
scattered field at themiddle of the problem, i.e.,−5 ≤ x ≤ 5m,
y = 0m, and z = 0m.
Figure 9 shows how the proposed method will go to the so-

lution for selected number of epochs. As the dimension of the
problem increases, the number of epochs will increase to get
the required accuracy.
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FIGURE 9. The MSE versus epoch for the given examples.

TABLE 1. Time Comparison between FEM and ANN required to solve previous examples.

Dimension Example FEM (sec) ANN (sec)
1D A lossy dielectric slab 1.0091 112.65

2D PEC 4.2739 342.77
Dielectric 6.5728 563.26

3D PEC 16.8390 1154.97
Dielectric 26.1392 1791.72

Table 1 summarizes the time required to solve the examples
in the proposed method versus FEM.
It is clear that FEM is faster than the proposed method. Also,

the proposed ANN is a basic form of ANNs. It is expected,
as a future research, by using more advanced ANNs, that the
time required to solve the problem will be reduced. In addition,
building the matrices that are required to use FEM is difficult
and becomes more difficult in 3D cases in contrast with the pro-
posed method.

4. CONCLUSION
An approach using ANN has been proposed to solve 2-ODE
that represents EMWS. Its implementation is simple and
straightforward in comparison with the traditional methods,
i.e., MoM, FEM, and FDM, and the results are accurate. Also,
the approach is general and only requires creating a correct
form of the trial solution. Future work should include studying
the effect of using more than one hidden layer in the ANNs
on the efficiency of the method and the effect of choosing the
learning parameter on the speed of convergence to the solution.
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