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ABSTRACT: The contrast current density volume integral equation, discretized with piecewise constant spatial basis and test functions and
Dirac-delta temporal test functions and the piecewise polynomial temporal basis functions, results in a causal implicit marching-on-in-
time scheme that we refer to as the marching-on-in-time contrast current density volume integral equation (MOT-JVIE). The companion
matrix stability analysis of the MOT-JVIE solver shows that for a fixed spatial and temporal step size, the stability is independent of the
scatterer’s dielectric contrast for quadratic spline temporal basis functions. Whereas, Lagrange and cubic spline exhibit instabilities at
higher contrast. We relate this stability performance to the expansion and testing procedure in time. We further illustrate the capabilities
of the MOT-JVIE based on quadratic spline temporal basis functions by: comparing the MOT-JVIE solution to time-domain results
from literature and frequency-domain results from a commercial combined field integral equation solver. Finally, we present a long time
sequence for a high-contrast scatterer discretized with 24,000 spatial unknowns.

1. INTRODUCTION

Time domain Maxwell solvers are more suitable for simula-
tions dealing with non-linearity, wideband electromagnetic

excitation and multiphyiscal coupling than their frequency-
domain counterparts [1–3]. The differential-equation-based
time-domain Maxwell solvers, like the finite difference time
domain (FDTD) method and the finite element time domain
(FETD) method, are often preferred for these types of simula-
tions [2–4]. Another type of time-domainMaxwell solver is the
time-domain integral equation (TDIE), which is based on the
Green function. TDIEs have two major advantages over their
differential-equation-based counterparts [1, 4]: 1) the TDIEs do
not need a proper truncation of the computational domain, as
they satisfy the radiation conditions owing to the use of the
Green function; 2) the TDIEs do not need to include the back-
ground medium in their computational domain. These advan-
tages reduce the computational domain and could therefore re-
duce the computational effort of simulations if the TDIEs are
applied.
In electromagnetics, the classes of TDIEs can be subdivided

into two subclasses, the time-domain surface integral equations
(TDSIEs) and the time-domain volume integral equations (TD-
VIEs) [5]. The TDVIEs are based on the volume equivalence
theorem and use volume equivalent sources to represent wave
propagation in penetrable homogeneous and inhomogeneous
materials [5]. Although TDVIEs can be used to represent the
electromagnetic interaction with polarizing, magnetizing and
lossy propagation media, research over the years has mainly
focused on TDVIE solvers dealing with the polarization of di-
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electrics. The developed TDVIE solvers for wave propagation
in dielectrics can be distinguished on multiple aspects. The
first aspect is the used unknown quantity. Formulations of the
TDVIEs exist with the electric flux density [6–12], the elec-
tric field intensity [13, 14], the contrast current density [15–
17], the electric source vector [18], the magnetic field inten-
sity [19] or a combination of these quantities [20–23]. The
second aspect that distinguishes the schemes is the spatial dis-
cretization, where the choice is related to the continuity require-
ments of the unknown quantity used. Implementations exist
based on the Schaubert-Wilton-Glisson (SWG) functions [6–
8, 12], half-SWG functions [15], a combination of half-SWGs
and full-SWGs [20, 21, 23], conformal basis functions defined
on curvilinear hexahedral elements [9–11], pulse basis func-
tions with Dirac-delta test functions [14], fully linear curl-
conforming (FLC) basis functions with FLC or Dirac-delta test
functions [19] and Nyström discretizations [16–18, 22]. The
third aspect that distinguishes the schemes is the evaluation
of the unknown over time, where we can make the distinc-
tion among marching-on-in-degree (MOD) [9–11, 18], implicit
causal marching-on-in-time (MOT) [6–8, 16, 17, 19, 22], im-
plicit non-causal MOT [12], and explicit MOT [13–15, 17, 19–
21, 23]. The MOD schemes discretize time with a set of or-
thonormal basis functions and eliminate the time variable from
their matrix equations. The solution is obtained by solving a
full matrix equation for each of the orthonormal basis functions.
Implicit and explicit MOT-schemes both employ Dirac-delta
temporal test functions, but expand the temporal part of the un-
known differently. The implicit causal MOT-schemes include
a temporal expansion of the unknown in basis functions that
result in a matrix equation, where the unknowns at each time
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step do not depend on the unknowns at future time steps. The
solution is obtained by solving a sparse matrix equation at each
time step. The implicit non-causal MOT-schemes also include
a temporal expansion of the unknown in basis functions, how-
ever these temporal basis functions extend towards the future.
Therefore the resulting matrix equation has unknowns at each
time step that do depend on the unknowns at future time steps.
The solution is obtained by means of extrapolation in combi-
nation with solving a sparse matrix equation at each time step.
The explicit MOT-schemes do not include a temporal expan-
sion, but recast the matrix equation into an ordinary differential
equation (ODE) in time by employing temporal interpolation.
The solution at each time step is obtained using a predictor-
corrector scheme for the ODE in combination with solving the
Gram matrix equation at each prediction and correction step.
Although all the aforementioned versions of TDVIE solvers

are able to compute the electromagnetic scattering due to the
presence of a dielectric body, instabilities arise when the di-
electric contrast of the scatterer is increased [12]. Only two
methods have been shown to be able to deal with high dielec-
tric contrast. One is the implicit non-causal MOT-scheme ex-
panding the electric flux density spatially with SWGs and tem-
porally with approximate prolate spherical wave (APSW) func-
tions [12] and the other is the explicit MOT-scheme expanding
the magnetic field intensity using spatially the FLC functions
and temporally the fourth-order Lagrange interpolation polyno-
mials [19]. To the best of the authors’ knowledge, no implicit
causal MOT-scheme based on the TDVIE is documented in lit-
erature that remains stable for high dielectric contrast scatterers.
Here, we present an implicit causal MOT-scheme, which we

refer to as the marching-on-in-time contrast current density vol-
ume integral equation (MOT-JVIE) solver. The MOT-JVIE
solver has the contrast current density as unknown. The con-
trast current density is spatially discretized using piece-wise
constant basis and test functions, in line with the frequency-
domain scheme presented in [24], which will restrict the spa-
tial part of the contrast current density to the appropriate solu-
tion space, i.e., L2(R3) [25–27]. The temporal discretization
consists of Dirac-delta test functions to obtain a MOT-scheme
and we show that for a fixed spatial and temporal step size,
the stability is independent of the scatterer’s dielectric contrast
for quadratic spline temporal basis functions. Whereas, other
temporal basis functions commonly applied in literature exhibit
instabilities at higher contrast. We relate this stability perfor-
mance to the expansion and testing procedure in time.
This paper is organized as follows. In Section 2, we formu-

late the TDVIEwith the contrast current density as the unknown
quantity, discretize this equation, and explain how to compute
the resulting matrix elements. In Section 3, we introduce the
scattering setup that is used in the numerical experiments in
subsequent sections. In Section 4, we analyze the MOT-JVIE
stability behavior for different temporal basis functions. In Sec-
tion 5, we illustrate the capabilities of the MOT-JVIE based
on quadratic spline temporal basis functions by: comparing the
MOT-JVIE solution to time-domain results from literature and
frequency-domain results from a commercial combined field
integral equation solver, and running a long time sequence for

a high-contrast dielectric scatterer discretized with 24,000 spa-
tial unknowns. We present our conclusions in Section 6.

2. MOT-JVIE

2.1. Formulation
A dielectric object, occupying a volume Vε, resides in a homo-
geneous background medium with permeability µ0, permittiv-
ity ε0 and resulting wave propagation speed c0 = 1/

√
ε0µ0.

The permittivity inside Vε is position dependent and is defined
as ε(r) = ε0εr(r), where εr(r) ≥ 1 is the relative permittivity.
The incident electric field Ei(r, t), which arrives at the object
at t = 0 or later, will induce a contrast current density, Jε(r, t),
in Vε after t = 0. The induced contrast current generates the
scattered electric field Es(r, t) in accordance with a convolu-
tion with the Green function [5], i.e.,

ε0
∂

∂t
Es(r, t) = −Jε(r, t) +∇×Hs, (1)

Hs(r, t) = ∇×
∫∫∫

Vε

Jε(r′, τ)
4πR

dV ′, (2)

where r and r′ are the observer and source spatial coordinates,
respectively; t is time; R = |r− r′| is distance between source
and observer; τ = t− R

c0
is the retarded time function;∇× is the

curl operator with respect to the observer coordinates; and dV ′

is the infinitesimal volume element over the source coordinates.
Together, the incident and scattered electric fields represent the
total electric field, E(r, t) = Ei(r, t) + Es(r, t), which also
relates to the contrast current density in the following way [5],

Jε(r, t) = (ε(r)− ε0)
∂

∂t
E(r, t). (3)

By combining the above equations, we obtain the time-domain
contrast current density volume integral equation (TD-JVIE),

(εr(r)− 1)ε0
∂

∂t
Ei(r, t) = εr(r)Jε(r, t)

−(εr(r)− 1)∇×∇×
∫∫∫

Vε

Jε(r′, τ)
4πR

dV ′. (4)

Equation (4) illustrates an advantage the TD-JVIE has over the
alternatives formulations with electric field intensity and elec-
tric flux density as unknown, namely, Jε(r, t) = 0 automati-
cally if ε(r) = ε0.

2.2. Discretization
To find a numerical approximation for the TD-JVIE (4) solu-
tion, we discretize the equation by expanding the contrast cur-
rent density as

Jε(r, t) =
∑

α=x,y,z

M∑
m′=1

N∑
n′=1

Jα
m′,n′ fαm′(r)Tn′(t) (5)
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and introducing the testing operator

T β
m,n(g) =

∫
δ(t− n∆t)

∫∫∫
fβm(r) · g(r, t)dV dt, (6)

for m = 1, . . . ,M , n = 1, . . . , N and β = x, y, z. In Equa-
tion (5), Jα

m′,n′ is an expansion coefficient. In Equation (6),
g(r, t) is a general three dimensional vector function depend-
ing on both space and time; the operator · is the scalar dot prod-
uct between two three-dimensional vector functions; dt is the
infinitesimal time element; and dV is the infinitesimal volume
element over the observer coordinates. The functions fαm′ (5)
and fβm (6) are the spatial basis and test function, respectively.
To restrict the solution for Jε to the appropriate spatial function
space, i.e., L2(IR3) [25–27], we use piece-wise constant func-
tions as basis and test functions [24]. The m′-th basis vector
function is then defined for all three Cartesian unit vectors, i.e.,
α̂ = x̂, ŷ, ẑ, as

fαm′(r) =

{
α̂, for r ∈ Vm′ ,

0, for r /∈ Vm′ ,
(7)

where Vm′ is the volume occupied by a voxel of dimension
∆x×∆y ×∆z centered around rm′ . In a similar way we de-
fine them-th test vector function fβm defined on the voxel cen-
tered around rm occupying the volume Vm, where fβm = fαm′

if β = α and m = m′. All M voxels are positioned in a
regularized voxel grid, where the centers of any two voxels
are separated by an integer times ∆x, ∆y, and/or ∆z in the
accompanying Cartesian directions. The function δ(t − n∆t)
and Tn′(t) are the n-th temporal test and n′-th temporal ba-
sis function, respectively. The test functions δ(t − n∆t) are
the Dirac-delta functions. The use of Dirac-delta functions pre-
vents an expensive evaluation of the time integral in (6) and
in combination with a properly chosen temporal basis function
the discretized equation can be solved as a marching-on-in-time
(MOT)-scheme, i.e., unknowns at each time step do not depend
on the unknowns at future time steps [28]. The numerical sta-
bility of a MOT-scheme will depend on the choice of tempo-
ral basis function, Tn′ [12]. In Section 4 we will demonstrate
that for several temporal basis functions the MOT-JVIE is or
becomes unstable when we increase the scatterer’s dielectric
contrast and that the quadratic spline temporal basis function
is a basis function for which the numerical stability does not
depend on the electric contrast of the scatterer. The quadratic
spline temporal basis functions are defined as

Tn′(t) =



1
2

(
t−n′∆t

∆t

)2

+
(

t−n′∆t
∆t

)
+ 1

2 , t ∈ I1,

−
(

t−n′∆t
∆t

)2

+
(

t−n′∆t
∆t

)
+ 1

2 , t ∈ I2,

1
2

(
t−n′∆t

∆t

)2

− 2
(

t−n′∆t
∆t

)
+ 2, t ∈ I3,

0, else,

(8)

where I1 = ((n′ − 1)∆t, n′∆t], I2 = (n′∆t, (n′ + 1)∆t] and
I3 = ((n + 1)∆t, (n′ + 2)∆t]. By default, the MOT-JVIE is
based on quadratic spline basis functions, unless stated other-
wise.

By substituting (5) in (4) and applying the testing opera-
tor (6), we arrive at a block-matrix equation of the form



Z0

Z1 Z0

...
. . . . . .

Zℓ · · · Z1 Z0

. . . . . . . . .
Zℓ · · · Z1 Z0





J1
J2
...
...
...
JN


=



E1

E2

...

...

...
EN


, (9)

where the blocks of the unknown vector are defined as

Jn =
[
Jx
1,n, J

y
1,n, J

z
1,n, . . . , J

x
M,n, J

y
M,n, J

z
M,n

]T
, (10)

the blocks of the excitation vector are defined as

En =
[
Ex

1,n, E
y
1,n, E

z
1,n, . . . , E

x
M,n, E

y
M,n, E

z
M,n

]T
, (11)

with

Eβ
m,n =

∫∫∫
Vm

β̂ · (εr(r)− 1)ε0
∂

∂t
Ei(r, n∆t)dV, (12)

where β̂ represents one of the three Cartesian unit vectors x̂,
ŷ, or ẑ, and the blocks in the matrix, i.e., Zn−n′ , are called the
interactionmatrices, which have to be precomputed forn−n′ =
0 up to

ℓ =

⌊
Rmax

c∆t

⌋
+ p, (13)

where Rmax is the maximum distance between source and ob-
servation point in the computational domain; ⌊·⌋ is the floor
operator; and p is the order of the polynomial used for the tem-
poral basis function Tn′(t), i.e., p = 2 when employing (8).
The elements of the interaction matrices are discussed in Sec-
tion 2.3.
As thematrix equation in (9) is a block-Toeplitz lower-block-

triangular matrix, forward block substitution is used to find
the unknown expansion coefficients Jn (10) at each n. Sub-
sequently, we define the marching-on-in-time contrast current
density volume integral equation (MOT-JVIE)

Z0Jn = En −
n−1∑

n′=n−ℓ

Zn−n′Jn′ . (14)

Solving Equation (14) requires solvingZ0Jn = V at every time
step. The MOT-JVIE is classified as an implicit causal MOT-
scheme, as we expand the temporal part of the contrast current
density with temporal basis functions and the unknowns at time
n do not depend on the unknowns at future time steps.
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2.3. Computing the Interaction Matrix Elements
Before we can employ the MOT-JVIE (14) to compute the un-
known contrast current density, we have to precompute the in-
teraction matrices Zn−n′ for n−n′ = 0, . . . , ℓ (13). Given the
structure of the current density vector Jn in (10) and the exci-
tation vector En in (11), the interaction matrices Zn−n′ in (14)
will consist ofm×m′ block matrices Zm,m′,n−n′ of size 3×3.
Each block matrix Zm,m′,n−n′ is related to the interaction be-
tween two voxels m and m′ and the indices of the blocks are
related to three Cartesian unit vectors defined on the voxels.
By approximating the relative permittivity function as constant
throughout the voxelm, i.e., εm = εr(rm), the block at block-
rowm and block-columnm′ is defined as

Zm,m′,n−n′ = εmvδm,m′Tn′(n∆t)I3
−(εm − 1)Cm,m′,n−n′ , (15)

The first term on the right-hand-side of (15) is the result of
equal Cartesian unit vectors in the spatial basis, fαm′ (7), and test
function, fβm, for overlapping voxels, i.e., fαm′ = fβm′ at voxel
m = m′. In that first term v = ∆x∆y∆z is the volume
of a voxel, δm,m′ is the Kronecker delta, i.e., δm,m′ = 1 if
m = m′ and δm,m′ = 0 if m ̸= m′, and I3 is the identity ma-
trix of dimension three. The elements of the 3×3 block matrix
Cm,m′,n−n′ in the second term on the right-hand-side of (15)
are defined as

Cβ,α
m,m′,n−n′ =

∫∫∫
fβm(r) · ∇ ×Hα

m′,n−n′(r)dV, (16)

where

Hα
m′,n−n′(r) = ∇×

∫∫∫
fαm′(r′)Tn′(τn)

4πR
dV ′, (17)

and τn = τ(n∆t). By employing the divergence theorem, we
can rewrite the above volume integrals over Vm and Vm′ to their
respective enclosing surfaces ∂Vm and ∂Vm′

Cβ,α
m,m′,n−n′ = −

∫∫
∂Vm

(
β̂ × n̂m

)
·Hα

m′,n−n′(r)dA, (18)

Hα
m′,n−n′(r) =

∫∫
∂Vm′

(α̂× n̂m′)
Tn′(τn)

4πR
dA′, (19)

where n̂m and n̂m′ are the normals on the surfaces ∂Vm and
∂Vm′ , respectively, and dA and dA′ are the infinitesimal sur-
face elements over the observer and source coordinates, respec-
tively. As the temporal basis function, Tn′ , is a polynomial,
see (8), we end up in Equation (19) with integrals of the form∫∫

1

Rk
dA′ for k = −1, 0, 1 and 2. (20)

Analytic expressions for these integrals have been published
in [29, 30], and they are used to compute the value for
Hα

m′,n−n′(r) for any given values of α, m′, n, n′ and r. The
implementation in [30] requires the tolerance values ϵedge and
ϵvertex, which we both set to 10−8 as recommended in [30].

Unfortunately, an analytic expression for the surface integra-
tion in (18) is not available. However, we can approximate the
surface integral numerically using qth-order Gauss-Legendre
quadrature along each Cartesian direction. The necessary
weights and nodes for Gauss-Legendre quadrature are com-
puted in accordance to the Golub-Welsch algorithm [31]. Note
that, due to numerical approximation of the surface integral
in Equation (18), we recommend c∆t ≥ max(∆x,∆y,∆z),
as smaller time steps will result in more rapid variations of
the integrand in the surface integration domain (18) which
will diminish the accuracy of the numerical approximation of
Equation (18). Meeting this ∆t requirement, we observe in
numerical experiments a q−4 proportionality of the error in the
slowest converging matrix element, i.e., the matrix elements
m = m′ for which the integrand is singular. Therefore, we
choose q = 5, as this is accurate enough for our purpose
here, i.e., if ∆t = ∆x = ∆y = ∆z the relative error at the
m = m′ matrix elements is 0.002. By combining the analytic
evaluation of the integral in (19) with the numerical evaluation
of the integral in (18), we can evaluate Zm,m′,n−n′ for all m,
m′ and n − n′. In practice, it is unnecessary to compute these
blocks for all m and m′, as uniform meshing with voxels of
the same size, i.e.,∆x×∆y×∆z is fixed, allows for reuse of
already computed elements, which reduces computation time.
The remaining volume integral in (12) can also be evaluated

using qth-order Gauss-Legendre quadrature in all three Carte-
sian directions. For ease of implementation, we choose the
same order as used earlier, i.e., q = 5.

3. SCATTERING SETUP
Through multiple numerical experiments we demonstrate the
MOT-JVIE (in)stability for different temporal basis functions
in Section 4 and further illustrate the MOT-JVIE solver capa-
bilities in Section 5. The numerical experiments in both sec-
tions are performed on the same scattering setup as shown in
Figure 1, but for various relative permittivity values. The setup
consists of a dielectric cube excited by an electromagnetic ex-
citation. The cube has an edge length of 0.2m with a center

FIGURE 1. The scattering setup consisting of a discretized dielectric
cube with K = 4 and the incident Gaussian plane wave, represented
by the gray pulse, with polarization p̂ and propagation direction k̂.
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(a) (b)

FIGURE 2. (a) The linear, quadratic, cubic and quartic Lagrange temporal basis functions with C0-continuity. (b) The quadratic and cubic spline
temporal basis functions with C1 and C2-continuity, respectively.

positioned at r = (0.1, 0.1, 0.1). The cube is uniformly dis-
cretized in all Cartesian directions, andK indicates the number
of voxels per Cartesian direction. The electromagnetic excita-
tion in all experiments is an x̂-polarized Gaussian plane wave
travelling in the negative ẑ-direction, i.e.,

Ei(r, t) = E0
4

w
√
π
x̂ exp

(
− 16

w2
((t− t0) + r · ẑ))2

)
, (21)

where E0 is the amplitude scaling set to E0 = 1 V/m; w is the
pulse width in lm; and t0 is the separation time at time t = 0
between the Gaussian pulse center and the coordinate system
origin in lm. The unit lm in this context is known as lightmeter,
i.e., the time it takes for the wave to travel a distance of 1m.

4. MOT-JVIE STABILITY ANALYSIS
To study the stability performance of multiple MOT-JVIE
implementations based on different temporal basis functions,
when increasing the scatterer’s dielectric contrast, we perform
the companion-matrix stability analysis [32] for the dielectric
cube discussed in Section 3. The cube is discretized with
K = 6 and ∆t = 0.2/K lm. The eigenvalues λ of the MOT-
JVIE companion matrices for εr = 3.2 and εr = 100 are com-
pared in the Sections 4.1 and 4.2. In Section 4.3 we discuss the
implications of the numerical experiment.

4.1. Numerical Results Lagrange Temporal Basis Functions
The implicit causal MOT-schemes found in literature are
based on linear [16], quadratic [8], cubic [6, 17], and
quartic [7, 19, 22] Lagrange temporal basis functions, see
Figure 2(a). If the authors explain their choice, it is related
to the number of time-derivatives in the TDVIE they choose
to discretize and a higher order than strictly necessary is used
to have faster temporal convergence. The TDJVIE (4) does
not contain any direct time derivative, so the equation can be
evaluated with all four Lagrange temporal basis functions. The
interaction matrices are computed as explained in Section 2.3
for each of the temporal basis functions and the corresponding

companion-matrix eigenvalue spectra are shown in Figure 3,
where the unit circle to distinguish stability from instability
is indicated by the dashed circle. Although the MOT-JVIE
based on cubic and quartric Lagrange temporal basis functions
are stable for εr = 3.2, all MOT-JVIE expressions based on
Lagrange temporal basis functions become unstable when the
relative permittivity of the scatterer is increased to εr = 100.
The eigenvalues on the negative real axis are the first to
become unstable when increasing the scatterer permittivity, as
was also observed for the marching-on-in-time electric flux
density volume integral equation based on cubic Lagrange
temporal basis functions [12]. Although not included here,
reducing the relative permittivity of the scatterer to εr = 2
or lower results in a stable MOT-JVIE for all four Lagrange
temporal basis functions.

4.2. Numerical Results Spline Temporal Basis Functions

As the Lagrange temporal basis functions do not result in a sta-
ble MOT-JVIE for high dielectric contrast, we now employ a
different class of temporal basis functions: the spline tempo-
ral basis functions [33, 34]. These temporal basis functions are
Cp−1-continuous, where p is the temporal polynomial order.
The linear spline temporal basis function is equal to the linear
Lagrange temporal basis function and the stability performance
is illustrated in Figures 3(a) and 3(b) in Section 4.1. We repeat
the experiment of Section 4.1 for the quadratic and cubic spline
temporal basis function, shown in Figure 2(b), which are C1-
continuous and C2-continuous, respectively. The interaction
matrices are computed as explained in Section 2.3 for each of
the temporal basis functions and the corresponding companion-
matrix eigenvalue spectra are shown in Figure 4. The MOT-
JVIE based on quadratic spline is stable in this numerical ex-
periment independent of the relative permittivity. The MOT-
JVIE based on cubic spline temporal basis functions is unsta-
ble. Unlike the MOT-JVIE based on Lagrange temporal basis
functions, the MOT-JVIE based on cubic spline temporal ba-
sis functions remains unstable even when the dielectric contrast
approaches zero.
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FIGURE 3. The MOT-JVIE companion-matrix eigenvalue, λ, spectrum. The gray (·)-markers indicate eigenvalues with |λ| < 1 and the black
(×)-markers indicate eigenvalues with |λ| ≥ 1. The companion matrix is constructed with interaction matrices that correspond to the dielectric
cube discretized with K = 6 and ∆t = 0.2/K lm and different C0-continuous temporal basis functions and relative permittivities εr . The linear
temporal basis function with εr = 3.2 in (a) and εr = 100 in (b). The quadratic Lagrange temporal basis function with εr = 3.2 in (c) and εr = 100
in (d). The cubic Lagrange temporal basis function with εr = 3.2 in (e) and εr = 100 in (f). The quartic Lagrange temporal basis function with
εr = 3.2 in (g) and εr = 100 in (h).
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FIGURE 4. The MOT-JVIE companion-matrix eigenvalue spectrum, λ, for two relative permittivities, i.e., εr = 3.2 and εr = 100. The gray
(·)-markers indicate eigenvalues with |λ| < 1 and the black (×)-markers indicate eigenvalues with |λ| ≥ 1. The companion matrix is constructed
with interaction matrices that correspond to the dielectric cube discretized with K = 6 and ∆t = 0.2/K lm and different spline temporal basis
functions. The quadratic spline temporal basis function with εr = 3.2 in (a) and εr = 100 in (b). The cubic spline temporal basis function with
εr = 3.2 in (c) and εr = 100 in (d).

4.3. Discussion on Continuity of the Temporal Basis Function
In the numerical experiments in the two previous sections we
made the following observations regarding the stability of the
MOT-JVIE: 1) the stability of Lagrange temporal basis func-
tions improves as εr approaches one; 2) the cubic spline tem-
poral basis functions is unstable independent of εr; 3) the sta-
bility of the quadratic spline temporal basis functions is εr-
independent.
The first observation can be related to the discretized

TDJVIE (9). As εr approaches one, the contribution of
Cm,m′,n−n′ to the interaction matrices in (15) becomes
smaller and we are left with the identity. Therefore, as
εr approaches one, the lower triangular matrix equation
in (9) will become diagonally dominant and easier to solve.
Consequently, the problem is related to the construction of
Cm,m′,n−n′ in (15), i.e., the discretization of

∇×Hs(r, t) = ∇×∇×
∫∫∫

Vε

Jε(r′, τ)
4πR

dV ′ (22)

in the TDJVIE (4). Thus the Lagrange temporal basis func-
tions in combination with Dirac-delta temporal test functions
and spatial piece-wise constant basis and test functions do not
seem to be an appropriate choice for the temporal basis func-
tions to discretize the term in Equation (22). As the MOT-
scheme is constructed with Dirac-delta testing functions, there
is continuity requirement on the temporal envelop of curl of the
magnetic field strength induced by the contrast current density,

i.e., ∇ × Hs cannot contain Dirac-delta functions in time as
these cannot be tested by the Dirac-delta functions we use to
construct the MOT-scheme. Therefore, the induced magnetic
field strength (2) should be at least continuous, C0, in space-
time to prevent these Dirac-deltas from occurring after the curl-
operation. In the numerical example in Appendix A, we show
a case to proof that the Lagrange temporal basis functions do
not meet this C0-requirement. To obtain the C0-smoothness in
the example we show, a smoother temporal basis function is
required, like the quadratic spline. Thus, the required space-
time smoothness of the magnetic field strength is at least of
C0-continuity, which requires that temporal smoothness of the
contrast current density is higher than C0-continuous. That is
why the Lagrange temporal basis functions, which are all C0-
continuous, results in a MOT-JVIE with εr-dependent stability.
The second observation, i.e., the MOT-JVIE based on the cu-

bic spline temporal basis function is always unstable, indepen-
dent of εr, can be related to an incorrect temporal discretization
of the εrJε-term in Equation (4). As the scheme is unstable for
all εr, we can study the case where εr approaches one. In Ap-
pendix B, we demonstrate analytically that a voxel with zero
contrast can still support an exponentially increasing solution.
One can say that the currently used Dirac-delta test procedure
does not properly observe the εrJε-term in Equation (4) if ex-
panded with cubic spline temporal basis function. On the con-
trary, in Appendix B we prove that a voxel with zero contrast
cannot support an exponentially increasing solution if theMOT-
JVIE is based on the quadratic spline temporal basis function.
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FIGURE 5. (a) A comparison of the MOT-JVIE contrast current density solution excited by the Gaussian plane wave for a range of discretizations
with the MOD-JVIE solution presented by Shi et al. [10]. Here, the contrast current density is sampled inside the 0.23 dielectric cube with εr = 3.2
and can be expressed as Jϕ(t) = ϕ̂ · J([0.025, 0.075, 0.025], t). (b) The absolute difference between the MOD-JVIE solution and the MOT-JVIE
solutions shown in (a).

So, the right-hand side of (22), a term in Equation (4), re-
quires a temporal basis function with a higher degree of con-
tinuity than C0 and the uniform Dirac-delta testing procedure
does not properly observe the εrJε-term in Equation (4) when
expanded with cubic splines. Combining these conclusions
provides an explanation for our third observation, i.e., the sta-
bility of the quadratic spline temporal basis functions is εr-
independent.

5. THEMOT-JVIE WITH QUADRATIC SPLINE TEMPO-
RAL BASIS FUNCTION

We now illustrate the capabilities of the MOT-JVIE solver
based on quadratic spline temporal basis function through mul-
tiple numerical experiments. We use the scattering setup from
Section 3. To study the convergence of the solution for a finer
discretization, we repeat numerical experiments for a range of
values for K. Due to the piecewise constant spatial approxi-
mation for the contrast current density, the sample location has
a significant influence on the convergence of the solution with
respect toK. To minimize the effect of the sample location on
the convergence study, we take the observation point always at
the center of a voxel for all K. The reason behind using the
center is that if we take a voxel with center rm and decrease the
dimensions of the respective voxel, the contrast current den-
sity inside the voxel should converge to the solution Jε(rm)
which solves (4). Consequently, we sample the contrast cur-
rent density at r = (0.025, 0.075, 0.025) in all experiments, as
this sample point is the center of one of the voxels for K = 4,
K = 12 andK = 20.

5.1. Literature Validation
To study the validity of the MOT-JVIE implementation, we
compare theMOT-JVIE solution to theMarching-on-in-Degree
contrast current density volume integral equation (MOD-JVIE)
solution presented by Shi et al. in [10]. Here, the dielectric
cube has a relative permittivity of εr = 3.2 and the excita-
tion parameters are w = 4 lm and t0 = 6.1 lm. The in-
duced contrast current density is sampled in the ϕ̂-direction,
i.e., the unit vector at the observation point r = (x, y, z) de-
fined as ϕ̂ = (−y, x, 0)/

√
x2 + y2. The MOT-JVIE contrast

current density solutions for an increasing number of voxels
per Cartesian direction, K, and decreasing time step size, i.e.,
∆t = 0.2/K lm, are shown in Figure 5(a), together withMOD-
JVIE solution obtained from [10] using a plot digitizer [35].
The absolute difference between the MOD-JVIE solution and
the MOT-JVIE solution is given in Figure 5(b).
The convergence of the MOT-JVIE solution for finer dis-

cretizations is observed in Figure 5(b) towards a different solu-
tion than the MOD-JVIE reference. Although the MOT-JVIE
solution in Figure 5 is similar to the MOD-JVIE solution, a
small difference is observed at the peaks. A difference in the
MOT-JVIE and MOD-JVIE contrast current density solutions
is to be expected as both spatial and temporal discretizations
are different. Furthermore, the cube in [10] is discretized using
only K = 4 voxels and we expect that the MOD-JVIE solu-
tion in [10] has not yet fully converged. We conclude that the
results of both solvers coincide up to the inaccuracies of their
respective spatial discretizations, which establishes further con-
fidence in the MOT-JVIE implementation.

5.2. Frequency-Domain Validation
We compare the frequency magnitude response based on the
MOT-JVIE solution for increasing K to the frequency magni-
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FIGURE 6. The magnitude of the frequency response of the electric field in the three Cartesian directions, i.e., (a) |Htrans,x̂|, (b) |Htrans,ŷ| and (c)
|Htrans,̂z|, at rm = (0.025, 0.075, 0.025) inside the dielectric cube with εr = 12, for a range of spatial discretizationsK and∆t = 0.04 lm.
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FIGURE 7. (a) Electric field magnitude, |E|, (x, y, z)-components at r = (0.025, 0.075, 0.025) inside the dielectric cube with εr = 100. The result
is computed with the MOT-JVIE, where the cube was discretized with K = 20 and ∆t = 0.04 lm. (b) Zoom-in on the first 20 lm of the solution
shown in (a). (c) Zoom-in on the last 20 lm of the solution shown in (a).

tude response computed with CST Studio Suite 2023 [36] using
its combined-field integral equation frequency-domain solver.
To compute the frequency magnitude response in the scatterer,
we employ the frequency-domain counterpart of (5), i.e.,

e(rm, f) =
1

2πjf(ϵ(rm)− ϵ0)
jε(rm, f), (23)

where jε is the Fourier transform of Jε, which, using the Fourier
transform of the quadratic spline temporal basis function in (8),
is defined as

jε(rm, f) = ∆t sinc3 (π∆tf)

N∑
n=1

Jm,ne
−j2πfn∆t. (24)

The frequency magnitude response in the Cartesian direction â
is then equal to the transfer function |Htrans,â|, which is defined
as

|Htrans,â(rm, f)| = |â · Jε(rm, f)|
|ei(f)|

, (25)

where |ei| is the magnitude of the Fourier transform of Ei · x̂,
which is

|ei(f)| = exp
(
−
(w
4
πf

)2
)
. (26)

Figure 6 shows |Htrans,â| for each of the Cartesian directions
for the same range of K. The contrast current densities used
to compute these values were generated with the following
simulation settings: εr = 12, w = 2 lm, t0 = 3.42 lm,
∆t = 0.04 lm, N = 1500.
Two observations can bemade fromFigure 6: 1) independent

ofK the accuracy of the MOT-JVIE solution deteriorates with
increasing frequency and 2) the solution accuracy for a given
frequency increases when increasing K. As we expect the accu-
racy to be proportional to the number of voxels per wavelength,
both observations are in line with our expectations. Figure 6
also illustrates a drawback of using piecewise-constant spatial
basis functions, i.e., relatively slow convergence when increas-
ing the number of voxels per wavelength.
A similar experiment for analyzing the effect of a finer tem-

poral discretization showed that the time step size is not the
limiting factor regarding accuracy. The time step should there-
fore be chosen in accordance with the maximum frequency of
the incident electromagnetic field.

5.3. Long Time Sequence
In Section 4.2 it was shown that the companion-matrix eigen-
values of theMOT-JVIE based on quadratic spline temporal ba-
sis functions for the dielectric cubewith εr = 3.2 and εr = 100,
discretized withK = 6 and∆t = 0.2/K lm, remain within the
unit circle, even when increasing the dielectric contrast. As the
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FIGURE 9. The magnitude of the frequency response of the electric field in the three Cartesian directions, i.e., (a), (d) |Htrans,x̂|, (b), (e) |Htrans,ŷ| and
(c,f) |Htrans,̂z|, at different locations inside the inhomogeneous dielectric cube shown in Figure 8 discretized withK = 20 and∆t = 0.04 lm.

companion-matrix stability analysis requires the eigenvalues of
the companion matrix of dimension K3(ℓ − 1), this analysis
is not feasible for K > 6. Therefore, we choose to further
demonstrate the MOT-JVIE performance for a finer discretiza-
tion, i.e., K = 20 and ∆t = 0.04 lm, for the same dielec-
tric cube with εr = 100, by computing the MOT-JVIE con-
trast current density for 276, 480 discrete time steps. For these
spatial-temporal step sizes we expect the MOT-JVIE solution
to be accurate only at low frequencies, yet it does illustrate
the long-term behavior. The cube is excited by the Gaussian
plane wave in (21) with w = 5 lm and t0 = 7.8 lm. The
magnitude of the Cartesian components of the electric field at

r = (0.025, 0.075, 0.025), resulting from the MOT-JVIE con-
trast current density, are shown on a logarithmic vertical scale
in Figure 7(a).
The magnitude of each Cartesian component of the electric

field decreases exponentially over time. The exponential de-
crease is steeper in the first 700 lm. A zoom-in on the time-
axis, presented in Figures 7(b) and 7(c), shows that lower fre-
quencies are dominant in the first part of the signal and higher
frequencies are dominant in the remaining part. This differ-
ence in frequency content explains the difference in exponential
decrease, as there are multiple modes with different Q-factors
and resonance frequencies. The most important observation to
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make from Figure 7(a) is that the electric field inside the dielec-
tric cube decreases exponentially and no non-physical solutions
are observed inside the high-dielectric-contrast scatterer.

5.4. Inhomogeneous Cube
As the MOT-JVIE is based on the TDJVIE, it is also suitable
to simulate scattering from an inhomogeneous scatterer. To il-
lustrate, we reuse the interactions matrices computed in Sec-
tion 5.2 for K = 20 and ∆t = 0.04 lm and change the per-
mittivity distribution of the cube to the inhomogeneous cube
shown in Figure 8. In Figure 9 we show the frequency mag-
nitude response based on the MOT-JVIE solution and the fre-
quency magnitude response computed with the combined-field
integral equation frequency-domain solver of CST Studio Suite
2023 [36] at four different locations in the inhomogeneous
cube. As was also observed in Section 5.2, the accuracy is pro-
portional to the number of voxels per wavelength and therefore
the MOT-JVIE solution deteriorates as frequency increases.

6. CONCLUSION
The dicretization of the time domain contrast current density
volume integral equation with piece-wise constant spatial ba-
sis and test functions defined on voxels and Dirac-delta tem-
poral test functions and piecewise polynomial temporal basis
functions was presented. This discretization results in a causal
implicit marching-on-in-time scheme to which we refer as the
MOT-JVIE. A companion matrix stability analysis of theMOT-
JVIE based on Lagrange and spline temporal basis functions in-
dicated that, for a fixed spatial and temporal step size, theMOT-
JVIE solver’s stability is independent of scatterer’s dielectric
contrast for quadratic spline temporal basis functions. Whereas,
Lagrange and cubic spline are unstable for high contrast. We
related this stability performance to the expansion and testing
procedure in time. The capabilities of the MOT-JVIE based on
quadratic spline temporal basis functions were illustrated by:
comparing the MOT-JVIE solution to time domain results from
literature, which overlap up to the inaccuracies of the respec-
tive solvers, and frequency domain results from a commercial
combined field integral equation solver, where similar trends in
the solution are observed. Additionally, a long time sequence
for a high dielectric contrast scatterer discretized with 24,000
spatial unknowns was simulated, and no non-physical behavior
was observed over the 276, 480 discrete time steps.

APPENDIX A. MAGNETIC FIELD STRENGTH C0-
CONTINUITY REQUIREMENT
We compute the magnetic field strength, Hs, produced by
the current distribution shown in Figure A1(a) with a linear
and quadratic Lagrange and a quadratic spline time envelope.
The dominant ŷ-component, Hy , is shown in Figure A1(b)
and A1(c) as a function of time and space, respectively. The
magnetic field strength of the Lagrange temporal basis func-
tions are discontinuous in space-time and therefore do not meet
the C0-requirement. Any higher order Lagrange temporal basis
function would have the same discontinuity and is therefore not
included in the numerical experiment. On the other hand, the
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FIGUREA1. (a) A set of 2×2 adjacent voxels defined in the (x, y)-plane
represented by the black dashed lines with a piece-wise constant unit
contrast current density defined in each voxel. The discretization set-
tings are ∆x = ∆y = ∆z = 1m and ∆t = 1 lm. (b) The magnetic
field strength in ŷ-direction,Hy , sampled at r = (−500, 0, 0) and time
instances t = 499, 499.01, 499.02, . . . , 506 induced by the contrast
current distribution shown in (a). (c) The magnetic field strength in ŷ-
direction,Hy , sampled at t = 500 lm and space instances r = (z, 0, 0)
with z = −494,−494.01,−494.02, . . . ,−501 induced by the con-
trast current distribution shown in (a).

smoother quadratic spline temporal basis function does meet
the C0-requirement on the magnetic field strength. Any higher
order spline would result in a smoother magnetic field strength,
but the quadratic spline has the minimum continuity to obtain
a continuous magnetic field strength in space-time.
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APPENDIX B. DIRAC-DELTA TEST AND SPLINE TEM-
PORAL BASIS FUNCTION
To illustrate that the Dirac-delta test function in combination
with the cubic spline temporal basis function leads to unstable
MOT-scheme, let us look at discretization of a cube with a per-
mittivity approaching one, i.e. εm → 1 for m = 1, . . . ,M . In
that case, there is no interaction between voxels nor between the
different Cartesian components of the current density in a sin-
gle voxel, i.e. only the identity-term in Equation (15) remains
with T (n∆t) = 1

6 ,
2
3 ,

1
6 for n = 0, 1, 2 and zero for all other

integers n [34]. Therefore, the MOT-JVIE (14) can be updated
per voxel and per Cartesian direction and the update scheme
simplifies to

Jα
m′,n = −4Jα

m′,n−1 − Jα
m′,n−2. (B1)

The companion-matrix eigenvalues belonging to this MOT-
scheme are λ1 = −2 −

√
3 and λ2 = −2 +

√
3. As |λ1| > 1,

the scheme admits an exponentially increasing solution when
the TDJVIE is discretized with the cubic spline temporal basis
function and the Dirac-delta test function.
The same analysis can be performed for the Dirac-delta test

function in combination with quadratic spline basis function.
The MOT-scheme in that case simplifies to

Jα
m′,n = −Jα

m′,n−1. (B2)

The companion-matrix eigenvalue is then λ = −1. As |λ| = 1,
the scheme does not admit exponentially increasing solutions
when the TDJVIE is discretized with the quadratic spline tem-
poral basis function and the Dirac-delta test function.
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