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ABSTRACT: A comprehensive review of multiband MIMO antennas designed for wireless applications in the 5th and 6th generation
(5G and 6G) networks is presented. The demand for higher data rates and improved spectral efficiency in advanced wireless networks
continues growing, and multiband MIMO antenna systems have emerged as a promising solution. This review aims to provide an in-
depth analysis of the existing literature on multiband MIMO antennas for 5G and 6G wireless applications. The paper’s main objectives
are: (1) To emphasize the requisite of MIMO antenna for the sub-6GHz of 5G/6G wireless communication, (2) To demonstrate various
techniques to generate multi-band, (3) To highlight the challenges and their potential solutions to design multiband MIMO for 5G/6G,
(4) To investigate the methods to attain circular polarization (CP) and pattern diversity for better system performance. The review
critically analyzes the latest advancements, challenges, and future research directions for multiband MIMO antennas in the context of
5G and 6G wireless networks. This comprehensive review serves as a valuable resource for researchers, engineers, and practitioners
seeking a deeper understanding of multiband MIMO antennas and their potential to support the demands of the ever-evolving wireless
communication technology.

1. INTRODUCTION

The implementation of 5G technology was enabled by a
group of technologies such as mm-wave technology, mas-

sive multiple-input multiple-output (MIMO), small cell tech-
nology, mobile edge computing, non-orthogonal multiple ac-
cess (NOMA) systems, and beamforming techniques [1]. 5G
promised to support large-scale events with thousands of users’
vehicular and industrial control, environmental and remote
monitoring, smart cities, grids, homes, health, transport, and
infrastructure. Various features of 5G are summarized in Fig-
ure 1(a). 5G networks will utilize a combination of low, mid,
and high-frequency bands to provide various services with dif-
ferent requirements. By supporting multiple bands, the antenna
can handle a wide range of frequencies and adapt to different
use cases, ensuring optimal connectivity and coverage [2]. To
support this wide range of applications which are characterized
by high data rates and massive number of users, the implanta-
tion of multiband MIMO systems is foreseeable. Virtual real-
ity, artificial intelligence, the Internet of Things (IoT), and 3-
dimensional media are emerging technologies leading to rapid
advancement in the communication field. This technology de-
mands higher data rates, which eventually need a swift transi-
tion from 5G communications to 6G technologies.
6G utilizes the frequency range (0.1–10 THz) primarily for

wireless communication [3]. Higher capacity, higher secu-
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rity, broader coverage, and ultra-low latency are the key fea-
tures offered by 6G to cater wireless industry, health sector,
autonomous systems, smart cities, and energy harvesting sys-
tems as illustrated in Figure 1(b) [4]. These applications also
embrace the integration of GPS, Wi-Fi, Bluetooth, WLAN,
etc. to attain miniaturized multi-functional antenna [5]. Sev-
eral novel approaches and their reviews have been proposed
by researchers to meet the current requirements for advance-
ment and development of 5G/6G network [6–10]. Multiband
MIMO enables the use of multiple frequency bands simulta-
neously to cover the desired applications with reduced inter-
ference and size as mentioned in Figure 2(a). These antennas
can cover a wider range of frequencies, providing flexibility for
diverse wireless systems [11]. By supporting multiple bands,
multiband antennas allow for more efficient use of the available
frequency spectrum, while operating across multiple bands can
increase the risk of interference between different frequency
bands, requiring careful antenna design and integration consid-
erations [12]. The existing literature discusses wideband an-
tennas, 5G antennas, or MIMO antenna, but multiband MIMO
antenna for 5G/6G is inadequately summarized as per authors’
knowledge. The paper encompasses all the aspects allied to
the multiband MIMO technology for 5G/6G with their applica-
tions. The paper organization is mentioned in Figure 2(b). Sec-
tion 1 discusses the requisite of multiband MIMO antenna for
5G/6G wireless communication. Section 2 introduces several
techniques to generate multiple bands with a comprehensive
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(a) (b)

FIGURE 1. Technology key features of (a) 5G, (b) 6G.

(a)
(b)

FIGURE 2. (a) Frequency allocation of wireless technologies. (b) Organization of paper.

FIGURE 3. Techniques for attaining multiband MIMO antenna.

comparison of existing techniques used in literature through
single antenna and MIMO antenna. The design challenges are
analyzed and summarized in Section 3. The potential solutions
are recommended in detail to tackle mutual coupling, high gain,
wide bandwidth, compactness, circular polarization, and diver-
sity in Section 4. The prominent technology used to design a
6G user’s antenna is communicated in brief in Section 5. An
outlook on popular applications that cater to 5G/6G antennas
is mentioned in Section 6. Section 7 concludes the survey and
suggests the future scope.

2. TECHNIQUES TO ATTAIN MULTIBAND

Multiband antenna proves to be a boon for the wireless indus-
try as it reduces the need for various antennas to cover differ-
ent wireless applications simultaneously. However, the design
of a multiband antenna starts with a prudent selection of patch
followed by numerous iterative simulations and optimization
after applying multiple techniques until the desired frequency
of operation is attained. Multiple branches are the most fre-
quent method to realize multiband antenna as each branch acts
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(a) (b)

FIGURE 4. (a) Quad-band two-port antenna using PIFA structure [13]. (b) Dual bands self-duplexing four-port antenna using slot technique [15].

(a) (b)

FIGURE 5. (a) Quad-band fractal based hexagon shape two port antenna [16]. (b) Triple band four port MIMO antenna using a stack of 4 layers [19].

as a resonating structure. Several other methods available in
the literature to attain multiband are mentioned in Figure 3 and
discussed further.

2.1. Planar Inverted-F Antenna (PIFA)

PIFA is a planar antenna that is printed or etched on a printed
circuit board (PCB), which comprises a radiating element, a
ground plane, and a shorting pin or strip. The radiating plate is
shorted with the shorting strip to the ground plane and sourced
via a feeding point. The shorting strip/pins are connected at
the end which makes it resonant at a quarter-wavelength. The
resonant frequency can be tuned by varying the length of the
shorting strip, while the distance between the feed and shorting
strip varies with the PIFA impedance. Slot and slit techniques
are incorporated in the PIFA method to attain quad bands at
2.4/3.5/5.2/5.7GHz. An additional λ/4 resonator is integrated
with the PIFA antenna to get the fourth band [13] as shown in
Figure 4(a).

2.2. Slot Antenna

A slot antenna is designed by etching a circular, rectangular, or
desired-shaped slot on a conductive surface. Electromagnetic
waves are generated inside the slot, whenever an alternating
current is given to the feed line connected to the patch. The
slot dimensions determine the operating frequency and radia-
tion characteristics of the antenna. A penta-band MIMO an-
tenna is designed using multiple slots in a square shape patch
as discussed in [14]. A self-duplexing based on a slot antenna
resonant at dual frequency bands is shown in Figure 4(b). The

variation in the length of the slots for different ports results in
two different resonant frequencies [15].

2.3. Fractal Antenna
A fractal antenna is an antenna design that incorporates re-
peated patterns which induce complex arrangements of induc-
tance and capacitance. Thus repeating pattern allows for in-
creased frequency bandwidth and multi-directional radiation
patterns. A hexagon slot is etched from the hexagon patch four
times to create a spider-shaped fourth iterative fractal antenna to
generate four bands at 2.43/3.83/4.4/5.8GHz [16] as shown in
Figure 5(a). The amalgamation of Koch andMinkowski curves
is implemented on the boundaries of the rectangle patch which
leads to three resonant bands [17].

2.4. Stack Antenna
A stack antenna consists of multiple antennas stacked vertically
or horizontally with the same or different substrates to achieve
desired radiation characteristics. By combining individual an-
tennas, the stacked antenna can enhance the overall gain, direc-
tivity, and bandwidth of the system. Separate resonances are
contributed by different layers of stacked and driven patch [18].
A compact structure of four layers by stacking two substrate
layers offers triple bands at 2.9GHz, 5.0GHz, and 5.9GHz.
Embedding three semicircular slots in the circular patch at layer
2 offers resonance at 5.8GHz. The H and I shapes in the fourth
layer add two more resonant frequencies. Layer 3 adds isola-
tion between different frequency bands obtained as shown in
Figure 5(b) [19].
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(a) (b)

FIGURE 6. (a) Hepta-band two port MIMO antenna using meander line [21]. (b) Triple band antenna with twelve parasitic patches [23].

(a) (b)

FIGURE 7. (a) 6-port folded dipole antenna [24]. (b) Front and back view of multi-band MIMO antenna using CSRR metamaterial structure [26].

2.5. Meander Line Antenna

Ameander line antenna is a type of antenna that utilizes amean-
dering conductor pattern on a substrate to create a longer physi-
cal length of the antenna within a limited space. This elongated
conducting pattern acts as an inductor which changes the char-
acteristic impedance of the monopole antenna. This allows for
miniaturization with increased efficiency and bandwidth com-
pared to traditional straight-line antennas. To cover frequency
less than 1GHz range is very difficult to attain with small size
antenna. However, it is made possible in [20] by using a mean-
dering technique with a monopole element. A hepta-band an-
tenna is proposed in [21] using meander lines connected with
L-shape microstrip feed line as shown in Figure 6(a).

2.6. Parasitic Antenna

Aparasitic antenna consists of a driven element and one ormore
passive elements (parasitic elements) positioned in its vicinity.
The parasitic elements couple power with the electromagnetic
waves radiated by the driven element, resulting in constructive
or destructive interference to achieve increased gain and direc-
tivity. The parasitic elements can act as a second radiator too
and have their modes of resonance depending on the design.
Two U-shaped rectangular parasitic elements are placed along
the side of the rectangular patch [22]. These parasitic elements
excite the higher-order modes which result in triple bands. The
resonant frequencies vary with the variation in parasitic ele-
ment length. A metallic truncated square patch is surrounded
by twelve square parasitic patches as depicted in Figure 6(b).
The metasurface with the 12 square parasitic patches excites
the second and third resonant modes [23].

2.7. Folded Dipole Antenna
A folded dipole antenna is a variant of a dipole antenna where
the ends of the antenna element are folded back towards each
other. This design increases impedance and bandwidth. When
a signal is applied to the folded dipole, it produces a radiat-
ing electromagnetic field. The diameter of the folded dipole is
directly responsible for variation in 1st-order modes and 3rd-
order modes of folded dipole. In [24], wide band from 3 to
5GHz is investigated using a folded dipole antenna as shown
in Figure 7(a).

2.8. Metamaterial Antenna
A metamaterial antenna is an antenna that utilizes artificially
engineered materials known as metamaterials to control and
manipulate electromagnetic waves. By incorporating metama-
terial structures, such as split-ring resonators (SRR) or com-
plementary SRR (CSRR), into the antenna design, unique elec-
tromagnetic properties can be achieved, such as negative re-
fraction, multiband, enhanced gain, and increased bandwidth.
The multiple resonances are attained by placing SRR on the
opposite sides of the patch, which acts as an LC resonator
in [25]. In [26], the inductive and capacitive coupling of CSRR
with patch is used to lower the resonant frequency and multi-
ple bands as shown in Figure 7(b). The variation in resonant
frequency of CSRR is directly proportional to the variation in
antenna resonant frequency.

2.9. Reconfigurable Antenna
A reconfigurable antenna is an antenna that can change its oper-
ating frequency, radiation pattern, or polarization dynamically.
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(a) (b)

FIGURE 8. (a) Triple band reconfigurable antenna using PIN diode [27]. (b) Dual-band through integrated array and monopole antennas [29].

(a)

(b)

FIGURE 9. (a) Challenges in designing multiband MIMO antenna. (b) Solutions for designing challenges of multiband MIMO antenna.

This is achieved by incorporating tunable or switchable com-
ponents like PIN diode, varactor diode, etc. into the antenna
structure. The reconfigurability allows the antenna to adapt
to varying signal conditions, optimize performance, and sup-
port multiple communication standards. An integrated antenna
connected via two PIN diodes can transit from ultra-wideband
(UWB) mode to tripe band mode in [27] for a vehicular net-
work as demonstrated in Figure 8(a). Another triple band reso-
nance is obtained by connecting the triangular parasitic element
to the main equilateral triangle through PIN diodes. Eight dif-
ferent combinations of turning ON-OFF PIN diodes alter the
path length and current distribution leading to tuning of fre-
quency bands [28].

2.10. Integrated Antenna

Two or more different resonant structures are co-located in the
vicinity and results in multiple bands. With the integration of
the antenna into the device, the proximity between the antenna
and the device’s electronic components can be optimized, re-
sulting in improved performance and reduced electromagnetic
interference. In [29], four monopole antennas and two linear
connected arrays are integrated as shown in Figure 8(b) to attain
two bands at 2.4/3.6GHz and one 5G band at 28GHz. A four-
port MIMO antenna comprises a multipurpose filter to attain
three modes of operation-interweave cognitive radio, underlay
cognitive radio, and sensing antenna [30].

Researchers are exploring various novel technologies for ful-
filling the ever-increasing demands of the digital age. Multi-
band MIMO technology has a significant future scope in the
development of antennas for 5G and 6G networks as it provides
faster speeds, higher capacity, better reliability, and enables a
variety of future technologies. Table 1 indicates the compari-
son of multiband techniques used in multiband MIMO antenna
by various researchers.

3. CHALLENGES IN DESIGNING MULTIBAND MIMO
ANTENNA
Planar antenna structures, such as microstrip antennas or
printed antennas, offer the advantage of being inherently
compact and easy to integrate with other components. Planar
structures may typically have limited bandwidth and lower
gain than three-dimensional antennas. They can also be
more prone to coupling and interference between antenna
elements. Designing multiband MIMO antennas comes with
several challenges that need to be addressed to ensure optimal
performance as mentioned in Figure 9(a). Some of these
challenges are as follows.

3.1. Mutual Coupling (MC)

When multiple antenna elements are placed close to each other,
they have a mutual coupling effect, which can degrade the per-
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TABLE 1. Comparison of multiband techniques used by MIMO antennas for advanced wireless communication.

Ref
No.

Dimensions
(mm)

No. of
Ports

Freq.
Bands

Technique used Isolation
Peak Gain

(dBi)
Remarks

[31] 40× 40× 0.6 4
1.95–2.5,
3.15–3.85,
5 to 6.55

Meander line
monopole
with stubs

24, 22,
22.5

1.6,
3.5,
4.4

SRR unit cell
acts as a

stop-band filter

[32] 50× 50× 1.6 4
2.25–2.4

and 4.7–6.3

Asymmetric
coplanar

strip (ACS)
≤ −16 ≥ 4.0

Stable gain
and radiation
patterns

[33] 75× 66× 1 2
2.35–2.53

and 5.23–5.70
PIFA

19.74
and
22.98

≥ 3.0

Two-step shape
cutout gives

pattern diversity

[34] 60× 120× 0.76 2

0.665–1.13,
1.415–2.005,
2.42_3.09,
3.18_3.89

Slot ≤ −13

1.2,
1.8,
2.3,
3.4

Meandered slots with
reactive loading via
varactor diode is used

for compactness

[35] 48× 36× 1.6 2

3.85–4.25,
4.95–5.1,
6.94–7.35
and 8–8.3

Robot character
shaped element

with slots
and stubs

≤ −25

4.1,
4.0,
3.0
and 5

CP at 3.8–4.2,
4.75–5.2, 6.9–7.15,
and 8–8.4GHz,

Irregular dotted parasitic
element gives isolation

[36] 21× 90× 1.6 2
2.22–2.54,
3.14–3.9

and 5.3–5.7

Complementary
open-loop resonator
with stub and slots

34.3,
37.37,
34.54

1.35,
1.7

and 3.22

No common ground
plane, a large space

between two monopoles.

[37] 120× 50× 1.6 2
1.27–1.43

and 1.8–2.133

Quasi-Yagi antenna
configuration in a semi-
loop meandered shape

≤ −15 4.6
Truncated GND plane
acts as a reflector for

quasi-Yagi-like antennas

formance of the MIMO system. Mutual coupling can introduce
interference between the antenna elements, affecting their radi-
ation patterns and impedance matching [38]. The antenna also
needs to be isolated from other nearby antennas so that antenna
elements operate independently without affecting each other’s
performance.

3.2. Multiple Bands at Desired Applications

To cover multiple applications through a multiband antenna is
an arduous journey that comprises an amalgamation of mul-
tiple techniques, optimization, and perseverance [39]. 5G/6G
networks are highly reliant on multiband MIMO systems due
to their several merits over the others.

3.3. Antenna Placement

Determining the optimal placement and orientation of the
MIMO antenna elements is a challenging task. The placement
affects factors such as mutual coupling, signal correlation,
radiation pattern, and coverage [40].

3.4. Wide Bandwidth
MIMO systems generally require wide bandwidth to achieve
better capacity and improved performance [41]. Designing
MIMO antennas that can operate across multiple frequency
bands and offer wide bandwidth is challenging due to various
design constraints and compromises needed for each frequency
band.

3.5. Compact Antenna Designs
In many MIMO applications, especially in consumer devices
like smartphones or wearables, there is a need for miniaturized
antenna designs with limited space [42]. Designing compact
MIMO antennas with acceptable radiation properties and de-
sired performance becomes challenging due to size constraints.

3.6. Antenna Efficiency and Gain
The overall efficiency of MIMO antennas is crucial for opti-
mal system performance. DesigningMIMO antennas with high
gain and radiation efficiency is challenging, particularly when
miniaturization is a requirement [43]. Low efficiency can re-
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sult in reduced range, decreased data rates, and increased power
consumption.

3.7. Diversity Parameters
Designing a circularly polarized MIMO system that generates
electromagnetic waves of the same amplitude and 90◦ phase
difference can be challenging, particularly in real-world sce-
narios where impedance matching and phase control need to be
accurate across a wide frequency range [44]. All types of di-
versity must be incorporated to exploit the MIMO capacity to
its fullest.

3.8. 6G Terahertz (THz) Communication
THz signals experience significant absorption and dispersion
in the atmosphere, leading to reduced signal range and qual-
ity [45]. A large number of small cells and highly dense de-
ployments are needed to achieve coverage in THz communi-
cation systems. THz signals are highly directional and require
precise beam steering capabilities to establish reliable commu-
nication links [46]. Antennas should have the ability to dynam-
ically steer the beam toward the desired direction for efficient
signal transmission and reception. This poses amajor challenge
for long-range communication.
Addressing these challenges requires a systematic design ap-

proach, utilizing advanced simulation, optimization, and mea-
surement techniques.

4. POTENTIAL SOLUTIONS FOR DESIGNING MULTI-
BAND MIMO ANTENNA
Multiband MIMO technology has a significant future scope in
the development of antennas for 5G and 6G networks. Some
potential solutions to the problems that arise in designing multi-
band MIMO antenna are exhibited in Figure 9(b).

4.1. Mutual Coupling
Designing the antenna elements to overcome mutual coupling
is a prime challenge, where the radiation from one element is ef-
fectively decoupled or isolated from the neighboring elements.
The simplest way to achieve isolation is by keeping the physical
space of more than λ0/2 between the antenna elements. Due to
size constraints antennas are placed tightly in the MIMO sys-
tem which may lead to poor isolation, low antenna gain, high
correlation between antennas, reduced radiation efficiency, and
degradation in diversity performance [47]. Some of the major
techniques are as follows:

4.1.1. Orthogonal Placement

By placing the elements in different physical directions, the
coupling and interference between them are minimized. A
four-portMIMO antenna, resonating at six frequencies between
3 THz and 10.785 THz has its elements placed orthogonally to
achieve the isolation of≤ −15 dB for all the bands [48]. How-
ever, this diagonal arrangement wastes a lot of substrate area.

4.1.2. Defected Ground Structure (DGS)

It is the most prominent technique mentioned in the exist-
ing literature to enhance the performance of wideband and
multiband MIMO antennas. By creating appropriate defects
in the ground plane, the surface current is disturbed. Hence,
the equivalent impedance changes which cancel out the cross-
polarization [49]. DGS implies a reduced front-to-back ratio
and a high value of specific absorption rate.

4.1.3. Split Ring Resonators

SRRs are artificially produced metamaterial structures created
by nested split square or circular rings. These structures can
be designed as band-stop or band-pass filters by controlling the
permeability and permittivity of the metamaterial. The antenna
presented in [50] is a combination of SRR and CSRR result-
ing in dual bands at 2.4/3.5GHz with an isolation of 32 dB.
This SRR/CSRR-based isolation technique is successful for the
narrow-band antenna.

4.1.4. Electromagnetic Band Gap (EBG)

EBG structures are periodic etched structures that prevent
or boost electromagnetic waves in a specific range of fre-
quency [51]. These structures are separated by λg/2 distance
that promotes good isolation, high antenna efficiency, and gain
by suppressing unwanted waves. The splits on the EBG cell
create a fringing effect that suppresses the return current from
the ground layer [52].

4.1.5. Parasitic Element

The parasitic elements acting as resonators or reflectors are
placed near radiating elements in a MIMO system to overcome
the mutual coupling [53]. These parasitic elements are specif-
ically optimized to control the isolation bandwidth. To predict
the coupling between the structures accurately and design par-
asitic elements is quite tedious and requires larger space too.

4.1.6. Metamaterial Absorber

Metamaterials are artificially designed materials having nega-
tive relative permittivity (εr) and permeability (µr). This dou-
ble negative material serves as a black hole where the propa-
gation of electromagnetic (em) waves is not allowed. An ideal
absorber needs unity normalized impedance due to equal val-
ues of εr and µr which leads to perfectly matched impedance
with free space [54]. The split square rings are rotated in 90◦
fold symmetry to enhance the coupling of the electromagnetic
field between the cells. An isolation of 35 dB is attained by sup-
pressing the surface current through four elements of a flower-
shaped metamaterial absorber in the middle of the two anten-
nas [55].

4.1.7. Neutralization Line (NL)

NL is an unconventional technique to reduce mutual coupling
by connecting a strip at a minimum impedance of two radiators.
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The length of NL is appropriately selected for the phase reversal
and cancellation of electromagnetic signal. Isolation ≥ 25 dB
is attained over a wide bandwidth through three different NL
techniques, which are proposed and verified for three different
structures [56].

4.1.8. Frequency Selective Surface (FSS)

An FSS antenna is an antenna that uses a two-dimensional
periodic structure to selectively transmit or block certain fre-
quencies. FSS structure acts as a frequency filter by reflecting
or absorbing certain frequencies while allowing others to pass
through. A 3D multiband MIMO antenna employs FSS as a
decoupling structure to reduce the coupling between pairs of
antenna operating at 2.4/3.2/3.5/3.8/5.5GHz [57].

4.1.9. Decoupling Structures

These structures modify the electromagnetic coupling between
the elements by creating additional decoupling paths to reduce
mutual coupling effects [58]. A decoupling structure com-
prises slots, metallic strips, and shorting pins to change the
electromagnetic distribution for mutual coupling reduction by
32 dB [59]. Shorting pins and vias are one of the best compact
methods to attain high isolation in narrow band MIMO antenna
without degradation of radiation performance.

4.1.10. Nulling Techniques

Nulling techniques involve adjusting the amplitude and phase
of the antenna signals to create nulls in the direction of the in-
terfering signals. This helps reduce interference and improves
isolation. Two mutual coupling nulls are formed by path can-
cellation due to half wavelength strips, and one null is formed
due to phase cancellation between the driven element and pas-
sive parasitic patch. This decoupling method attains an isola-
tion of 36.5 dB without any enhancement in the profile of the
stacked structure [60].
A comprehensive comparison of balance isolation require-

ments with other design considerations is mentioned in Table 2.

4.2. Bandwidth Enhancement Techniques
Bandwidth is defined as the frequency range over which an
antenna radiates or receives properly, while impedance band-
width considers the frequency range over which return loss is
≤ −10 dB. Conventional microstrip antennas suffer from nar-
row frequency bandwidth, low gain, and low efficiency. Wide-
band feeding techniques, such as aperture coupling or balun
feeding, can achieve broader bandwidth by efficiently coupling
energy to the antenna elements [67]. However, this may require
precise design and optimization to achieve the desired band-
width. Proper impedance matching is also crucial for achiev-
ing wider bandwidth in antennas. Here are a few techniques to
enhance the bandwidth along with their merits and demerits:

4.2.1. Stacked or Multilayered Structures

Stacking multiple layers of antennas or using multilayered
structures can increase the overall bandwidth of the antenna.
Each layer operates at a different frequency, allowing for
broader frequency coverage. Stacked or multilayered struc-
tures can lead to increased complexity in the fabrication pro-
cess. They may also suffer from increased losses and reduced
radiation efficiency due to the presence of additional layers and
interconnections. Amultilayered structure connected with met-
alized vias with an array antenna fed by a power divider on
two different dielectric substrates enhances the bandwidth by
17.7% [68].

4.2.2. Incorporation of Metamaterials

Metamaterials can be used to enhance the bandwidth of anten-
nas by introducing artificial electromagnetic properties. Imple-
menting metamaterials can be challenging and often involves
complex fabrication techniques. An array of 2× 2 rectangular
patches is loaded with SRR metamaterial to increase the band-
width by 60% [69].

4.2.3. Wideband Resonating Structures

Wideband resonating structures, such as slot antennas or
log-periodic antennas, are designed to exhibit frequency-
independent behavior over a wide bandwidth. These structures
can provide consistent performance over a broad frequency
range. The slot resonance is merged with the stub resonance
to widen the bandwidth with suitable impedance match-
ing [70]. They may also have larger physical dimensions than
narrowband antennas.

4.2.4. Dielectric Resonator Antenna (DRA)

The first DRAmade use of high permittivity dielectric material
excited by multiple feeds to excite several modes. In general,
DRA utilized low-loss dielectric which leads to minimum di-
electric losses and hence better radiation efficiency. Cylindri-
cal, triangular, conical, rectangular, etc. shapes are most com-
mon for nowadays wireless applications. An elliptical frustum-
based asymmetric flared dielectric resonatorMIMO antenna at-
tains wide impedance bandwidth and low mutual coupling be-
tween them [71].
It should be noted that bandwidth enhancement techniques

often involve trade-offs among bandwidth, efficiency, and
complexity as mentioned in Table 3. Designers must carefully
consider the specific requirements of their application to se-
lect the most suitable technique for achieving broadband per-
formance.

4.3. Gain Enhancement Techniques
Gain quantifies the radiation intensity of an antenna in a partic-
ular direction compared to the radiation intensity of an isotropic
antenna. The higher the number of antenna elements is in
the MIMO antenna system, the higher spatial diversity is at-
tained which enhances the received signal strength and helps in
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TABLE 2. Comparison of isolation techniques used in multiband MIMO antenna.

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq
Bands
(GHz)

Multiband
Technique

Isolation
(dB)

Isolation
Technique

Prototype

[61] 100× 150× 18 2 2.6, 3.5 U-shape slits ≤ −25

Metasurface
creates
shielding
zones

[62] 70× 60× 1.6 2 2.4, 3.4
T-shape slits
and slot

−24.998 dB
and

−29.96 dB

Slots loading
of length

λ/4

[63] 48× 31× 1.6 2
2.4, 3.5,
5.2

Multiple
branches

≤ −22

Slotted ground
plane in
CPW-fed
antenna

[64] 50× 50× 1.6 2 2.4, 5.5
L-shaped
short strip

≤ −19

Neutralizing line
with inverted
L-shaped stubs

[65] 100× 60× 1 2
2.4, 5.2,
5.8

Slots ≤ −20

meta-inspired
decoupling
network

[66] 60× 60× 3.5 2

2.04–2.51,
4.43–5.35

and
6.76–8.78

Two metallic
“8”-shaped
antenna
structures

≤ −20

Stub with
three

subsections

achieving gain. The constructive interference between the el-
ements also results in overall antenna gain improvement [78].
To achieve a gain in a multiband antenna, several techniques
are incorporated in structures like frequency selective surface
(FSS), parasitic patches, superstrate, metallic reflectors, partial
substrate removal, and shorting pins.

4.3.1. Array Antenna

Multiple antenna elements are arranged in a specific pattern
with a phased array configuration. Phased array systems al-
low for beamforming, where the antenna elements are individ-
ually controlled to steer the radiation pattern toward the desired
direction, thereby achieving gain [91]. The gain of 6.7 dBi is
enhanced to 12.8 dBi by comprising four elements in each ar-
ray [79].

4.3.2. Frequency Selective Surface (FSS)

FSS is an array of metallic patch on a dielectric substrate that
has the potential to block or pass certain frequency bands. An
annular ring unit cell is periodically arranged in a 4× 4 config-

uration and placed beneath the MIMO antenna to improve the
gain up to 5.49 dBi [80].

4.3.3. Parasitic Patches

Parasitic patches are placed near radiating elements, but they
are electrically disconnected. The energy is transferred through
inductive coupled or otherwise. Carefully arranging the posi-
tion of parasitic elements can result in the enhancement of gain,
isolation, and bandwidth. Paper [81] investigates the difference
in the effect of E-coupled and H-coupled square-shaped para-
sitic patches on isolation, gain, and bandwidth.

4.3.4. Superstrate Layer

Superstrate layer comprises the matrix configuration of the
metamaterial unit cell with varied shapes and separation from
radiating elements. Sometimes layers are used in correlation
with several resonant frequencies. Besides the structure shape,
the gap between two dielectric layers affects the reflection and
transmission coefficients of the complete structure. The mea-
sured gain reaches 8.6 dBi by integrating a superstrate layer
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TABLE 3. Comparison of bandwidth enhancement techniques used in Multiband/Wideband antenna.

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq.
Bands
(GHz)

Efficiency
(%)

Isolation
(dB)

BW
enhancement
Technique

Prototype

[72] 22× 22× 1.6 2
2.4,
3.4,
5.5

≥ 68.9

17,
18,
32

Metasurface
reflector

[73] 65× 65 2 3.1–17.5 ≥ 72 ≤ −20

Small
rectangular
notch at the
ground plane

[74] 27× 17× 1.6 2 1–30 ≥ 80 ≤ −17 DGS

[75] 10.5× 4 2
2.36–2.63,
4.76–8

64, 84
22
and
17

Parasitic
resonator

[76] 96× 96× 2
8× 8

array
22.3–32.1

Not
reported

≤ −17

Slot-fed by
two vias residing
on the opposite

sides of a
dumbbell-shaped

aperture

[77] 5× 4.2× 0.12mm 2 2.15–2.77 ≥ 74 ≤ −32

DGS, T and
I-shaped stubs
in the ground

formed from an array of 4 × 3 unit cells which highly reflect
the signal at 6GHz frequency [82].

4.3.5. Metallic Reflectors

A complete metallic surface is placed beneath the radiating ele-
ment which acts as a reflector. The reflector is placed generally
at a height half of the wavelength below the radiating element.
If the phase difference between the reflected and radiated waves
is equal to 2Nπ, the gain will be enhanced. The height of the
reflector and microstrip antenna is chosen appropriately to en-
hance the gain equal to 9.2 dBi due to the generation of in-phase
constructive reflection with the antenna’s radiation [83].

4.3.6. Directive Antenna Structures

Some antenna structures have inherently high gain, such as horn
antennas, parabolic reflector antennas, or Yagi-Uda antennas.
These structures have a specific shape and design that focuses
the radiated energy in a particular direction to achieve higher
gain. Four directive slot antennas are positioned in orthogo-
nal patterns to present high isolation and gain in the azimuthal

plane [84]. Directional antennas can be configured with gains
up to more than 20 dB.
It is important to note that each of these techniques comes

with its own set of design challenges and trade-offs as enlisted
in Table 4.

4.4. Mechanism for Compact Antenna

The conventional microstrip antenna size is taken up in the
manner of half a wavelength for adequate performance. The
latest advent of technology leads to the requirement of com-
pact antennas for handheld devices. Compact antenna designs
focus on reducing the physical size of the antenna while main-
taining adequate performance. Techniques like the use of high
dielectric constant, slots, and slits, DGS, shorting, reshaping,
meander lines, fractal, metamaterials, etc. can help in achiev-
ing miniaturization. However, compact antennas may suffer
from reduced bandwidth or lower radiation efficiency than their
larger counterparts. Table 5 tabulates the techniques used by
the researchers to achieve miniaturization of MIMO antennas.
Here are a few popular techniques to attain miniaturization are
discussed in detail.
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TABLE 4. Comparison of gain enhancement techniques used in multiband MIMO antenna.

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq
Bands
(GHz)

Gain
Isolation
(dB)

Gain
enhancement
Technique

Prototype

[85] 30× 44× 1.6 1
2.4, 3.5,
5.8, 7.9

2.63, 2.58,
2.82, 2.99

NA FSS

[86] 55× 45× 1.57 2
12.9, 13.8,
15.1, 18.2,

21.5
4.2–10.7 ≤ −23.5

Log-periodic
dipole array

[87] 40× 25× 1.6 2
3.8, 5.4,
7.8

5.34 ≤ −29 CSRR

[88] 54× 54× 20 1 2.34, 5.32 5.5, 7.1 NA
The artificial

magnetic conductor
layer

[89] 67× 67× 12 3 7.29–9.7 8.93 ≤ −17
Loaded on hybrid
metasurface layer

4.4.1. Fractal Antennas

Fractal antennas can provide increased bandwidth with minia-
turization. The complexity of the antenna design and fabri-
cation increases with fractal or multi-resonant designs. 42%
compactness is attained through a swastika arm structure with
the Quadric-Koch fractal technique in a two-port hepta-band
MIMO antenna [90]. It may be challenging to achieve high
radiation efficiencies and maintain pattern diversity with these
antennas.

4.4.2. Metamaterial-Based Antennas

Metamaterials enable the design of antennas with unconven-
tional electromagnetic properties and sub-wavelength dimen-
sions. Through carefully engineered structures, they offer the
potential for compact and high-performance MIMO antennas.
Implementing metamaterial-based antennas can involve com-
plex and non-standard fabrication techniques. The incorpora-

tion of metamaterials may also introduce additional losses and
narrow bandwidth. A miniaturization of 73% by employing
CSRR under the patch is proposed in [91].

4.4.3. DGS

The defects due to etched regions (slots) in the metallic ground
plane are referred to as defective ground structures. These slots
are excited through coupling from transmission lines just placed
above them. A different structure like circular, rectangular, me-
ander line, dumbbell shape, etc. acts as a tuned circuit of parallel
L-C circuit whose equivalent value corresponds to the dimen-
sions of the slot. The trapezoidal shape is etched out from the
ground plane to suppress the cross-polarization and lower the
resonant frequency in turn to attain 22.9% compactness [48].
The implementation of DGS is easy, and the structure is com-
pact which results in the fast evolvement of various shapes and
applications for wireless and microwave applications.
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TABLE 5. Comparison of miniaturization techniques used for designing multiband MIMO .

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq.
Bands
(GHz)

Remarks
Isolation
(dB)

Miniaturization
Technique

Prototype

[94] 45× 25× 1.57 2

2.37–2.64,
3.39–3.58

and
4.86–6.98

First two bands
are created

by loading the
CRLH unit cell

≤ −15

Modified square
loop antenna
with CRLH
unit cell

[95] 42× 40× 1.57 2

0.72–1.1,
1.57–1.90,
2.19–4.90,
5.30–6.70

Independent
tuning, CP
bands at
0.9GHz,
1.8GHz,
and 5.8

−30,

−30,

−22,
−36

Iterated
C-shape

[96] 32× 32× 1.6 4
3.72–3.82,
4.65–4.76,
6.16–6.46

No extra
isolation
element

≤ −16

Circular and
rectangular
slot cuts

[97] 60× 80× 0.8 2

0.89–0.96,
1.7–1.8,
2.3–2.37,
2.5–26

The neutralizing
line gives

high-isolation
≤ −30

Folded
monopole

with
meander
line

[98] 48× 70× 10.1 2

1.86–2.60,
3.3–3.64
and

4.42–6.75

C-shaped printed
line behaves as
a magnetic dipole
and produces
two different

radiating modes
in CDRA

≤ −20

C-shaped printed
lines and cylindrical
dielectric resonator

4.4.4. Antenna Integration Techniques

Integrating antenna elements with other components or struc-
tures, such as printed circuit boards and device enclosures
like metal frame antenna, PIFA, etc. can help achieve minia-
turization without compromising performance. PIFA usually
fits inside handheld devices whose backside acts as a ground
plane. The metal frameMIMO antennas are placed on opposite
edges/corners of the backplane generally without incorporating
a decoupling structure. A metal frame quad-band antenna to
cover 2G/3G/4G is proposed in [92] without any need for a de-
coupling technique.

4.4.5. Meander Line

The physical length of the antenna can be reduced by incorpo-
rating the meander technique as it utilizes multiple folds in the
conducting patch [12]. The overall required dimension needed

for a resonant frequency isλg/2, which can be attained in a com-
pact form by attaining 30–80%miniaturization using ameander
line. Three separate arms comprise meander lines of different
lengths resulting in three different resonance frequencies with
a compact size of 45× 30mm2 [93]. Designers must carefully
consider the application requirements and constraints to select
the most appropriate miniaturization technique.

4.5. Polarization Purity
Polarization determines the geometrical orientation of the trans-
verse wave radiated by an antenna. If an antenna radiates elec-
tromagnetic waves in a single plane with the direction of prop-
agation, then it is linearly polarized. The direction of the elec-
tric field differentiates the antenna as vertically polarized and
horizontally polarized due to the movement towards the verti-
cal plane and horizontal plane, respectively. The antenna radi-
ating em waves in two planes simultaneously with equal am-
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plitude and 90◦ phase variation is known as a circularly po-
larized antenna [99]. However, if the amplitudes of the em
waves radiated in two planes by the antenna are different while
the phase variation is 90◦, or if the relative phase varies with
an angle other than 90◦, it is known as an elliptical polarized
antenna. The direction of the electric vector turns in a clock-
wise direction in right-hand circular polarization (RHCP) and
anti-clockwise direction giving left-hand circular polarization
(LHCP). Axial ratio assesses CP through the ratio of the major
axis to the minimum axis. An ideal CP wave is achieved for the
value of AR = 0 dB, which is not feasible. So an AR ≤ 3 dB
is considered as a practical CP wave [100]. Here are some com-
monly techniques used to attain CP:

4.5.1. Truncated Corner

The truncation is usually done on opposite corners of an an-
tenna. The electromagnetic fields break apart into orthogonal
modes having the same amplitude with 90◦ phase variation due
to truncated corners [101].

4.5.2. Stacked Patches with Different Feed Phases

By stacking multiple patches with different feed phases, cir-
cular polarization can be achieved in MIMO antennas. The
patches are fed with different signals that have a specific phase
relationship, resulting in circular polarization [102].

4.5.3. Orthogonal Feeding Networks

Using orthogonal feeding networks, where the signals to each
MIMO antenna element are fed with different phase shifts, can
help achieve circular polarization. The orthogonal feeding net-
works properly excite the antenna elements to generate circu-
larly polarized radiation [103].

4.5.4. Asymmetric Slots/Slits

Circular polarization can be attained by adding slots of vary-
ing sizes and asymmetric cuts in opposite directions of an an-
tenna [104]. This result in two orthogonal modes generation at
45◦ to the feed location with similar amplitude, but these ex-
cited modes are 90◦ out of phase.

4.5.5. Crossed Dipole or Bowtie Antennas

Crossed dipole or bowtie antennas are inherently circularly po-
larized [105]. By utilizing crossed-dipole or bowtie elements
as the antenna elements in a MIMO configuration, circular po-
larization can be achieved.

4.5.6. Orthogonal Placement/Crossed Configuration

The patch is placed in a crossed configuration to attain higher
mutual coupling and wider CP. Some phenomena like unequal
dipole length, tunable width/radius, and phase delay circuit are
added to get 90 out-of-phase signals which results in CP [106].

4.5.7. Metamaterial Surfaces

Incorporating metamaterial surfaces with specially designed
sub-wavelength structures canmodify the polarization of the ra-
diated waves [107]. These metamaterial surfaces can be placed
near the MIMO antenna elements to achieve circular polariza-
tion.
It is worth noting that the specific techniques used to achieve

circular polarization in MIMO antennas depend on the antenna
geometry, frequency band, and other design constraints. A
comparison table listing different techniques to attain circular
polarization is demonstrated in Table 6.

4.6. Diversity
The technique to mitigate the fading effect and enhance the per-
formance of the system is known as diversity. Several diversity
parameters are commonly considered in MIMO antenna sys-
tems. These parameters help improve the performance and re-
liability of MIMO systems by reducing the effects of fading
and interference [114]. Some of the key diversity parameters in
MIMO antenna systems are discussed as follows.

4.6.1. Spatial Diversity

Spatial diversity refers to the use of multiple antenna elements
that are physically separated in space. The channel capacity
can be optimized by choosing adequate element spacing, the
appropriate number of elements, and essential topology. The
incompetent spacing between antennas results in mutual cou-
pling, which further leads to variations in input impedance and
distorted radiation patterns [115].

4.6.2. Polarization Diversity

Polarization diversity utilizes different polarization states for
the antenna elements to provide a full-rank MIMO system. By
having antenna elements with different polarizations (e.g., ver-
tical, horizontal, or circular), polarization diversity helps reduce
the effects of polarization mismatch and also reduces mutual
coupling. The circular polarization diversity can be incorpo-
rated with minimum spacing, low spatial correlation, and high
isolation yield by different orientations of polarization [116].

4.6.3. Pattern Diversity

Pattern diversity consists of multiple co-located antennas hav-
ing the same radiation pattern, but directed to different direc-
tions and opposite front-to-back ratio of nearly 4 dB [117]. Usu-
ally, directional antennas which are physically separated by a
small distance are utilized. By collectively employing these di-
rectional antennas discriminate a large area of angle space with
higher gain than a single omnidirectional antenna. The corre-
lation effect can be minimized by choosing the angle spacing
of signals. Antenna designs with pattern diversity, polariza-
tion diversity, or any combination of the three diversity tech-
niques were adopted to overcome the mutual coupling effect
and improve MIMO channel capacity and bandwidth perfor-
mance. Massive MIMO systems with pattern diversity are a
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TABLE 6. Comparison of techniques to achieve CP in multiband MIMO antenna.

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq.
Bands
(GHz)

ARBW
Isolation
(dB)

CP
Technique

Prototype

[108] 54× 54× 1.5 4 9.82–10.16 9.59–9.69 ≤ −40
Slow-wave
structure

[109] 200× 200× 6 4 1.22–1.32 1.26–1.27 ≤ −28

Four round
disks with

different radii

[110] 51× 52× 1.6 1
1.16–1.20,
1.86–1.92,
2.29–2.38

1.17–1.18,
2.30–2.34

NA
Vertical

hat-shaped
slits

[111] 15× 15× 15 4
2.3–2.9,
5.5–6.8

2.2–3.0 ≤ −32

Orthogonal
placement
in 3D

cubic antenna

[112] 50× 50× 1.56 1

1.78–1.87,
2.38–2.71

and
3.21–3.4

1.77GHz–1.85GHz,
2.4GHz–2.7,
3.04GHz–3.15

NA
Combination
of the SRR
and strip-slot

[113] 50× 70× 1.6 4

2.18–2.24,
2.38–2.46,
2.65–2.70,
3.10–3.32,
3.38–3.46

2.18–2.20,
2.39–2.41

≤ −17

Ramp-shaped
cut at the
end of a

meandering-
shaped
patch

convincible solution for communication in a real environment,
RF harvesting, the Internet of Things, and 5G/6G devices. A
comparison table listing different techniques to attain pattern
diversity is shown in Table 7.

5. 6G ANTENNAS
Antenna designers are exploring various novel technologies,
such as metamaterials, phased array antennas, reconfigurable
intelligent surface, super massive MIMO, cognitive radio, and
integrated systems to meet the demands of 6G THz wireless
communications. A graphene substrate-based microstrip
antenna resonates at 1.96 THz and 4.83 THz by incorporating
slots in radiating elements [123]. Another quad-band antenna
resonates at 1.57 THz, 2.08 THz, 3.32 THz, and 4.43 THz

with a series-fed patch using a branch structure modeled
on a polymide substrate with graphene material on the top
layer [124]. The combination of multibandMIMO andmassive
MIMO can further enhance network capacity, coverage, and
energy efficiency.

5.1. Reconfigurable Intelligent Surfaces (RIS)

RIS refers to metasurfaces that can manipulate and reconfigure
the signal propagation environment. RIS elements are com-
posed of a large number of subwavelength elements that can
reflect, refract, or absorb electromagnetic waves [125]. In 6G,
RIS can also assist in beamforming, interference management,
and localization, enabling highly efficient and adaptable wire-
less networks.
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TABLE 7. Comparison of pattern diversity techniques practiced in multiband MIMO antenna.

Ref
No.

Dimensions
(mm)

No.
of

Ports

Freq.
Bands
(GHz)

Circular
Polarization

Isolation
(dB)

Pattern
diversity
Technique

Prototype

[118] 120× 65× 4.8 3

1.35–2.75,
0.786–0.807,
2.64–2.75,
4.45–4.7

786.7–807,
1.47–2.55

≤ −13.4

Orthogonal
mirrored
tri-branch

[119] 36× 36× 1.6 2
3.471–3.529,
5.678–5.721

3.4–3.5,
5.6–5.7

−18.4,
−22.7

Metal walls
act as

reflectors

[120] 140× 70× 1.6 8
3.06–3.81,
3.33–3.67

NR ≤ −14

Two elements
fed by in-phase

and 180◦

out-of-phase
excitations

[121] 10.9× 12.8× 9.45 3
2.35–2.45,
5.75–5.83

2.35–2.45,
5.75–5.83

≤ −15

Artificial
transmission

line (ATL) cells
are structured

into a multi-layer
architecture

[122] 41.05× 21.1× 1.6 2
2.56–2.73,
3.15–3.72,
4.67–5.8

NR ≤ −15

Opposite
directions
placement

TABLE 8. Applications of 5G/6G multiband MIMO antenna.

References Applications Multiband technique
[130] Rooftop antenna with shark fin shape for vehicular application Folded 3-dimensional branch structure
[131] Handheld mobile devices Minkowski island curve and Koch curve fractals
[132] 5G Laptop devices Reconfigurability using PIN diodes
[133] Wireless routers Meander line
[97] GSM, LTE ,WLAN, WiMAX and DCS for Smart phone Folded monopole
[134] 5G IOT CSRR and DGS
[135] Broadcasting and telecommunication services Cylindrical helix with meander loop
[136] Cognitive radio, RFID bands, 5G Sensing antenna with slot and meander line
[137] Biomedical application for high data rate Shorting pin and arc slots
[138] Wearable button antenna for 5G SRR structure
[139] Wireless access point Arrow shape dipole with ring structure
[140] Smart watch Stacked layer
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5.2. Cognitive Radio
Cognitive Radio (CR) is a technology that allows dynamic
spectrum access by intelligently exploiting the underutilized or
unused frequency bands. CR devices can sense the spectrum
in real time, identify the available frequency bands, and op-
portunistically access them. In 6G, CR can play a vital role
in optimizing spectrum allocation, especially in the THz fre-
quency range. By utilizing cognitive capabilities, 6G networks
can efficiently allocate spectrum resources, enhance spectrum
efficiency, and enable seamless connectivity in dynamic and
heterogeneous wireless environments [126].

5.3. Massive MIMO
Massive Multiple-Input Multiple-Output (MIMO) refers to the
use of a massive number of antennas at the transmitter and/or
receiver. It significantly increases spectral efficiency and ca-
pacity, and improves link reliability through spatial multiplex-
ing and interference suppression techniques. In 6G, Massive
MIMO can be further enhanced to support even higher number
of antennas, enabling extremely high data rates and low-latency
communications. Massive MIMO can also be combined with
beamforming and advanced signal processing techniques, mak-
ing it a key technology for achieving the ambitious goals of
6G, such as terabit-per-second data rates and massive connec-
tivity [127].

5.4. Integrating Systems
Automated systems like machine learning and artificial intelli-
gence are adequately developed to fulfill critical real-time ap-
plications using infrastructure based on 5G and 6G [128]. The
applications and network infrastructure are strongly dependent
on 6G to witness the network convergence. A planar, recon-
figurable, multi-band, graphene-based antenna incorporates a
deep neural network to investigate the radiation characteristics
and predicts the return loss and realized gain [129].
The above-said solutions address the unique challenges

posed by the THz frequency range, support dynamic spectrum
access, and optimize radio resource allocation while providing
robust and reliable wireless connectivity. By leveraging these
techniques, 6G wireless applications will offer enhanced user
experiences, support a wide range of emerging technologies,
and pave the way for advanced use cases, including massive
IoT, holographic communications, augmented and virtual
reality, and beyond.

6. APPLICATIONS
Nowadays, multiband techniques are prominently used in var-
ious fields of applications to cater to multiband simultane-
ously. Slot antennas are typically used in microwave and high-
frequency applications. Fractal antennas are known for their
compact size, wideband performance, and multiband capabil-
ities. These antennas are commonly used in wireless com-
munication systems, RFID tags, and other applications where
size and bandwidth are important factors. Stack antennas are
commonly used in radar systems, satellite communication, and
wireless networks to communication applications due to their

wide bandwidth and compact size. FSS antennas are commonly
used in satellite communications, radars, and wireless systems
to control or enhance specific frequency bands. PIFA anten-
nas are commonly used in mobile devices, such as smartphones
and tablets, due to their small size, omnidirectional radiation
pattern, and easy integration with PCBs. Metal-rimmed anten-
nas are commonly found in smartphones and other handheld
devices where the metal casing or frame can serve as a use-
ful component of the antenna system. Excellent mechanical
strength and aesthetic appearance are provided by implement-
ing metal rim antennas in mobile phones. Table 8 enlists vast
applications of 5G/6G MIMO antenna targeted by researchers.

7. CONCLUSION AND FUTURE SCOPE
This paper presents an extensive report on design challenges
and their potential solution for multiband MIMO antenna for
5G/6Gwireless applications. The multiple techniques to obtain
multi-resonant bands are described in detail with their merits
and limitations. However, most multiband antennas are larger,
low gain, narrowband, and linearly polarized. This yields an
opportunity for research for possible performance enhancement
of multiband MIMO antennas. The review shows that multi-
band MIMO antennas are the evident options for antenna engi-
neers to target miniaturized multifunctional systems. A special
effort is made to explore the possible means to target the solu-
tion for achieving miniaturization, multiband, wide bandwidth,
high gain, pattern diversity, and circularly polarized antennas.
The paper tries to give a complete solution by concluding with
various applications of multiband MIMO antennas. The multi-
band MIMO for 5G and 6G antennas results in enhanced data
throughput, spectrum utilization, beamforming, seamless han-
dovers, diversity, reliability, and support for multiple use. As
5G and 6G networks continue to evolve and accommodate new
applications and services, multiband MIMO will play a crucial
role in meeting the increasing demands for high-speed, low-
latency, and reliable wireless communication.
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