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ABSTRACT: Since the performance of the spectral moment estimation algorithm commonly used in engineering degrades under the
conditions of low SNR, this paper introduces the Extreme Learning Machine (ELM) to the spectral moment estimation of weather signals
based on the correlation of the signals of adjacent range cells. To solve the problem that the hidden layer nodes of ELM algorithm are
difficult to be determined, the Bidirectional Extreme Learning Machine (B-ELM) algorithm is applied to achieve the high resolution
of spectral moments. Firstly, to improve the SNR of the training samples, time-domain pulse signals are converted into weather power
spectrum byWelchmethod. Then, the parameters of the B-ELMhidden layer nodes are directly calculated by backpropagation of network
residuals. The model parameters are optimized according to the least-squares solution, where the optimal number of hidden layer nodes
is determined adaptively. Finally, the optimized B-ELM model is employed for the spectral moment estimation of weather signals. The
algorithm is validated to be fast and accurate for spectral moment estimation using the measured IDRA weather radar data and is easy to
implement in engineering.
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1. INTRODUCTION

With the further development of weather radar, radar has
become an important tool for atmospheric remote sens-

ing detection and weather detection. It plays an important
role in severe weather warnings, short-time weather monitoring
and forecasting, public service, disaster prevention and mitiga-
tion [1–3]. Weather target information in weather echoes is crit-
ical in weather radar systems. The spectral moment information
of weather signals is an essential parameter of weather target in-
formation, which is an indispensable basis for judging the type
of weather targets and the need to issue warnings for weather
states. Spectral moments mainly include average power, av-
erage Doppler velocity, and Doppler spectral width [4]. Aver-
age power corresponds to the reflectivity of the weather target,
which reflects the content of liquid water and rainfall rate in
the region. Average Doppler velocity is the sum of the aver-
age velocity of each scattered particle. Doppler spectral width
represents the dispersion of the scattered particle velocity and
indicates the intensity of the weather target motion.
Traditional algorithms such as Pulse Pair Processing

method [5] and fast Fourier transform method [6] under the
conditions of low signal-to-noise ratio (SNR) are unable to
meet the high accuracy requirements of weather radar systems
for spectral moments because of their seriously degraded
performance. In recent years, spectral moment estimation
methods based on parametric model [7, 8] and sparse re-
construction [9] have been applied and studied. These two

* Corresponding author: Zhongyuan Wang (wzy_200101@163.com).

algorithms have greatly improved the accuracy of spectral
moment estimation. However, the computational complexity
of the two mentioned algorithms is high, and the timeliness is
not strong.
At present, machine learning has a great application prospect

in the field of meteorology [10, 11]. This paper introduces an
extreme learning machine in the field of machine learning into
the spectral moment estimation of weather signals and studies
a spectral moment estimation algorithm based on ELM. The
algorithm firstly constructs training samples, then selects and
optimizes the model parameters, and finally uses the optimized
ELM algorithm to build a prediction model. For the issue that
the number of hidden layer nodes is difficult to determine, the
ELM algorithm is further improved, and the Bidirectional Ex-
treme Learning Machine (B-ELM) algorithm is investigated.
The network structure is modified by gradually adding hidden
layer nodes. The parameters of some hidden layer neurons are
calculated directly using the network residuals backpropaga-
tion. A model for estimating the spectral moments of weather
signals is established to improve the accuracy of spectral mo-
ment estimation. The contributions of this paper are as follows:
(1) ELM is applied to the estimation of spectral moments

in weather signals, and a spectral moment estimation model is
established.
(2) Time-domain pulses are transformed into Welch power

spectrum to improve the SNR of subsequent B-ELM input
weather signals.
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(3) For the difficulty of determining the hidden layer nodes
of ELM algorithm, the B-ELM algorithm is further investigated
to achieve the high accuracy estimation of spectral moments.
This paper is organized as follows. In Section 2, we prepro-

cess the signal to the B-ELM. The principles and theoretical
derivation of ELM and B-ELM algorithms are introduced in
Section 3. Some simulation experiments are presented in Sec-
tion 4. Finally, the conclusion of this paper is given in Section 5.

2. SIGNAL PREPROCESSING FOR B-ELM

2.1. Estimation of the Power Spectrum
To estimate the spectral moment information of the weather sig-
nals with high accuracy, the time-domain pulse signals of each
range cell are transformed into the weather power spectrum by
Welch method, which significantly improves the input SNR of
the weather signals.
Suppose that the weather pulse data u(n) is divided into L

segments, and each segment length isK. The offset of the seg-
ment signal is D. The ith segment signal is

ui(k) = u(k + iD), (0 ≤ k ≤ K − 1, 0 ≤ i ≤ L− 1) (1)

where the case of overlapping data splitting occurs when D <
K.
An appropriate window function is introduced before calcu-

lating the power spectrum. The energy of the window function
is

U =
1

K

K−1∑
k=0

w2 (k) (2)

The power spectrum corresponding to each segment of data
is calculated by

P i
per(e

jω) =
1

KU

∣∣∣∣∣
K−1∑
k=0

ui(k)w(k)e
−jωk

∣∣∣∣∣
2

(3)

The power spectrum estimate of u(n) is obtained by adding
and averaging the power spectra of the L segments

P (ejω) =
1

L

L−1∑
i=0

P i
per(e

jω) (4)

After transforming the weather signals into a power spectrum
by Welch method, the input SNR is improved, which enhances
the accuracy of the spectral moment estimation. Both the tradi-
tional spectral moment estimation algorithm and its improved
algorithm utilize the impulse information within each range cell
for numerical solution, ignoring the correlation between differ-
ent range cells. In order to further improve the accuracy of
spectral moment estimation, it is necessary to discuss how to
use correlation to complete the estimation of spectral moment
information.

2.2. Construction of Training Samples for B-ELM
This paper utilizes the correlation of Welch power spectrum of
adjacent range cells to estimate the spectral moments of the cur-
rent cell. Therefore, in this section, Pearson correlation coeffi-
cient is used to verify the correlation of Welch power spectrum.
Pearson correlation coefficient is one of the most commonly
used expressions for correlation coefficient, which reflects the
degree of direct correlation between two different variables,
with the following formula:

cov(Pi, Pj) =

N∑
n=1

(Pi(n)− P̄i)(Pj(n)− P̄j)

N − 1
(5)

r =
cov(Pi, Pj)

ζPi
ζPj

(6)

where r is the Pearson correlation coefficient; Pi =
[Pi(1), Pi(2), . . . , Pi(N)] is the Welch power spectrum
of the ith range cell; Pj = [Pj(1), Pj(2), . . . , Pj(N)] is the
Welch power spectrum of the jth range cell; P̄i and P̄j are the
mean values of Pi and Pj , respectively. ζPi and ζPj are the
standard deviation of Pi and Pj , respectively. The equation
represents the correlation between the weather signal of the
ith range cell and the weather signal of the jth range cell. The
coefficient ranges from −1 to 1, and the absolute value of the
coefficient is proportional to its correlation. In addition, when
r ≥ 0.6, it shows a strong correlation.
Taking the 30th range cell as an example, the correlation re-

sults of weather signals and Welch power spectrum are shown
in Fig. 1(a) and Fig. 1(b), respectively. Each value on the ordi-
nate of the figure represents the degree of correlation between
the 30th range cell and the 1st to 60th range cells. It can be
clearly seen from Fig. 1 that Welch power spectrum of different
range cells has strong correlation characteristics compared with
the initial weather signals. Moreover, the correlation between
the current range cell and the nearby range cell is stronger.
The prerequisite for the application of B-ELM is a high cor-

relation between the training samples. According to the above
correlation analysis, it can be seen that the current range cell
has a stronger correlation with the adjacent range cell, and more
information can be utilized to the traditional spectral moment
estimation algorithms. Therefore, in order to obtain high res-
olution spectral moment estimation, the power spectra of the
adjacent range cells are taken as training samples, and the es-
timated spectral moments of the current range cell are taken as
the output.
Assuming that the ath range cell requires spectral moment

estimation, the training samples can be taken as a−NL, . . . , a−
1, a + 1, . . . , a + NLth range cell. For 2NL different training
samples (ti, yi) (i = 1, 2, . . . , 2NL), their construction form is

ti = [ti1, ti2, . . . , tis]
T (7)

yi = [yi1, yi2, . . . , yim]T (8)

where ti is the input, yi the output, s the number of pulses, i.e.,
the number of nodes in the input layer, and m the number of
nodes in the output layer. In this algorithm, m = 1, so the
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(a) (b)

FIGURE 1. Correlation of each range cell with the 30th range cell: (a) Correlation of weather signals. (b) Correlation of Welch power spectrum.

input becomes

ti = [ti1, ti2, . . . , tis]
T

=

[P
a−NL+(i−1)
1 , . . . , P a−NL+(i−1)

s ]T 1 ≤ i ≤ NL

[P a−NL+i
1 , . . . , P a−NL+i

s ]T NL < i ≤ 2NL

(9)

The spectral moment as an output can be expressed as

yi =

{
κa−NL+(i−1) 1 ≤ i ≤ NL

κa−NL+i NL < i ≤ 2NL

(10)

where P a−NL+(i−1)
s is the spectrum of the sth pulse of the a−

NL + (i − 1)th range cell, and κa−NL+(i−1) is the spectral
moment of the a−NL + (i− 1)th range cell.
In this paper, theWelch power spectra of different range cells

under low SNR conditions are used as the training samples for
the algorithm. Note that the Welch power spectrum contains
information on radial velocity and spectral width.

3. B-ELM-BASED SPECTRAL MOMENT ESTIMATION
ALGORITHM

3.1. ELM Model
ELM is a new type of single-hidden layer feedforward neural
network (SLFN) [12], which is used in many fields [13, 14].
The ELM network structure is shown in Fig. 2.
For 2NL training samples (ti, yi) (i = 1, 2, . . . , 2NL), the

mathematical model of ELMwith J hidden layer nodes and the
activation function of g(x) has the following form

J∑
j=1

βjg(wj · ti + bj) = oi i = 1, 2, . . . , 2NL (11)

where wj = [wj1, wj2, . . . , wjs]
T is the weight vec-

tor of the jth hidden layer node and the input layer;

βj = [βj1, βj2, . . . , βjm]T is the weight vector of the jth
hidden layer node and the output layer; bj is the bias of the jth
hidden layer node; oi is the network output value of the ith
sample; and wj · ti denotes the inner product of wj and ti.
For SLFN with activation function g(x) containing J hidden

layer nodes, these 2NL training samples can be approximated
as zero error as follows

J∑
j=1

||oj − yj || = 0 (12)

Then there exist suitable wj , bj , βj , such that

J∑
j=1

βjg(wjti + bj) = yi i = 1, 2, . . . , 2NL (13)

Eq. (11) can be abbreviated as

Hβ = Y (14)

where

H =

 g(w1t1 + b1) · · · g(wJ t1 + bJ)
...

. . .
...

g(w1t2NL
+ b1) · · · g(wJ t2NL

+ bJ)

 (15)

H is called the hidden layer output matrix. Huang [15] has
proved that when the activation function is infinitely differen-
tiable, it is not necessary to completely adjust the network pa-
rameters. At the beginning of training, the weight vector con-
necting the hidden node and the input node and the threshold of
the hidden node can be randomly selected. The output connec-
tion weight can be obtained by solving the least-squares solu-
tion of the linear equation. By solving the linear equation with
the least-squares solution, the following can be obtained

β̂ = H+Y (16)

where H+ is the Moore-Penrose generalized inverse ofH .
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FIGURE 2. ELM network structure.

3.2. B-ELM Model
ELM algorithm has the advantages of fast learning speed and
good generalization performance, but its biggest drawback is
that it must manually set the hidden layer nodes. The number
of hidden layer nodes increases the performance of the algo-
rithm, but not the more the number of hidden nodes the better
the performance of the algorithm, which often requires a lot of
experiments to determine the number of hidden nodes. There-
fore, it is necessary to improve the ELM algorithm. On the
basis of the ELM algorithm, the spectral moment estimation al-
gorithm based on the Bidirectional Extreme Learning Machine
(B-ELM) is investigated.
Unlike the traditional ELM and I-ELM [16] algorithms, B-

ELM finds the parameters of the hidden layer nodes by error
feedback. Both B-ELM and I-ELM algorithms modify the net-
work structure by adding new hidden layer nodes. B-ELM al-
gorithm is consistent with I-ELM algorithm when the number
of hidden layer nodes is odd. When the number of hidden layer
nodes is even, the hidden layer node parameters are obtained
by calculating the error feedback [17, 18].
The network residuals of B-ELM are calculated as

EJ = EJ−1 − βJHJ (17)

where EJ−1 is the network error before adding the J th hidden
layer node. When the hidden layer nodes are odd

βJ =
EJ−1 ·HT

H ·HT
=

2NL∑
i=1

e(i) · g(wJ · ti + bJ)

2NL∑
i=1

g2(wJ · ti + bJ)

(18)

H =

 g(wJ · t1 + bJ)
...

g(wJ · t2NL
+ bJ)

 (19)

where e(i) is the error of the ith training sample before the new
hidden layer node is added, and H is the output matrix of the
new hidden layer node.

When the hidden layer nodes are even, the error feedback
matrix from the last iteration is calculated

He = EJ−1 · (βJ−1)
−1 (20)

where βJ−1 is the weight between the hidden layer nodes and
the output layer after the last iteration. The error feedback ma-
trix is then used to calculate the hidden layer node parameters
wJ , bJ

wJ = g−1 (u (He)) · t−1 (21)

bJ =
√
mse (g−1 (u (He))− wJ · t) (22)

where mse(·) denotes the variance, and u : R → [0, 1] is the
normalization function. The output matrix is updated by the
above calculation

H = u−1 (g (wJ · t+ bJ)) (23)

Then the weight βJ between the hidden layer nodes and out-
put layer is calculated as

βJ =
EJ−1 ·HT

H ·HT
(24)

Figure 3 shows the flow of the B-ELM algorithm. In the
B-ELM algorithm, when the number of hidden layer nodes is
odd, the relevant parameters are obtained randomly, which is
the same as the I-ELM algorithm. When the number of hidden
layer nodes is even, the parameters of some hidden layer nodes
are calculated directly by using the back propagation of network
residuals. This avoids the appearance of “useless hidden layer
nodes”, minimizes the computational effort and time caused by
searching for the optimal hidden layer node parameters, and
greatly improves the computational speed of the model.

3.3. Optimization of B-ELM Parameters
Different fromELMnetworks, B-ELMdoes not requiremanual
setting of the number of hidden layer nodes. B-ELM algorithm
can achieve optimization of the network by self-increasing hid-
den layer nodes during the operation of the algorithm. Themain
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FIGURE 3. Flow chart of B-ELM algorithm.

TABLE 1. IDRA radar parameters table.

Parameter name Symbol Parameter value
Scanning time Tp 409.6µs

Carrier frequency fc 9.475GHz
Wavelength λ 0.03m

Number of pulses K 512
Bandwidth B 5MHz

Number of range cells L 100

parameter that affects the performance of the B-ELM algorithm
is the activation function, which is studied in this section.
The activation function is a function that runs on the neurons

of an artificial neural network and is responsible for mapping
the input to the output of the neuron. The commonly used ac-
tivation functions are Sigmoid [19], Hardlim [20], ReLu [21],
etc. This section will analyze the effect of different activation
functions on the performance of the B-ELM model.
In this paper, absolute error (error) and root mean square er-

ror (RMSE) are used to analyze the accuracy. The formula for
error and RMSE can be expressed as:

error = |yi − yobj | (25)

RMSE =

√√√√ 1

Nm

Nm∑
i=1

(yi − yobj)2 (26)

whereNm is the number of range cells, and yi and yobj are the
estimated and true values of the ith range cell, respectively.
Figure 4(a) depicts the effects of different activation func-

tions and the number of training samples on the estimation per-
formance of B-ELM. It can be seen from the figure that when
the Sigmoid function is used as the activation function, the es-
timation error of this network model is the smallest. It can also
be seen that when the number of training samples NL is 1–3,
the estimation performance of the B-ELM network under the
same activation function is basically the same.
Figure 4(b) is similar to Fig. 4(a), which shows the spectral

width of the weather signal. As seen in the figure, the dif-

ference in the performance of the B-ELM algorithm for spec-
tral width estimation is large for different activation functions.
Among them, the Sigmoid function has the best B-ELM esti-
mation performance, and the ReLu function is the worst. Com-
bined with the above analysis, the Sigmoid function is the most
suitable activation function for B-ELM for spectral moment es-
timation. Therefore, the Sigmoid function is chosen as the ac-
tivation function of both B-ELM and ELM algorithms in this
paper to estimate spectral moments. In addition, the spectral
width estimation is optimal when training samplesNL is set to
3, so the total number of training samples 2NL is set to 6.

4. PERFORMANCE ANALYSIS

To verify the effectiveness of the algorithm, IRCTR drizzle
radar (IDRA) [22] measured data are used in this paper to com-
pare the accuracy of spectral moment estimation of different
algorithms. IDRA is a weather radar system designed and de-
veloped by the International Research Centre for Telecommuni-
cations and Radar (IRCTR) of Delft University of Technology.
The data selected in this paper are from September 10, 2011,
21:00–22:00UTC, and in standard rangemode, usingmeasured
data from sector 25. Table 1 shows the parameters of the IDRA
radar in standard mode.
Traditional spectral moment estimation algorithms have high

estimation accuracy under high SNR conditions. To test the ef-
fectiveness of the algorithm, the spectral moments obtained by
using the FFT method for 512 weather radar pulses are used as
the real values. 64 pulses are taken from 512 pulses as raw data
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(a) (b)

FIGURE 4. Performance of activation functions: (a) radial velocity, (b) spectral width.

(a) (b)

FIGURE 5. Effect of the number of hidden layer nodes: (a) radial velocity estimation error, (b) spectral width estimation error.

to verify the algorithm’s performance under low SNR condi-
tions. The SNR is reduced by a factor of 8 by taking 64 pulses
from 512 pulses. The following experimental results are based
on 100 measured weather radar data.

4.1. Impact of Hidden Layer Nodes on ELM Performance

Two main parameters affecting the performance of the ELM
algorithm: the activation function and the number of hidden
layer nodes, of which the activation function has been studied
in Section 3. In the following, the effect of the number of hidden
layer nodes on the performance of ELM will be briefly studied.
Figure 5(a) demonstrates the radial velocity estimation after

applying the ELM algorithm. As can be seen, when the value
of J is less than 14, the RMAE error of radial velocity estima-
tion decreases significantly with the increase of the number of
hidden layer nodes. When the value of J is more than or equal

to 18, the RMAE error of radial velocity estimation is basically
controlled to be around −20 dB. Therefore, when the output of
ELM is radial velocity, the number of nodes in the hidden layer
J is set to 18.
Figure 5(b) illustrates the spectral width estimation after ap-

plying the ELM algorithm. When J is less than 11, the RMAE
error of the spectral width estimation decreases significantly
with the increase in the number of nodes in the hidden layer.
When J is more than or equal to 16, the RMAE error is basi-
cally controlled at about −15 dB. So, when the output of ELM
algorithm is spectral width, J is set to 16.

4.2. Performance Analysis of B-ELM Algorithm

Figures 6(a) and 6(b) show the comparison between the esti-
mators and the true values of spectral moments for the ELM
and B-ELM algorithms, respectively. The true values of radial
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(a) (b)

FIGURE 6. Performance of B-ELM algorithm: (a) radial velocity, (b) spectral width.

(a) (b)

FIGURE 7. Performance comparison of three algorithms: (a) radial velocity error, (b) spectral width error.

velocity vary slowly between 6.6 and 8.3m s−1. It is obvious
from Fig. 6(a) that the radial velocity estimators of these two al-
gorithms are very close to the true values and vary slow in that
range. The radial velocity slowly decreases at 30–60 range cells
and increases rapidly at 70–80 range cells. These two algo-
rithms can perform accurate spectral moment estimation when
the radial velocity changes rapidly. From Fig. 6(b), it can be
seen that the true values of spectral width change slowly be-
tween 0.3 and 1.7m s−1. Most of the spectral width values are
distributed between 0.4 and 0.8m s−1. The deviation of ELM
and B-ELM algorithms from the true values is very small.
Figures 7(a) and 7(b) show the absolute errors between the

estimators and true values of the three algorithms. The off-grid
reconstruction algorithm [23] is introduced to compare with the
algorithm of this paper. The blue, red, and green lines indicate

the absolute values of the errors of the off-grid reconstruction,
B-ELM and ELM algorithms, respectively.
Figure 7(a) shows the comparison of the absolute value of the

error of the radial velocity. It can be seen that the estimation er-
ror of the off-grid reconstruction algorithm is much larger than
that of the ELM and B-ELM algorithms in most of the range
cells. And the estimation error value of the B-ELM algorithm
is basically less than 0.2m/s with the smallest error value and
the most accurate estimation. Fig. 7(b) compares the absolute
value of the error of the spectral width. It can be seen that the
estimation error of the algorithm in the off-grid reconstruction
algorithm is much larger than that of the ELM and B-ELM al-
gorithms in most of the range cells. And the estimation error
value of the B-ELM algorithm is basically less than 0.5m s−1,
which is close to the estimation performance of the ELM algo-
rithm.
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TABLE 2. Computational complexity analysis.

Different algorithm
Radial velocity average error

(m s−1)

Spectral width average error
(m s−1)

Off-Grid reconstruction 0.3238 0.2501
ELM 0.0825 0.1198
B-ELM 0.0766 0.1063

Table 2 compares the average error of spectral moment esti-
mation of different algorithms. In this paper, the spectral mo-
ments obtained by the fast Fourier transform (FFT)methodwith
512 pulses are taken as the true values. Table 2 shows that the
estimation performance of the B-ELM algorithm is slightly bet-
ter than that of the ELM algorithm, and the estimation perfor-
mance of the off-grid reconstruction algorithm is the worst. The
average error of radial velocity estimation of the B-ELM algo-
rithm is 0.0766m s−1, and the error of spectral width estima-
tion is 0.1063m s−1, improving performance by 7% and 11%,
respectively, compared with the ELM algorithm. The radial
velocity estimation of B-ELM algorithm improves 76.3%, and
spectral width estimation improves by 57.4% compared with
the off-grid reconstruction algorithm.

5. CONCLUSION
In this paper, an extreme learning machine is introduced into
the estimation of spectral moments of weather signals. For
the problem that the hidden layer nodes of the ELM algorithm
are difficult to determine, Bidirectional Extreme Learning Ma-
chine (B-ELM) algorithm is investigated. B-ELM algorithm
increases the hidden layer nodes one by one. When the num-
ber of nodes is odd, the current-hidden-layer node parameters
are set randomly. When the number of nodes is even, the pa-
rameters of some hidden layer nodes are calculated directly by
using the network residual backpropagation. The model pa-
rameters are optimized according to the least-squares solution.
The experimental results show that B-ELM algorithm can ac-
curately estimate spectral moment. Compared with other algo-
rithms, the algorithm in this paper has the smallest error and
low computational complexity, which is easy for engineering
implementation.
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