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ABSTRACT: Phased array radar (PAR) systems are critical for modern defense and surveillance applications, but their reliability and
availability are affected by various factors, including physical and performance degradation. Furthermore, implementing prognostics
and health management (PHM) framework for the whole radar system is challenging. To address these issues, this paper proposes an
efficient solution by hierarchically implementing PHM frameworks in an active PAR (APAR) system. The proposed framework subsumes
device-level, subsystem-level, and system-level health prediction models to enable comprehensive health monitoring and maintenance
decision-making. This approach addresses the unique challenges involved in implementing PHM for the APAR system and facilitates the
transition from traditional reactive maintenance practices to a predictive maintenance approach, thereby improving the overall system.
Mathematical models that relate the radar’s physical degradation to its performance deterioration are formulated, analyzed, and presented.
Subsequently, a Bayesian long short-term memory (BayesLSTM) architecture is developed and integrated into the proposed framework
for estimating the remaining useful life (RUL) of critical devices/subsystems. The effectiveness of the proposed deep learning-based
prognostic framework is evaluated through simulations and experimental studies. The proposed hierarchical framework has the potential
to be applied to other radar systems that require effective health monitoring strategy.

1. INTRODUCTION

P hased array radars (PARs) are becoming increasingly pop-
ular due to their high performance and flexibility [1]. They

are essential for modern military and civilian applications, in-
cluding air traffic control, weather monitoring, and surveil-
lance. However, these systems are complex and sophisticated,
consisting of multiple devices and subsystems [2] that are sus-
ceptible to failure or degradation over time [3]. Physical de-
terioration, such as corrosion, mechanical wear, and thermal
stress, can lead to performance degradation, including reduced
range, accuracy, and reliability. The inherent complexity and
criticality of these systems necessitate the development of ro-
bust prognostics and health management (PHM) frameworks to
ensure their optimal performance, reliability, and availability.
PHM focuses on monitoring, assessing, and predicting

the health and performance of systems to enable timely
maintenance, reduce downtime, and enhance operational
efficiency [4]. It plays a vital role in a wide range of industries,
including aerospace [5], construction [7], and automotive [6]
industries. PHM aims to provide system operators with action-
able information regarding the health condition of a system,
enabling them to make informed choices about maintenance,
repair, and replacement strategies. Intelligent algorithms
leverage sensor data and historical records to detect anomalies,
identify faults, and predict the remaining useful life (RUL) or
end-of-life (EoL) of critical devices or components.

* Corresponding authors: Hong Wang (hongw@uestc.edu.cn).

The various PHM implementation techniques are based on
model-based methods [8], data-driven methods [9], or hybrid
approaches. Model-based methods utilize physics-based mod-
els or system knowledge to simulate the system’s behavior and
detect deviations from expected performance. On the other
hand, data-driven approaches leverage advanced analytics and
machine learning (ML) algorithms to analyze large volumes of
data and identify patterns and trends associated with system
health.
While existing PHM frameworks for systems have demon-

strated effectiveness, the complexity of PAR demands a tailored
approach that addresses the unique challenges they present.
However, developing PHM for PAR can present several chal-
lenges, summarized as follows:

• Challenge 1: System Complexity and Heterogeneity
—APAR comprises numerous interconnected devices and
subsystems, making them highly heterogeneous and com-
plex. Each device may have its failure modes, degrada-
tion patterns, and interactions. Capturing this complexity
and developing physics-based models to handle the sys-
tem’s heterogeneity pose significant challenges in devel-
oping effective model-driven PHM frameworks.

• Challenge 2: Data Availability and Quality — APAR
system generates vast data, including sensor readings and
operational records. However, since maintenance strate-
gies are based on predefined schedules, the full potential of
the data acquired from the various sources is not fully uti-
lized. Also, infrequent failures and, consequently, limited
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failure data, pose challenges for developing data-driven
predictive models.

• Challenge 3: Real-Time Processing and Uncertainty
Quantification — Real-time processing and uncertainty
quantification are critical for crucial rapid decision-
making and fault detection. Analyzing data in real
time while considering uncertainties can be demanding.
Uncertainty management is more challenging but also
essential.

The proposed hierarchical PHM framework addresses these
challenges by providing a structured approach to modeling an
APAR system.
The main contributions of this article are listed as follows:

(i) Propose a hierarchical framework for integrating PHM in
active PAR (APAR). The proposed framework comprises
device-level, subsystem-level, and overall system-level,
and addresses the unique characteristics and complexities
of APAR systems.

(ii) Formulate and analyze degradation models that capture
the critical performance indicators for devices, subsys-
tems, and the overall system.

(iii) Develop and integrate Bayesian long short-term mem-
ory (BayesLSTM) models for RUL prediction within the
framework.

(iv) Perform experimental validation of the proposed
BayesLSTM model within the hierarchical PHM frame-
work.

2. RELATED WORKS

2.1. PHM Frameworks for Critical Parts/Devices
Developing PHM for complex systems with multiple subsys-
tems and varying operational conditions is challenging. Hence,
researchers have developed innovative approaches andmethod-
ologies to address some of these challenges. One such method
is to use techniques to identify and perform PHM on criti-
cal parts of a system. This approach has been used in devel-
oping PHM frameworks for aircraft systems where the aero-
engine [10] and landing gear [11] are identified as critical
parts. Other complex systems such as ships [12] and high-speed
trains [13] have also benefited from this approach. The diag-
nostic in these frameworks utilizes sensor data, including vi-
bration [14], temperature [15], and other relevant parameters to
monitor device health and detect anomalies or deviations from
normal behavior.

2.2. PHM Frameworks for Specific Applications
PHM techniques and frameworks are often tailored to specific
applications and industries, considering the unique characteris-
tics and requirements of the targeted systems. In the aviation
industry, Yang et al. [16] proposed an approach for designing
a PHM framework based on the big data center. The essen-
tial technologies and applications of the proposed framework

are demonstrated to serve as a reference for the aviation PHM
framework research and improvement. To ensure the safety and
reliability of high-speed railway systems, Feng et al. [17] devel-
oped a PHM framework with active maintenance (PHM-AM)
for traction power supplies (TPSS). Similar PHM frameworks
have been designed for specific industries and applications such
as manufacturing [18] and unmanned aerial vehicle [19].

2.3. PHM Implementation in Radar Systems
The implementation of PHM in radar systems is relatively
new and challenging due to system complexities [20]. Most
researchers have identified the transmitter [21], power sup-
ply [22], cooling system [23], and other electronic parts [24, 25]
as critical for diagnosis and prognosis. As an essential device
of APARs, changes in the working parameters of the trans-
mit/receive (T/R) modules directly affect the operation reliabil-
ity. Wenjun et al. [26] analyzed the failure mechanism of T/R
modules and suggested a method for implementing fault prog-
nosis in APARs. To increase the accuracy of RUL prediction of
T/R modules, Hou et al. [27] proposed extracting key parame-
ters. The theoretical validity of the method is demonstrated by
evaluating the fault characteristics of the T/R module. Other
research studies have also proposed element failure diagnostics
frameworks for APAR [28–30].
While PHM frameworks have been researched and applied

in various industries, each application domain presents unique
challenges and requirements. Hence, it is crucial to develop
tailored frameworks that consider the specific characteristics of
APAR system under consideration, such as its structure, opera-
tional conditions, and failure modes.

3. ACTIVE PHASED ARRAY RADAR CHARACTERIS-
TICS

3.1. Configuration and Composition of APAR
An APAR essentially comprises radiating elements, T/R mod-
ules (amplifiers, phase shifters, and attenuators), beamforming
network, exciter, receiver, digital signal processing (DSP), con-
trol and calibration subsystem, power supply (power convert-
ers, regulators, and distribution circuits), cooling and thermal
management (heat sinks, fans, and cooling mechanisms), com-
munication and data interface (Ethernet and serial communica-
tion), and mechanical structure (enclosure, mounting brackets,
and mechanical components to ensure stability and durability).
Fig. 1 illustrates the interconnections of the essential subsys-
tems in the array.
The antenna array is the main component of the radar sys-

tem and is composed of a large number of individual antenna
elements arranged in a regular grid, forming a two-dimensional
array. Each antenna element in the array is connected to a dedi-
cated T/R module. These modules consist of a power amplifier
for transmitting radar pulses and a low-noise amplifier for re-
ceiving the echo signals through the antenna elements. It also
includes other components to process the radar signals. The
T/R modules primarily contribute towards maximum radiated
power and also drive the system sensitivity [31].
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FIGURE 1. Interconnected subsystems of an active phased array system [31].

A phase shifter controls the phase of the signal transmitted or
received by the antenna element. By adjusting the phase shift
of each element, the radar beam can be electronically steered
in a desired direction. A beamforming network combines the
signals from individual antenna elements with the appropriate
phase shifts to create a coherent and steerable radar beam. It
controls the phase shifters of each element according to the de-
sired beam direction. The operation of the APAR system, in-
cluding beam steering, signal processing, target tracking, and
other radar functions is managed by a control system. It inter-
faces with the beamforming network and other radar subsys-
tems to ensure coordinated operation. The various devices and
subsystems work together to form a highly flexible and elec-
tronically steerable radar beam. An APAR requires a substan-
tial amount of power to operate efficiently. Cooling systems are
essential to maintain the radar’s functionality to prevent over-
heating [32].
The various components are categorized as follows:

(i) T/R Subsystem (radiating elements, T/R modules, and
beamforming network).

(ii) Signal Processing Subsystem (DSP, control and calibra-
tion).

(iii) Support Subsystem (power supply, cooling and thermal
management, communication and data interface, mechan-
ical structure).

By categorizing the subsystems into these subgroups, a dis-
tinction is made between the major functions of core compo-
nents responsible for signal transmission and reception (T/R
subsystem), the processing and control elements (signal pro-
cessing subsystem), and the supporting components that ensure
proper power, cooling, communication, and mechanical stabil-
ity (support subsystem). The degeneration of critical devices in
any of these subsystems can lead to system performance degra-
dation.

3.2. Effects of Failure on the APAR Performance
The degradation in an APAR can have several effects, impact-
ing its performance and overall capabilities. The extent of the
effect depends on the type and location of the failure. The po-
tential effects of degradation include:

(a) Reduced T/R Module Performance: The failure or degra-
dation of T/Rmodule can decrease the overall transmitting
power level. This effect can reduce detection range and
diminish target tracking capabilities, especially for targets
with low radar cross-section (RCS). The accuracy and pre-
cision of beam steering can also be affected if the T/R
modules are not functioning optimally. This can reduce
the target location estimation accuracy.

(b) Faulty Beamforming Network: A faulty beamforming net-
work can introduce phase or amplitude errors across the
array, which can degrade the shape of the radar beam and
reduce sidelobe suppression, which impacts overall radar
performance.

(c) Faulty Devices and Components: The failure or degrada-
tion of devices, such as phase shifters or amplifiers, can
introduce signal distortions and degrade the performance
integrity of the radar system. A degraded APAR will have
increased sidelobe levels and become more susceptible to
electronic warfare (EW) threats. Weakened performance
and compromised functionality can make it easier for ad-
versaries to disrupt or deceive the radar system, affecting
situational awareness.

If degradation progresses unchecked, it can lead to an increased
failure rate of T/R modules or other critical devices. As more
modules fail, the effective aperture size of the APAR decreases,
reducing its performance. A result of these anomalies is a de-
crease in the maximum detectable range given as:

Rmax(New) = Rmax ×
[
1−

(
Nf

NT

)] 3
4

, (1)

whereNf andNT are the failed and total numbers of elements
in the array.

4. HIERARCHICAL PHM FRAMEWORK DESIGN
Developing a hierarchical PHM framework for an APAR sys-
tem involves creating a structured approach to monitor, diag-
nose, and predict the system health at different levels.

4.1. Proposed Hierarchical PHM Structure
The proposed hierarchical PHM framework comprises system-
level, subsystem-level, and device-level PHM as illustrated in
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FIGURE 2. An overview of the proposed hierarchical PHM framework for APAR systems.

Fig. 2. The device-level (ModPHM) focuses on critical parts
and devices such as T/R modules, amplifiers, and other critical
devices. The goal is to assess their health and predict potential
failures. The subsystem-level (SubPHM) aggregates the health
information from multiple devices within a subsystem. The
system-level (SysPHM) combines the health status of all sub-
systems with historical data and expert knowledge to estimate
the overall system health. The various layers leverage informa-
tion from the fault library, expert knowledge, historical/sensor
data, and advanced DL techniques for health assessment, fault
diagnosis, and failure predictions. The various layers monitor
the health status of parts and devices under their jurisdiction.
• Device-Level PHM: At this level, the focus is on individ-

ual parts and devices. The failure mode and monitoring points
of critical units are identified for sensor data acquisition. The
health assessment, fault diagnosis, and failure prediction (ADP)
are performed with the ModPHM model for each critical part
or device. This layer forms the fundamental and crucial level
of PHM implementation. The process is given in Algorithm 1.
• Subsystem-Level PHM: This layer focuses on subsys-

tems and each SubPHM, corresponding to each subsystem, in-
tegrates the health information from individual devices under
its jurisdiction to form a comprehensive view of a subsystem’s
health. Each SubPHM model performs health assessment and
RUL prediction for a subsystem. This may involve combining
health indicators from different devices in a meaningful way.
The steps for subsystem-level PHM are given in Algorithm 2.

The prediction outcome at this level provides actionable infor-

Algorithm 1: Device-Level PHM
Data: Device sensor data
Result: Predicted health and RUL for each device

1 while Data available for devices do
2 Acquire data (temperature, power consumption, signal quality,

etc.) from sensors;
3 Preprocess the data;
4 Extract health indicators;
5 Detect anomalies;
6 Predict RUL;
7 end

Algorithm 2: Subsystem-level PHM
Data: Device health and RUL information
Result: Subsystem health assessment

1 while subsystems data available do
2 Fuse device health information;
3 Assess subsystem health;
4 Perform fault propagation analysis;
5 Predict subsystem health and RUL;
6 end

mation regarding subsystem-level repairs or replacements.
• System-Level PHM: The system layer of the hierarchi-

cal PHM framework involves the aggregation of subsystem-
level health predictions to provide an overall system health as-
sessment. The system maintenance is scheduled, and various
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databases and libraries are updated based on fault diagnostics
and RUL predictions.

4.2. Integrated Functional Modules
The integrated functional modules incorporate techniques for
executing the PHM processes in the various layers within the
hierarchical framework to achieve a comprehensive system
health management.

4.2.1. Data Acquisition and Preprocessing Module

Various sensors are strategically placed to collect physical pa-
rameters and other relevant APAR operating parameters. The
acquired data is cleaned and conditioned to ensure accurate and
reliable data for subsequent analysis. DL models can be em-
ployed for data denoising in the preprocessing module.

4.2.2. Fault Detection and Diagnosis Module

It analyzes the acquired data using various techniques to detect
and identify faults or anomalies in devices or subsystems. DL
algorithms can learn and classify patterns and detect anomalies
in data. These models are suited for fault detection and diagno-
sis, and can improve accuracy and robustness.

4.2.3. RUL Estimation Module

Advanced prognostic algorithms and models estimate the
degradation trends, failure probabilities, and RUL based on
the available data and diagnostic information. DL-based
prognostic models, such as LSTM [33], capture complex
degradation patterns, and provide more accurate and reliable
predictions.

4.3. Degradation Modeling and PHM Framework Development

4.3.1. Modeling Critical State Parameters

There are several factors that affect the performance of the
APAR. The performance of the various subsystems is quanti-
fied by key performance indicators. In this paper, the transmit-
ting signal power (Pt), effective radiated power (ERP), signal-
to-noise ratio (SNR), noise figure (NF), frequency stability
(FS), spurious free dynamic range (SFDR), transmission effi-
ciency (η), and reflection coefficient (Γ) are selected as key
performance indicators that determine the state of the APAR
at time t, modeled as:

x(t) = [Pt(t),ERP(t), SNR(t), NF (t), FS(t),

SFDR(t),Γ(t), η(t)]T . (2)

The output power, Pt, is a combination of the power generated
by each T/R module (Pelement) in the array [31]. For an array
with Nt elements, Pt can be expressed as:

Pt = Pelement ×Nt. (3)

The semiconductor power amplifiers used in the T/R modules
are affected by internal and external conditions that lead to

degradation or failure over time [34]. The ERP of the APAR
is expressed as:

ERP = Pelement ×
(
4πAelement

λ2

)
×N2

t , (4)

where λ is the wavelength, and Aelement represents the effec-
tive aperture of an element. The loss in ERP directly quantifies
the performance of APAR applications [35].
Since noise does not coherently combine, the beamformer

output noise (Nout) is just the input noise (Nin), scaled by the
noise factor (F ). The SNRoutput (SNRout) of the beamformer
is given as:

SNRout ∝
Pelement × (Nt −Nf )

3

kToBF
, (5)

where k, To, andB are the Boltzmann’s constant, noise temper-
ature, and bandwidth, respectively. Nf is the number of failed
elements in the event of non-propagating elements.

NF quantifies the amount of additional noise the system in-
troduces compared to an ideal noiseless system [36]. The cas-
caded noise factor in the APAR is obtained by considering the
SNR at the input and outputs as follows:

FAPAR =
Sin/Nin

Sout/Nout
=

 ∑Nt

i=1 α
2
i∣∣∣∑Nt

i=1 αi

∣∣∣2
 (Fi) , (6)

where Fi and αi are the noise factor and amplitude weight of
the ith T/R module. NF (dB) = 10 log(FAPAR).
The ability of a receiver to maintain a high SNR in the pres-

ence of spurious signals or unwanted harmonic distortions is
defined by its SFDR. The minimum linear signal power should
be greater than the noise floor power for increased detection
probability [37]. The SFDR for an nth order output power for
each T/R module is computed as:

SFDR = 10 log10
(

IPn

kToBNF

)
, (7)

where IPn represents the nth order intercept point, which
measures the receiver system’s linearity. It represents the in-
put power level at which the nth order intermodulation prod-
ucts are equal to the desired signal power. The total SFDR is a
combination of each T/R module’s SFDR.

SFDRcombined =
∑
i=1

SFDRi + 10 log10(Nt). (8)

The term 10 log10(Nt) accounts for the cascading effect assum-
ing the spurious signals generated by each T/R module add in
power, thereby increasing the overall SFDR.
The transmission efficiency (η) quantifies the efficiency with

which the transmitted signal power is maintained as it passes
through multiple stages in the array. There are losses or
inefficiencies due to various factors, such as insertion loss,
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FIGURE 3. Flowchart of the proposed BayesLSTM prognostic model for RUL prediction.

impedance mismatches, power dissipation, and other associ-
ated losses [36]. Hence, the transmission efficiency of the
APAR is obtained as:

η = ηt× ηp× ηm, (9)

where ηt =
∏Nt

i ηti represents the combined efficiency of T/R
modules; ηp and ηm represent the power combining efficiency
of the beamforming network and the matching efficiency be-
tween the T/R modules and antenna element, respectively.
The reflection coefficient is computed by considering the re-

flections and coupling effect that occur at each interface be-
tween the T/R modules. For each interface in a linear array
with Nt elements, Γ can be calculated as:

Γi(θ0, ϕ0) =

Nt∑
n=1

Ci,n
αn

αi
, (10)

where α represents the amplitude weight of each element, and
Ci,n is the effect of mutual coupling coefficients of the nth
element on the ith T/R module.

4.3.2. Failure Mechanisms and Degradation Modeling

Several mechanisms degrade the physical components of the
APAR system. These degradation mechanisms impact the crit-
ical state parameters. Typical performance degradation factors
are:

• Aging and Wear (A&W): Device and components degrade
due to A&W, leading to decreased performance or failure
of electronic and radio frequency (RF) devices.

• Environmental Factors (EF): Environmental conditions
such as extreme temperatures, humidity, dust, and saltwa-
ter exposure cause corrosion, insulation breakdown, and
material deterioration.

• Power Supply Issues (PS): Unstable power supply causes
voltage fluctuations or spikes that can damage or degrade

electronic devices. Power surges impact components, de-
vices, subsystems, and the overall system performance
and reliability.

• Thermal Effects (TE): Inadequate cooling or thermal man-
agement can result in overheating of active devices leading
to reduced efficiency or changes in electrical characteris-
tics.

• Electrical Noise (EN): Electrical noise sources within the
radar system can affect the performance of RF devices,
leading to degraded signal quality, increased error rates,
or reduced sensitivity.

• Vibration and Mechanical Stress (V&S): The APAR may
be subjected to V&S due to transportation or operation in
mobile platforms such as ships and aircraft. These effects
can cause loosening connections, misalignment, fatigue
failure, or damage to sensitive parts.

Hence, the formulation of the input vector (u(t)) comprises
degradation mechanisms as follows:

u(t) = [A&W (t), EF (t), PS(t), TE(t), EN(t), V&S(t)]T .
(11)

4.4. Prognostic Modeling within the Proposed Hierarchical
PHM Framework
Predicting the RUL is the hallmark of a PHM framework.
Therefore, a DL-based prognostic model with uncertainty
quantification (UQ) is formulated and integrated into the
hierarchical framework. Quantifying uncertainties in RUL
predictions allows for more confidence and reliability of the
predictive results. The confidence intervals (CIs) around the
RUL predictions quantify the uncertainty associated with
the predictive estimates and inform maintenance planning
decision-making processes. Hence, a BayesLSTM architecture
for estimating the RUL in the proposed hierarchical PHM
framework is proposed. The flowchart of the BayesLSTM
model is shown in Fig. 3.
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Considering the first time a degrading feature hits the pre-
defined threshold (τ ), the RUL given the conditional measure-
ment X(tp) at inspection time tp is:

RUL(tp) = inf {l : X(tp + l) ≥ τ |l ≥ 0, X(tp) < τ} . (12)

For N critical features, their respective RUL(t) values are
denoted as RUL1(t), RUL2(t), . . . , RULN (t). The critical
RUL, representing the most degrading feature, can be deter-
mined using Algorithm 3. minRUL indicates the shortest re-

Algorithm 3:RULPrediction forMultiple Critical Fea-
tures
Input : Threshold, Output1, Output2, . . . , OutputN
Output: criticalFeature, RUL

1 for i = 1 toN do
2 if Outputi ≥ Threshold then
3 RULi(tp)← Computed RUL of Outputi;
4 end
5 else
6 criticalFeature←

No variable has reached the threshold;
7 end
8 end
9 minRUL(tp)← min(RUL1(tp), RUL2(tp), . . . , RULN (tp));
10 criticalFeature← Index of the minimum RUL;
11 return criticalFeature, RUL(tp);

maining life among all the monitored physical and operating
parameters, highlighting the most critical device in terms of
reaching the set threshold. Since the RUL estimation is based
on CIs, features whose RUL distributions overlap significantly
can inform maintenance personnel to take informed decisions.

4.4.1. Bayesian LSTM (BayesLSTM) Modeling

A conventional LSTM cell comprises input (it), forget (ft), and
output (ot) gates respectively, at time (t) expressed as [38]:

ft = σ (Wfxxt + wfhht−1 + bf )

it = σ (Wixxt + wihht−1 + bi)

c̄t = tanh (Wcxxt + wchht−1 + bc)

ct = ft · ct−1 + it · c̄t
ot = σ (Woxxt + wohht−1 + bo)

ht = ot · tanh (ct)

, (13)

whereW and b are the weights and biases of the gates. c̄t is the
candidate cell, and xt represents the input at time step t. The
sigmoid and hyperbolic tangent activation functions are repre-
sented as σ and tanh, respectively. The input gate controls
the flow of new information into the memory cell. The forget
gate determines whose information from the previous cell state
should be discarded. New values for the cell state are computed
by the candidate cell. The memory cell combines the previous
cell state with the new candidate values, considering the input
and forget gates. Finally, the output gate controls the informa-
tion from the cell to the hidden state.
The weights and biases in BayesLSTM are sampled from a

probability distribution according to Eq. (14) rather than be-
ing deterministic usually associated with traditional LSTMs.
The distribution of weights and biases are parameterized by the

mean (µ) and standard deviation (ρ) of the input feature.

W
(i)
(n) = N (0, 1) ∗ log

(
1 + ρ

(i)
(w)

)
+ µ

(i)
(w)

b
(i)
(n) = N (0, 1) ∗ log

(
1 + ρ

(i)
(b)

)
+ µ

(i)
(b)

. (14)

With this approach, it is possible to measure confidence and
uncertainty over predictions. Given a set of data sequence
X =

{
x(j)

}p

j=1
andY =

{
y(j)

}p

j=1
where x(j) and y(j) denote

the jth monitoring data, and p is the total number of monitor-
ing data until the present time tp, BayesLSTM aims to find the
posterior distribution over model parameters p(W, b|X,Y).

4.4.2. Model Configuration and Performance Evaluation Metrics

The Keras hyperparameter tuner is adopted to obtain the op-
timum hyperparameters (number of hidden layers, number of
neurons in each layer, batch size, dropout and learning rates) of
the network. The search range and optimum model parameters
are given in Table 1.
The dataset is reshaped using a sliding time window with

optimum look back as required by the LSTM model. Thresh-
old determination is typically based on equipment’s historical
records or domain-specific information. The BayesLSTM is
trained with the Adam optimizer for 100 epochs using input
data of various sample sizes. The prediction performance is
evaluated based on the absolute error (AE), root mean square
error (RMSE), and relative accuracy (RA) between the actual
and predicted values.

5. EXPERIMENTS
Several experiments are performed to predict the degradation
trend and estimate the RUL of a critical performance feature.
The experiments are conducted using Keras framework and
Python 3.7, and executed on a Windows OS platform with
16GB RAM and a 4GB NVIDIA GeForce RTX 3050 GPU.

5.1. Dataset Generation and Description
Due to the lack of publicly available radar performance data,
experimental data is generated to represent a degrading sub-
system feature to evaluate the proposed DL-based prognos-
tic model. The degradation data is generated using Prog-
nosEase [39], an open-source data generator that generates de-
terioration measures based on user-specified characteristics to
simulate real-world situations. It is assumed that the degrada-
tion of devices in the T/R subsystem degrades its transmitted
power over time as shown in Fig. 4. The monitoring point has
500 historical data points. The vertical axis represents the data
value of the monitoring sensor, and the horizontal axis repre-
sents the time step of the sampling point. The time-series sensor
data is first denoised using the moving average filter.
The BayesLSTM is trained with tp = 60, 70, 80, and 90%

of the data, and its performance is evaluated on the remaining
40, 30, 20, and 10%, respectively. A soft threshold value of
5.54 kW is set for the experiment.
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TABLE 1. Search range and optimum model hyperparameters.

Hyperparameters

# of layers # of units batch size dropout rate learning rate

Range ∗ [1, 3, 1] [20, 100, 20] [8, 32, 8] [0.0, 0.6, 0.2] [0.01, 0.1, 0.01]
Optimal value 1 60 8 0.0 0.01

∗ [a,b,c] denotes the hyperparameter search space ranging from minimum (a) to maximum (b) with a step size (c).

TABLE 2. Prediction performance at different prediction times.

Subsystem tp Actual RUL Pred EoL Pred RUL AE RMSE RA (%)

T/R
subsystem

300 190 468 168 22 0.03358 88.42
350 140 495 145 5 0.02180 96.43
400 90 493 93 3 0.02167 96.67
450 40 491 41 1 0.01526 97.5

FIGURE 4. T/R subsystem degradation data before and after denoising.

5.2. Experimental Results Analysis

5.2.1. RUL Estimation

In this experiment, the BayesLSTMoutput is modeled as a Nor-
mal distribution, with learnable mean and variance parameters.
The mean of the estimated RUL for different tp is presented in
Table 2. The various performance results are also included in
the table for analysis.
The predictions are generated for the degradation state at

each future time by training the probabilistic BayesLSTM to
account for uncertainty. These experiments produced distribu-
tion of predictions, and the average value is computed for each
future time. Fig. 5 shows the average degradation prediction
along with a 95% confidence interval for different prediction
times. The 95% confidence interval encompasses all the fu-
ture predictions, indicating that our degradation prediction ef-
fectively captures uncertainty and accurately represents the ac-
tual trajectory.
It can also be observed from Figs. 6(c) and 6(d) that at the

initial prediction stage, there is a large deviation between the
predicted RUL and the actual RUL. Because of the lack of
degradation information, the modeling errors are large at the
beginning, but as more data becomes available, the deviation

and uncertainty from modeling errors decreases gradually as
indicated in Figs. 6(a) and 6(b). Table 2 also highlights the pre-
diction performance at four different tp. For each tp, the table
provides the actual RUL (Actual RUL), predicted EoL (Pred
EoL), and predicted RUL (Pred RUL). The AE and RA charac-
terize the deviation between the predicted RUL and true RUL,
while RMSE quantifies both the deviation and uncertainty of
the RUL prediction.
It is worth pointing out that the lesser the AE and RMSE are,

the better the performance is in RUL prediction. Such a rela-
tionship is just the opposite for RA. At a tp = 300, the mean
predicted RUL is 168, whereas the actual RUL is 190, result-
ing in an AE of 22. This value is the highest observed even
though RA is around 88%. However, the AEs for the other pre-
diction start times decrease when more sample data are avail-
able for training the model. It can be observed that the AEs for
tp = 350, 400, and 450 are less or equal to five, and the AE
for tp = 450 is less than one. Similarly, all of the RAs at vari-
ous prediction times are large enough, ranging from 88.42% to
97.5%. Moreover, the various prediction RMSEs are relatively
low with the highest being 0.03358 and the lowest 0.01526.
Therefore, the proposed method can not only hold the high

accuracy of the RUL prediction for a degrading subsystem but
also express the uncertainty of the RUL predictionwhich is ben-
eficial.

5.2.2. Uncertainty Expression of Prediction Results

The proposed BayesLSTM algorithm is used to make degrada-
tion predictions, and the future estimated state is obtained with
uncertainty expressions. In this paper, uncertainty analysis is
carried out at different prediction times as shown in Table 2.
The relationship between estimated values at different EoL pre-
dictions with 95% CI is given in Table 3. It can be concluded
with 95% confidence that the true and expected mean predic-
tion results lie within the CI. The results show that the proposed
degradation trend prediction method has high accuracy in quan-
tifying the model and data uncertainties.
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(a) (b) (c) (d)

FIGURE 5. Average prediction results with 95% CI. (a) tp = 450; (b) tp = 400; (c) tp = 350; (d) tp = 300.

(a) (b) (c) (d)

FIGURE 6. Prediction error distribution. (a) tp = 450; (b) tp = 400; (c) tp = 350; (d) tp = 300.

TABLE 3. Uncertainty quantification for different prediction start times.

tp
Actual
EoL

Predicted
EoL

Predicted Power (kW)
@EoL

95%
CI

60 490 468 5.5357 [5.3392, 5.6839]
70 490 495 5.5367 [5.3525, 5.6729]
80 490 493 5.5368 [5.4584, 5.6153]
90 490 491 5.5231 [5.4412, 5.6050]

The predicted EoL and RUL for the T/R subsystem provide
an estimate of when it is likely to fail. This information can be
used to schedule maintenance activities proactively, ensuring
that necessary repairs or replacements are carried out before a
failure occurs. It allows maintenance teams to prioritize main-
tenance actions based on the urgency of the predicted failures.
Components with a shorter predicted RUL can be prioritized
for maintenance or replacement, while those with a longer pre-
dicted RUL can be scheduled for maintenance at a later date.
This enables effective resource allocation and helps in making
informed decisions regarding maintenance scheduling.

6. CONCLUSION

This paper advances PHM techniques by proposing a hierar-
chical PHM framework tailored for APAR systems to enhance
health monitoring and RUL prediction. A structured approach
that leverages the advantages of hierarchical modeling and fa-
cilitates the integration of diverse models is presented. The
proposed framework offers a comprehensive approach to ad-
dressing the challenges of integrating PHM in APAR systems,
paving the way for improved operational efficiency. By inte-
grating DL models into the proposed framework, the approach

harnesses the power of data-drivenmodelingwhile reducing the
impact of prediction uncertainties.
A probabilistic approach to prognostic modeling and un-

certainty quantification using BayesLSTM models integrated
within the proposed framework is demonstrated. The model’s
prediction results are evaluated with data samples of different
lengths. The prognostic results based on RUL predictions are
high with RA between 88.42% and 97.5%. This highlights the
effectiveness of the proposed prognostic model in estimating
the RUL with confidence bounds.
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