
Progress In Electromagnetics Research M, Vol. 122, 53-62, 2023

(Received 12 September 2023, Accepted 1 December 2023, Scheduled 12 December 2023)

Tensor-Based Robust Adaptive Beamforming for Multiple-Input
Multiple-Output Radar under Random Mismatch Scenarios

Ju-Hong Lee1, * and Wei-Chi Lee2

1Department of Electrical Engineering, Graduate Institute of Communication Engineering
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

2Graduate Institute of Communication Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

ABSTRACT: Adaptive beamforming for multiple-input multiple-output (MIMO) radar systems suffers from performance deterioration
under the scenarios with multiple random mismatches. This paper explores the theory of tensor algebra and exploits the inherent multi-
dimensional structure of data matrix received by MIMO radar systems. For dealing with the beamforming problem induced by multiple
random mismatches including steering vector error, mutual coupling, sensor position error, and coherent local scattering, we develop a
robust method based on a third-order tensor in conjunction with a gradient-based optimization process. The proposed method captures
the multidimensional structure information embedded in the data matrix received by a MIMO radar and produces appropriate estimates
for transmit and receive signal direction vectors required for beamforming. Using a third-order tensor helps to alleviate the effect of the
multiple random mismatches in the tensor data domain. The gradient-based optimization process further enhances the capabilities of
the third-order tensor in estimating transmit and receive signal direction vectors for adaptive beamforming of a MIMO radar. The main
computational complexity of the proposed method is dominated by a trilinear alternating least squares algorithm and the well-known
gradient-based algorithm. The proposed method provides better performance than the existing robust methods. Simulation results are
presented to confirm the effectiveness of the proposed method.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar deploys mul-
tiple antennas at both transmit and receive sides for emit-

ting signal waveforms and receiving the echoes reflected by the
targets. At the transmit side, each antenna can transmit orthog-
onal or uncorrelated signal waveforms. This capability allows
MIMO radar systems to possess the main merit of providing
the waveform diversity which can be exploited to increase the
degrees of freedom (DOFs). As a result, the performance of
MIMO radars in resolution, detection, and parameter identifi-
ability can be significantly enhanced [1–3]. It has been shown
that most of the conventional adaptive beamforming methods
can be easily applied to MIMO radar systems for extracting the
desired target signal while rejecting interference and noise in
many applications [4–8]. Moreover, a MIMO radar possesses
another advantage, namely, virtual array property (VAP). The
VAP leads to a favorable characteristic that the aperture of the
virtual array can be up to NT × NR and much larger than
the physical receiving array, where NT and NR are the num-
bers of transmit antennas and receive antennas, respectively.
Therefore, the DOFs of MIMO radar systems can be consid-
erably increased. From the beamforming view point, MIMO
radar systems are very capable of improving the angular reso-
lution and increasing the number of resolvable targets due to the
VAP [9]. However, applying this VAP for MIMO radar beam-
forming makes the performance of MIMO radar beamformers
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more sensitive to various kinds of imperfections as compared
to the conventional phased-array radar beamformers. Conse-
quently, adaptive beamforming with robustness required for al-
leviating the performance deterioration of MIMO radar beam-
formers due to the problem of mismatches becomes even more
important.
Many well-known robust techniques have been developed to

deal with traditional beamforming of adaptive antenna arrays.
Some notable among them are presented by [10–14]. Some of
these traditional robust methods have also been applied to per-
form MIMO radar beamforming [15–18]. However, directly
applying the traditional robust beamforming methods may suf-
fer from some difficulties. One of them is due to the virtual
steering vector (VSV) of MIMO radars using uniform linear
array (ULA). The VSV comes from the Kronecker product of
transmit and receive steering vectors. In general, the VSV does
not have the Vandermonde vector structure and hence, becomes
a major obstacle for employing the well-known conventional
robust methods to tackle multiple random mismatches without
sacrificing the full DOFs of MIMO radars. Recently, several
robust adaptive beamforming methods taking the full DOFs
of MIMO radar into account have been presented [18, 19].
In [18], the authors consider the case of collocatedMIMO radar
beamforming under nonrandom steering angle mismatch. In
contrast, the authors of [16, 17, 19–21] consider MIMO radar
beamforming under the problem of steering vector mismatch.
Nevertheless, to the best knowledge of the authors, it is worth
considering the problem ofMIMO radar beamforming in severe
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environments, such as the scenarios with multiple random mis-
matches including steering vector error, antenna sensors with
random position errors, mutual coupling (MC) effect between
antenna sensors, and coherent local scattering induced by the
spatial distribution of the multipath propagation [22].
In this paper, we present a novel sensor array beamforming

method to deal with the performance degradation due to mul-
tiple random mismatches for MIMO radar beamforming. The
proposed method fully utilizes the VAP to enhance its robust
capabilities against the considered mismatch problem. First,
the received data after being matched-filtered and rearranged
at the receive side is adopted to create the so-called virtual data
matrix. Then, we formulate a third-order measurement tensor
signal model to fully exploit the multidimensional structure in-
herent in the virtual data matrix. Based on the third-order ten-
sor signal model, the virtual data matrix can be factorized into a
sum of component rank-one tensors with the factor matrices re-
lated to transmit and receive signal direction vectors. In order to
find the estimates for transmit and receive direction vectors re-
quired for beamforming, we construct the slices of the three di-
mensional data along transmit and receive array directions, i.e.,
the mode-1 and mode-2 matrix unfoldings of the third-order
tensor. Through a trilinear alternating least square (TALS) al-
gorithm which is most commonly used to compute many tensor
decompositions, we can find appropriate estimates for trans-
mit and receive direction vectors, respectively. Due to taking
the advantages of the multidimensional structure inherent in the
virtual data matrix, the tensor-based method helps us to obtain
favorable estimates of transmit and receive direction vectors
for achieving robustness against multiple random mismatches.
However, using the TALS algorithm may induce the influence
of error accumulation and is quite sensitive to local minima dur-
ing the estimation process. To alleviate these drawbacks, we
present an optimization process to further refine the estimates
of transmit and receive direction vectors. The objective func-
tion of the optimization process is the projection of the estimate
of VSV onto the noise subspace associated with the virtual data
matrix. Hence, the well-known gradient-based iterative algo-
rithm can be employed to solve the optimization problem. The
refined estimates of transmit and receive direction vectors are
adopted for achieving robust adaptive beamforming of MIMO
radars. As to the issue of computational complexity, the main
computational complexity of the proposedmethod is dominated
by the TALS algorithm which is the most efficient gradient-
based algorithm and is also easy to implement. It is comparable
to the existing robust methods, such as [19]. The superiority of
the proposed method over the existing robust methods is con-
firmed through simulation results.
This paper is organized as follows. Section 2 briefly reviews

some basic definitions of tensor algebra and the signal model
of MIMO radar systems. We also briefly describe the princi-
ple of transmit/receive beamforming for MIMO radar systems
based on minimum variance distortionless response (MVDR)
with and without mismatches. The proposed method for deal-
ing with transmit/receive beamforming for MIMO radar sys-
tems in the presence of multiple random mismatches is pre-
sented in Section 3. We introduce the principle of tensor-based
signal model of a bistatic MIMO radar. The theoretical anal-

ysis and formulation of a third-order tensor model in conjunc-
tion with an optimization process for estimating the transmit
and receive direction vectors are established in this section. The
main computational complexity regarding the proposedmethod
is evaluated in Section 4. Simulation results for illustration and
comparison are presented in Section 5. Finally, we conclude
this paper in Section 6.

2. FUNDAMENTALS AND SIGNAL MODEL OF MIMO
RADARS

2.1. Mathematical Fundamentals
Here, we briefly describe some basics regarding tensor algebra
applied to the research work. More details can be reviewed in
the literature [23–25].
Definition 1 (Matrix Unfoldings): The mode-n matrix un-

folding of an (I1 × I2 × I3 × . . . × IN )-dimensional tensor
Υ with N indices is denoted by [Υ](n), where the (i1 × i2 ×
i3× . . .× iN )-entry ofΥmaps to the (in, j)-th entry of [Υ](n),
where j = 1 + ΣNk=1,k ̸=n(ik − 1)Jk and Jk = Πk−1

m=1,m ̸=nIm.
Definition 2 (Trilinear Decompoition): The trilinear de-

composition of a third-order tensor Υ factorizes Υ into a sum
of component rank-one tensors

Υ =

K∑
k=1

Ak ◦ Bk ◦ Ck, (1)

where ◦ denotes the outer product, and K is a positive integer
associated with the rank of Υ. Ak,Bk, and Ck are rank-one
tensors.

2.2. Signal Model of MIMO Radar
Consider a bistatic MIMO radar systemwith uniform linearNT
antennas and NR antennas deployed at transmit and receive
sides, respectively. Let θ and ϕ be the the different spatial an-
gles for a far-field target or signal. Then, the corresponding
signal direction vectors associated with the transmit and receive
antennas can be expressed by

aT (θ) =
[
1 ej2π

d
λ sin θ ej4π

d
λ sin θ . . . ej(NT−1)2π d

λ sin θ
]T
,

(2)
and

aR(ϕ) =
[
1 ej2π

d
λ sinϕ ej4π

d
λ sinϕ . . . ej(NR−1)2π d

λ sinϕ
]T
,

(3)
respectively, where d andλ denote the distance between two ad-
jacent antenna sensors and the wavelength of the signal sources,
respectively. The superscript T denotes the transpose opera-
tion. Hence, the array data vector received by the receive an-
tennas is given by

x(t) = [x1(t) x2(t) . . . xNR
(t)]T = αd(t)aR(ϕd)aTT (θd)sd(t)

+

Q∑
q=1

αq(t)aR(ϕq)aTT (θq)sq(t) + n(t), (4)
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where s(t) = [s1(t) s2(t) . . . sNT
(t)]T is the signal vector

transmitted by the transmit antennas. si(t), i = 1, 2, . . . , NT
are mutually orthogonal with unit energy during the radar pulse
width PW . Each si(t) is the complex waveform radiated by
the ith transmit antenna. n(t) is the additive white Gaussian
noise vector. Q is the number of interference signals. (θd, ϕd)
and (θq, ϕq) denote the direction angles of the desired signal
and the qth interferer, respectively. αd(t) and αq(t) denote the
complex-valued reflection coefficients associated with the de-
sired signal and the qth interferer, respectively. By performing
matched filtering on x(t) and vectorizing the matched-filtered
output, we have the received data vector given as follows

y(t) = [y1(t)T y2(t)T . . . yNT
(t)T ]T

= αd(t)aR(ϕd)⊗ aT (θd)

+

Q∑
q=1

αq(t)aR(ϕq)⊗ aT (θq) + z(t), (5)

where ⊗ denotes the Kronecker product, and the mth element
ym(t) of y(t), m = 1, 2, . . . , NT , represents the result of
matched filtering the received data vector to themth transmit-
ted waveform at the receiver and is an NR × 1 vector given
by

ym(t) =

∫ PW

0

x(t)sm(t)∗dt, m = 1, 2, . . . , NT , (6)

where the superscript ∗ is the complex conjugation. z(t) is the
corresponding NTNR × 1 virtual noise vector and is assumed
to have independent and identically distributed (iid) Gaussian
entries with zeromean and covariancematrixσ2I, where I is the
identitymatrixwith sizeNTNR×NTNR. Moreover, the vector
a(θ, ϕ) = aR(ϕ) ⊗ aT (θ) represents the NTNR × 1 transmit-
receive steering vector or virtual steering vector. Assume that
the received signals and noise are uncorrelated with each other.
Accordingly, we have the data covariance matrix of the MIMO
radar given by

RMIMO = E[y(t)yH(t)] = |αd(t)|2a(θd, ϕd)aH(θd, ϕd)

+

Q∑
q=1

|αq(t)|2a(θq, ϕq)aH(θq, ϕq) + σ2
nI, (7)

where |αd(t)|2 and |αq(t)|2 represent the desired signal power
and the qth interferer’s power, respectively. For practical sit-
uations, we only have the following sample covariance matrix
instead of RMIMO

R̂MIMO =
1

L

L∑
l=1

y(tl)yH(tl), (8)

where tl and L denote the lth time instant for taking the data
snapshot y(tl) from y(t) and the total number of data snapshots
used for computing R̂MIMO, respectively. The expression of
the output signal-to-interference-plus-noise ratio (SINR) of a

MIMO radar beamformer based on the L data samples can be
expressed by

SINR =
|αd(t)|2|wHa(θd, ϕd)|2

wHR̂jnw
, (9)

where R̂jn represents the sample covariance matrix associated
with the interference-plus-noise. w is the weight vector used
for beamforming.

2.3. Conventional Adaptive MIMO Radar Beamforming without
Mismatches
According to the theory regarding the adaptive beamforming
of phased-array systems [26], the authors of [16] extend the
principle of adaptive array beamforming to MIMO radar beam-
formers. The basic concept is maximizing the output signal to
interference plus noise power ratio (SINR) of a MIMO radar
beamformer while constraining the power gain of the desired
signal to be one for finding the optimal complex weighting vec-
torwo [16]. Accordingly, the corresponding optimization prob-
lem can be formulated as follows

Minimizew wHR̂MIMOw
Subject to a(θd, ϕd)Hw = 1. (10)

The optimal solution wo of (10) can be easily obtained by ap-
plying the Lagrange multiplier method and is given as follows

wo =
R̂−1
MIMOa(θd, ϕd)

aH(θd, ϕd)R̂−1
MIMOa(θd, ϕd)

. (11)

This leads to the so-called minimum variance distortionless re-
sponse (MVDR)MIMO radar beamformer in the literature [16].
Apparently, severe performance deterioration of the MVDR
MIMO radar beamformer will occur even if a small mismatch
like steering vector mismatch exists in the beamforming envi-
ronments [19].

2.4. Adaptive MIMO Radar Beamforming with Mismatches
For the situation with mismatches, the steering vector used for
beamforming is set to the presumed direction vector of the de-
sired signal. However, the actual direction vector of the de-
sired signal is no longer equal to the steering vector. As a re-
sult, the MVDR MIMO radar beamformer suffers from severe
performance degradation because the beamformer treats the de-
sired signal as an interferer. Several mismatches considered for
MIMO radar beamforming in this paper are described as fol-
lows. The first one is the steering angle mismatch. Let (θd, ϕd)
and (θa, ϕa) be the presumed and actual spatial angles for the
desired signal, respectively. For fixed steering angle errors, the
angle errors δθ = θd − θa and δϕ = ϕd − ϕa are nonrandom.
The second mismatch is due to antenna elements with random
position errors. In this case, the actual position vector of the ith
antenna element of an N-element linear array is expressed by

d̂i = di + δdi, (12)

where di = [xi, 0] denotes the presumed position vector and
δdi = [δxi, δyi] the random position error vector. δxi and δyi
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represent the position deviations along the X and Y axes, re-
spectively. Then, the actual direction vector of a signal with
spatial angle θ can be expressed by

â(θ) =

[
ej2π

d̂1
λ [sin(θ) cos(θ)]T ej2π

d̂2
λ [sin(θ) cos(θ)]T

. . . ej2π
d̂N
λ [sin(θ) cos(θ)]T

]T
. (13)

From (13), we note that the actual direction vector is signifi-
cantly different from that of the steering vector as shown by
(2). The third mismatch is the issue regarding the mutual cou-
pling effect (MCE) for arrays deployed in limited spacing. The
MCE on the systemmodel is widely considered by taking a mu-
tual coupling matrix C into account and replacing the direction
vector a(θ) of a signal with a distorted direction vector ã(θ) =
Ca(θ). For the case with unknown mutual coupling (UMC),
the most widely used UMC model for MIMO radar systems
adopts two banded symmetric Toeplitz matrices CT and CR
representing the mutual coupling matrices associated with the
transmit and receive antenna arrays, respectively [27]. In gen-
eral, they can be expressed as C = Toeplitz[cT 01×(N−P )],
where c = [1, c1, c2, . . . , cP−1]

T denotes the vector contain-
ing the nonzero mutual coupling coefficients between antenna
elements at the least P inter-element spacings and Toeplitz[x]
a symmetric Toeplitz matrix with the bracketed vector x as its
first row. Finally, the fourth mismatch is the one due to coher-
ent local scattering (CLS) induced by the spatial distribution of
the multipath propagation [22]. Under the CLS effect consid-
ered in this paper, the signal direction vectors can be modeled
as follows [22]

aTCLS(θ) =
√
NT

aT (θa) +
∑NTi

i=1 e
jψTiaT (θa + δTi)

||aT (θa) +
∑NTi

i=1 e
jψTiaT (θa + δTi)||

,

(14)
and

aRCLS(ϕ) =
√
NR

aR(ϕa) +
∑NRi

i=1 ejψRiaR(ϕa + δRi)

||aR(ϕa) +
∑NRi

i=1 ejψRiaR(ϕa + δRi)||
,

(15)
at the transmit and receive sides, respectively, where aT (θa)
and aR(ϕa) denote the signal direction vectors of the direct
pathes with nominal direction angles θa and ϕa at the transmit
and receive sides, respectively. aT (θa+δTi) and aR(ϕa+δRi)
represent the direction vectors of the ith scattered signals at the
transmit and receive sides, respectively. ψTi and ψRi represent
the random phase delays of the ith scattered signals at the trans-
mit and receive sides, respectively. δTi and δRi are the random
angular spreads associated with the ith scattered signals at the
transmit and receive sides, respectively. NTi and NRi are the
total numbers of local scatterers associated with the desired sig-
nal at the transmit and receive sides, respectively. Moreover,
||x|| designates the norm of the vector x. In the presence of the
above four mismatches, the received data vector y(t) can be
expressed as follows

y(t)=αd(t)CaRâR(ϕd)⊗ CaT âT (θd)

+

Q∑
q=1

αk(t)CaRâR(ϕq)⊗ CaT âT (θq) + z(t), (16)

where CaR and CaT denote two banded complex symmetric
Toeplitz matrices conveying the actual mutual coupling effects
associated with the receive and transmit antenna arrays, respec-
tively. The signal direction vector with hat represents the di-
rection vector conveys the influences coming from the steer-
ing angle error, random sensor position errors, and coherent lo-
cal scattering. As we can see from the above formulation, the
four mismatches significantly change the eigenstructure of the
MIMO data covariance matrix given by (7). Consequently, the
optimal weight vector obtained by (11) will drive the MVDR
MIMO radar beamformer to suppress the desired signal and
hence, deteriorate the beamforming capabilities.

3. PROPOSED ROBUST METHOD
In this section, a method with robustness against the considered
multiple random mismatches is presented for adaptive beam-
forming of MIMO radars.

3.1. The Tensor-Based Signal Model
First, we can express y(t) of (16) as follows

y(t) = Ag(t) + z(t), (17)

where

A =
[
a(θd, ϕd) a(θ1, ϕ1) . . . . a(θ(Q−1), ϕ(Q−1))

]
, (18)

a(θk, ϕk) = CaRâR(ϕk)⊗ CaT âT (θk), (19)

k = d, 1, 2, . . . , Q− 1 and

g(t) =
[
αd(t) α1(t) . . . α(Q−1)(t))

]T
. (20)

Next, we take L data snapshots from y(t) of (16) to obtain the
sample data vectors y(tl), l = 1, 2, . . . , L. Using these y(tl),
l = 1, 2, . . . , L, we then construct a sample data matrix Y with
size NTNR × L as follows

Y = [y(t1) y(t2) . . . y(tL)] = AG+ Z, (21)

whereG = [g(t1) g(t2) . . . g(tL)] is aQ×L signal matrix con-
taining the L complex-valued reflection coefficients of the Q
signal sources, andZ = [z(t1) z(t2) . . . z(tL)] is anNTNR×L
matrix containing the corresponding noise values. To formulate
a third-order tensor model based on (21), we rewrite (21) as fol-
lows [28]

Y = [y(t1) y(t2) . . . y(tL)] = [AR| ⊗ |AT ]G+ Z, (22)

where | ⊗ | represents the columnwise Kronecker product. AR
denotes theNR×Q receive direction matrix and AT theNT ×
Q transmit direction matrix, respectively. They are given as
follows

AR =
[
âR(ϕd) âR(ϕ1) . . . âR(ϕ(Q−1))

]
, (23)

and
AT =

[
âT (θd) âT (θ1) . . . âT (θ(Q−1))

]
, (24)

where âR(ϕi) and âT (θi), i = d, 1, 2, . . . , (Q − 1) represent
the signal direction vectors conveying the considered multiple
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random mismatches at the receive and transmit sides, respec-
tively. From (22), we observe that each entry of Y is obtained
from the product of the unique entity in AR, AT , and G. This
reveals an inherent multidimensional structure associated with
the data matrix Y, i.e., the data matrix Y demonstrates three di-
versities. Conventional matrix-based beamforming techniques
do not consider these diversities. However, the inherent mul-
tidimensional structure can be exploited through a third-order
tensor model. First, we rearrange the entries of Y into a third-
order tensor Y⃗ with the (nR, nT , l)th entry given by

Y⃗(nR, nT , l) =
∑Q

q=1
AR(nR, q) ◦ AT (nT , q) ◦G(l, q)

+Z⃗(nR, nT , l), (25)

where Z⃗(nR, nT , l) denotes the (nR, nT , l)th entry of the rear-
ranged noise tensor Z⃗, AR(nR, q) the (nR, q)th entry of AR,
AT (nT , q) the (nT , q)th entry of AT , and G(l, q) the (l, q)th
entry of G. nR = 1, 2, . . . , NR, nT = 1, 2, . . . , NT , and
l = 1, 2, . . . , L.
According to the mode-n matrix unfolding of Definition 1

and the trilinear decomposition of Definition 2, the third-order
tensor Y⃗ given by (25) can be decomposed into three slices in
three different directions as follows

Y⃗(3) = Y = [AR| ⊗ |AT ]G+ Z, (26)

Y⃗(2) = [AT | ⊗ |G]AR + Z(2), (27)

and
Y⃗(1) = [G| ⊗ |AR]AT + Z(1), (28)

where Y⃗(3) corresponds to the received data matrix and rep-
resents the three-dimensional slice of the three-order tensor
data along the spatial direction; Y⃗(2) represents the three-
dimensional slice of the three-order tensor data along the re-
ceive array direction; and Y⃗(1) represents the three-dimensional
slice of the three-order tensor data along the transmit array di-
rection. Moreover, Z(2) and Z(1) denote the rearranged noise
slices along the receive and transmit array directions, respec-
tively.

3.2. Joint Estimation of Direction and Signal Matrices

After obtaining the three slices Y⃗(3), Y⃗(2), and Y⃗(1), we uti-
lize the concept of trilinear alternating least square (TALS) pre-
sented by [29] to find the estimates for direction and signal ma-
trices. The TALS algorithm is easy to understand and imple-
ment. Moreover, Its convergence is guaranteed as mentioned
by [30].

3.2.1. The Essential of the TALS

The TALS is a well-known approach for solving the trilinear
decomposition problem for multi-way data. It can be shown
that TALS is globally monotonically convergent as mentioned
by [30]. To implement the TALS algorithm for estimating the
direction and signal matrices from Y⃗(3), Y⃗(2), and Y⃗(1), the first
step is to fit one of Y⃗(3), Y⃗(2), and Y⃗(1) matrices using least

squares (LS) algorithm with the other two matrices fixed. The
second step is to fit the remaining twomatrices in a similar man-
ner to the first step. Then, we repeat the first and second steps
until a preset stoping criterion is satisfied. The additional bene-
fits of using TALS approach during the iteration process are as
follows: (1) Each update is a standard least squares problem.
(2) It is unnecessary to tune parameters. (3) It is easy to incor-
porate the necessary constraints on some or all of the matrices.

3.2.2. The Details of Estimation with TALS Algorithm

Here, we describe the joint estimation of direction and signal
matrices according to the TALS algorithm. The goal of the joint

estimation is to find a trilinear decomposition ˆ⃗Y with Q com-
ponents that is the solution of the following least square (LS)
fitting of Y⃗

Minimize ||Y⃗− ˆ⃗Y||F Subject to

ˆ⃗Y(nR, nT , l) =
Q∑
q=1

ÂR(nR, q) ◦ ÂT (nT , q) ◦ Ĝ(l, q), (29)

where || • ||F denotes the Frobenius norm. Accordingly, the
procedure of the proposed joint estimation is described in detail
as follows:
Step 1: Generate the initial guesses of AR, AT , and G ran-

domly and designate them as Â(0)
R , Â(0)

T , and Ĝ(0), respectively.
Determine the value of threshold η.
Step 2: At the kth iteration, perform the LS fitting of Y by

solving the following linear LS problem

MinimizeĜ(k)||Y−[ÂR(k−1)|⊗|ÂT (k−1)]Ĝ(k)T ||F , (30)
to find the solution

Ĝ(k)T = [ÂR(k − 1)| ⊗ |ÂT (k − 1)]†Y, (31)

where † denotes the Moore-Penrose pseudoinverse.
Step 3: Perform the LS fitting of AR by solving the follow-

ing linear LS problem

MimimizeÂR(k)||Y⃗(2) − [ÂT (k − 1)| ⊗ |Ĝ(k)]ÂR(k)T ||F ,
(32)

to find the solution

ÂR(k)T = [ÂT (k − 1)| ⊗ |Ĝ(k)]†Y⃗(2). (33)

Step 4: Perform the LS fitting of AT by solving the follow-
ing linear LS problem

MinimizeÂT (k)||Y⃗(1) − [Ĝ(k)| ⊗ |ÂR(k)]ÂT (k)T ||F , (34)
to find the solution

ÂT (k)T = [Ĝ(k)| ⊗ |ÂR(k)]†Y⃗(1). (35)

Step 5: Compute E = ||Y − [ÂR(k)| ⊗ |ÂT (k)]Ĝ(k)T ||F .
If E ≤ η, then terminate the iterative process and go to Step 6.
Otherwise, set k to k + 1 and go to Step 2.
Step 6: Perform the normalization for each column vector

of ÂR(k) and ÂT (k) as follows

F̃ =
F

||F||
, (36)
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where F̃ denotes the normalization of the vector F and ||F|| the
norm of F.
Step 7: Designate the qth column vectors of ÂR(k) and

ÂT (k) after normalization as the estimates ãR(ϕq) and ãT (θq)
of âR(ϕq) and âT (θq), respectively, q = 1, 2, . . . , Q.
Step 8: Construct the estimates of the direction matrices as

follows

ÃR = [
√
NRãR(ϕ1)

√
NRãR(ϕ2) . . .

√
NRãR(ϕQ)] (37)

and

ÃT = [
√
NT ãT (θ1)

√
NT ãT (θ2) . . .

√
NT ãT (θQ)] (38)

Step 9: Construct the estimated virtual direction matrix as
follows

[ÃR ⊗ ÃT ] = [ãR(ϕ1)⊗ ãT (θ1) ãR(ϕ2)⊗ ãT (θ2)
. . . ãR(ϕQ)⊗ ãT (θQ)]. (39)

To enhance the accuracy of the estimated direction vector cor-
responding to the desired signal, we propose an eigen-based
scheme as follows. First, performing the eigen-value decom-
position (EVD) of R̂MIMO given by (8) provides

R̂MIMO =

NTNR∑
i=1

λieieHi , (40)

where ei denotes the ith eigenvector associated with the ith
eigenvalue λi. As shown in [26], the eigenvalues of the sample
covariance matrix R̂MIMO shown by (40) can be catalogued as
the following three groups

λi = λsi + λmim, i = 1, 2, . . . , Q, (41)
λi = λui + λmim, i = Q+ 1, 2, . . . , NTNR − 1, (42)

and
λi = λmim, i = NTNR, (43)

where the first group contains the most significant eigenvalues
due to the signal sources while the second and third groups con-
tain the NTNR −Q least significant eigenvalues due to noise.
λui represent the differences between the otherNTNR−Q− 1
least significant eigenvalues due to noise and λmim. Accord-
ingly, we can designate the number of the most significant
eigenvalues as the estimate Q̂ ofQ. Next, taking the average of
the most significant eigenvalues due to the signal sources gives

λ̄ =
1

Q̂

Q̂∑
q=1

λq. (44)

Then, we proceed with performing the inner product of the pre-
sumed virtual steering vector a(θa, ϕa) and each column vector
of [ÃR⊗ ÃT ] and designating the column vector of [ÃR⊗ ÃT ]
with the maximal inner product as the estimated virtual steering
vector ade.
Finally, we implement an optimization process to find an ap-

propriate estimate for the virtual steering vector to perform ro-
bust adaptive MIMO beamforming in the presence of multiple
mismatches. Motivated by the RMVB concepts of [16, 31], the
optimization problem is formulated as follows

Minimizeu uHENEHNu

Subject to ||u|| =
√
NTNR (45)

with the initial guess of u set to ade. Compared to the optimisa-
tion problem stated in [16], the proposed optimization of (45)
is easier to solve because no additional uncertainty constraints
like [16, 31] should be satisfied during the optimization process.
Accordingly, the solution of (45) can be easily found by using
the the well-known stochastic gradient iterative algorithm. At
the nth iteration, the update formula is given by

u(n+ 1) = u(n)− β∇uJ(u)|u=u(n) (46)

where the step size β is set to 1
trace(ENEH

N )
for facilitating con-

vergence and obtaining satisfactory results. During the itera-
tion, the norm of u(n) should be scaled back to

√
NTNR ac-

cording to

u(n) =
√
NTNR

u(n)
||u(n)||

, (47)

for satisfying the constraint of (45). Moreover, we stop the it-
eration if ||u(n+ 1)− u(n)|| ≤ κ, where κ denotes the preset
threshold value to guarantee that the variations of the obtained
estimates are negligible such that the convergence of this itera-
tive process is achieved. The solution is designated as adi after
the iteration is terminated.
After obtaining the estimate adi for the virtual steering vec-

tor, we proceed with finding the optimal weight vector for
beamforming. It has been shown in [32] that avoiding the phe-
nomenon of signal cancellation under mismatches is in favor
of using the interference-plus-noise covariance (IPNC) matrix
instead of R̂MIMO. To construct an appropriate IPNC matrix,
we first perform the inner product of adi and each column vec-
tor of [ÃR ⊗ ÃT ] and then rearrange the column vectors of
[ÃR ⊗ ÃT ] from the leftmost column vector with the largest
inner product to rightmost column vector with the least inner
product to produce a new virtual direction matrix [ĂR⊗ ĂT ] =
[ăR(ϕ1) ⊗ ăT (θ1) ăR(ϕ2) ⊗ ăT (θ2) . . . ăR(ϕQ̂) ⊗ ăT (θQ̂)].
Then, we construct an IPNC matrix as follows

R̂I+N =
∑Q̂

i=2
λ̄[ăR(ϕi)⊗ ăT (θi)][ăR(ϕi)⊗ ăT (θi)]H

+
1

NTNR − Q̂

NTNR∑
j=Q̂+1

λjINTNR
, (48)

where INTNR
denotes the identity matrix with size NTNR ×

NTNR. Accordingly, the weight vector required for perform-
ing robust adaptive MIMO beamforming is computed as fol-
lows

w =
R̂−1
I+Nadi

aHdiR̂
−1
I+Nadi

. (49)

4. COMPUTATIONAL COMPLEXITY
Here, we evaluate the main computational complexity required
for utilizing the proposed method. From Step 2 of the iteration,
obtaining [ÂR(k−1)|⊗|ÂT (k−1)], [ÂR(k−1)|⊗|ÂT (k−1)]†,
and Ĝ(k)T = [ÂR(k − 1)| ⊗ |ÂT (k − 1)]†Y requires
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FIGURE 1. The output SINR versus the input SNR for Example 1.
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FIGURE 2. The output SINR versus the number of snapshots for Exam-
ple 1.

Q̂NTNR complex multiplications (CMs), Q̂(NTNR)
2

+(NTNR)Q̂
2 CMs, and LQ̂(NTNR)

2 CMs, respec-
tively. Hence, the total CMs for finding the solution
Ĝ(k)T = [ÂR(k − 1)| ⊗ |ÂT (k − 1)]†Y are about
O(Q̂NTNR + 2Q̂(NTNR)

2 + 2(NTNR)Q̂
2 + Q̂ +

Q̂L(NTNR)
2). From Step 3 of the iteration, obtain-

ing [ÂT (k − 1)| ⊗ |Ĝ(k)], [ÂT (k − 1)| ⊗ |Ĝ(k)]†,
and ÂR(k)T = [ÂT (k − 1)| ⊗ |Ĝ(k)]†Y⃗(2) requires
Q̂NTL complex multiplications (CMs), Q̂(NTL)

2 +
(NTL)Q̂

2 CMs, and NRQ̂(NTL)
2 CMs, respec-

tively. Hence, the total CMs for finding the solu-
tion ÂR(k)T = [ÂT (k − 1)| ⊗ |Ĝ(k)]†Y⃗(2) are about
O(Q̂NTL+ 2Q̂(NTL)

2 + 2(NTL)Q̂
2 + Q̂ +Q̂NR(NTL)

2).
From Step 4 of the iteration, obtaining [Ĝ(k)| ⊗ |Â(k)

R ],

[Ĝ(k)| ⊗ |ÂR(k)]†, and ÂT (k)T = [Ĝ(k)| ⊗ |Â(k)
R ]†Y⃗(1)

requires Q̂NRL complex multiplications (CMs),
Q̂(NRL)

2 + (NRL)Q̂
2 CMs, and NT Q̂(NRL)

2 CMs,
respectively. Hence, the total CMs for finding the so-
lution ÂT (k)T = [Ĝ(k)| ⊗ |ÂR(k)]†Y⃗(1) are about
O(Q̂NRL+ 2Q̂(NRL)

2 + 2(NRL)Q̂
2 + Q̂+ Q̂NT (NRL)

2).
From Step 5 of the iteration, computing E =
||Y − [ÂR(k)| ⊗ |ÂT (k)]Ĝ(k)T ||2F requires about
O(QNTNR + QLNTNR + LNTNR). Accordingly, the
main computational complexity for finishing the TALS pro-
cedure is about O(kt[Q̂NTNRL + 2NTNRQ̂ + NTNRL +
NT Q̂L + NRQ̂L + 3Q̂ + 2Q̂(NTNR)

2 + 2Q̂(LNT )
2 +

2Q̂(LNR)
2 + 2Q̂2NTNR + 2Q̂2LNT + 2Q̂2LNR +

Q̂L(NTNR)
2 + Q̂NR(NTL)

2 + Q̂NT (LNR)
2]), where kt

denotes the number of iterations.
Next, the normalization ofStep 6 needs about 2Q̂(NT+NR)

CMs. Performing Step 8 and Step 9 asks about Q̂(NT +NR)
and Q̂NTNR CMs, respectively. Solving the optimization
problem, we have to carry out the EVD of R̂MIMO and cal-
culate ENEHN . The CMs required are about O(2Q̂(NT +

NR) + 2Q̂NTNR + 2(NTNR)
3 + (NTNR − Q̂)(NTNR)

2 +
ko[(NTNR)

2 + 2NTNR]), where ko denotes the number of it-
erations for solving the optimization problem. Moreover, con-
structing the IPNC matrix needs about O((Q̂ − 1)[NTNR +
(NTNR)

2]). Finally, O((NTNR)
2 + 2NTNR) is required to

compute the optimal weight vector for robust adaptive MIMO
radar beamforming.

5. SIMULATION RESULTS
In this section, we consider a bistatic MIMO radar with NT =
NR = 6 for its transmit/receive linear antennas uniformly
spaced half the wavelength λ of the desired signal. All of the
complex-valued reflection coefficients are Gaussian with mean
= 0 and variance= 1. Moreover, κ = 10−6 and η = 10−5. For
comparison and confirmation, we present the simulation results
of using the proposed method and some notable existing ro-
bust techniques including [16, 19–21, 32,]. Moreover, the sim-
ulation results for the MVDR radar beamformer without mis-
matches are also provided. For the convenience of presenting
the simulation results, the following abbreviations are adopted
for representing the simulation results of using the existing ro-
bust methods: (1) RMVB for [16], (2) IPNCSVE for [32], (3)
LCRAB for [20], (4) SpatFilt for [19], and (5) CMESVM for
[21]. The theoretical optimum results (termed Optimum SINR)
can be achieved for all cases which are also provided for illus-
tration and comparison.

5.1. Example 1

For the desired signal, the spatial angle is set to (θa, ϕa) =
(−5◦, 0◦). Two interferers with interference-to-noise power
ratio (INR) = 0 and 10 dB have spatial angles (θ1, ϕ1) =
(25◦, 15◦) and (θ2, ϕ2) = (−20◦,−10◦), respectively. The
number of data snapshots taken for computing the sample co-
variance matrix is 5000, and the number of Monte Carlo runs
is 50. The steering angle is set to (θd, ϕd) = (0◦, 5◦). The
steering angle error is 5◦ for θ and ϕ. The random position
errors δxi and δyi, i = 1, 2, . . . , Nt(Nr) are Gaussian with
mean = 0 and standard deviation = 0.1λ. Both of ψTi and
ψRi are random variables uniformly distributed in [0, 2π]. Both
of δTi and δRi are uniform random variables with mean = 0
and standard deviation = 5. NTi and NRi are set to 4. The
mutual coupling coefficients are fixed and set to cT = cR =
[1, 0.9 exp−j(π/3), 0.75jπ/4]T for both of the transmit and
receive antennas. Fig. 1 plots the output signal-to-interference
plus noise power ratio (SINR) of the bistatic MIMO radar ver-
sus the signal-to-noise power ratio (SNR) of the desired signal
with the steering angle = (θd, ϕd) = (0◦, 5◦). Fig. 2 depicts
the output SINR versus the number of data snapshots with the
steering angle = (θd, ϕd) = (0◦, 5◦) and SNR = 0 dB. More-
over, the simulation results for the MVDR radar beamformer
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FIGURE 3. The output SINR versus the steering angle error for Exam-
ple 1.
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FIGURE 4. The output SINR versus the standard deviation of position
error for Example 1.
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FIGURE 5. The output SINR versus the standard deviation of coherent
local scattering for Example 1.
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FIGURE 6. The output SINR versus the input SNR for Example 2.
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FIGURE 7. The output SINR versus the number of snapshots for Exam-
ple 2.
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FIGURE 8. The output SINR versus the steering angle error for Exam-
ple 2.

without mismatches are also provided for illustration and com-
parison. Fig. 3 shows the output SINR versus the steering angle
error with the steering angle errors δθ = δϕ varying from−10◦

to 15◦ under SNR = 0 dB, standard deviation of position error
= 0.1λ, and standard deviation of coherent local scattering =
5. The output SINR versus the standard deviation of position
errors under SNR = 0 dB and standard deviation of coherent lo-
cal scattering = 5 is shown in Fig. 4. The output SINR versus
the standard deviation of CLS under SNR = 0 dB and standard
deviation of position error = 0.1λ is shown in Fig. 5. As we
can observe from these simulation results, the proposed method
provides better performance than the existing robust methods
in dealing with the problem of performance degradation due to
the considered multiple mismatches for bistatic MIMO radar
beamforming.

5.2. Example 2

For the desired signal, the spatial angle is set to (θa, ϕa) =
(−5◦, 0◦). Two interferers with interference-to-noise power ra-
tio (INR) = 10 dB have spatial angles (θ1, ϕ1) = (30◦, 20◦)
and (θ2, ϕ2) = (−25◦,−15◦), respectively. The number of
data snapshots taken for computing the sample covariance ma-
trix is 5000, and the number of Monte Carlo runs is 50. The
steering angle is set to (θd, ϕd) = (0◦, 5◦). The steering an-
gle error is 5◦ for θ and ϕ. The random position errors δxi
and δyi, i = 1, 2, . . . , Nt(Nr) are Gaussian with mean = 0
and standard deviation = 0.1λ. Both of ψTi and ψRi are ran-
dom variables uniformly distributed in [0, 2π]. Both of δTi and
δRi are uniform random variables with mean = 0 and stan-
dard deviation = 5. NTi and NRi are set to 4. The mu-
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FIGURE 9. The output SINR versus the standard deviation of position
error for Example 2.
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FIGURE 10. The output SINR versus the standard deviation of CLS for
Example 2.

tual coupling coefficients are fixed and set to cT = cR =
[1, 0.9 exp−j(π/3), 0.75jπ/4]T for both of the transmit and
receive antennas. Fig. 6 plots the output signal-to-interference
plus noise power ratio (SINR) of the bistatic MIMO radar ver-
sus the signal-to-noise power ratio (SNR) of the desired sig-
nal with the steering angle set to (θd, ϕd) = (0◦, 5◦). Fig. 7
depicts the output SINR versus the number of data snapshots
with the steering angle set to (θd, ϕd) = (0◦, 5◦) and SNR =
10 dB. Moreover, the simulation results for the MVDR radar
beamformer without mismatches are also provided for illustra-
tion and comparison. Fig. 8 shows the output SINR versus the
steering angle error with the steering angle errors δθ = δϕ vary-
ing from−10◦ to 20◦ under SNR = 10 dB, standard deviation of
position error = 0.1λ, and standard deviation of coherent local
scattering = 5. The output SINR versus the standard deviation
of position errors under SNR = 10 dB and standard deviation
of coherent local scattering = 5 is shown in Fig. 9. The output
SINR versus the standard deviation of CLS under SNR = 10 dB
and standard deviation of position error = 0.1λ is shown in Fig.
10. Again, we can observe from the simulation results that the
proposed method is superior to the existing robust methods in
dealing with the problem of performance degradation due to
the considered multiple mismatches for bistatic MIMO radar
beamforming.

6. CONCLUSION
In this paper, we have developed a robust adaptive beamform-
ing technique with full degrees of freedom forMIMO radar sys-
tems under random mismatches including steering vector error,
mutual coupling, sensor position error, and coherent local scat-
tering. The novelty of the proposed technique is that estimating
the required virtual steering vector is formulated by exploiting
the algebra of a third-order tensor and capturing the multidi-
mensional structure information embedded in the data vector
received by a bistatic MIMO radar. Moreover, a gradient-based
optimization process is proposed to further enhance the accu-
racy of the resulting estimate of the virtual steering vector re-
quired for robust adaptive MIMO beamforming. As a result,
the well-known stochastic gradient iterative algorithm can be
employed to find the optimal estimate of the virtual steering
vector efficiently. The convergence property and the computa-
tional complexity regarding the proposed technique have also

been evaluated. Simulation results have been provided for con-
firming the effectiveness of the proposed technique in dealing
with multiple random mismatches. For the further research, it
may be interesting to investigate the effectiveness of monos-
tatic MIMO radar and the effects of some important parameters
such as the signal frequency, bandwidth, and antenna gain by
applying the proposed method.
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