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ABSTRACT:We have developed a fast method of using Multiple Scattering Theory-Broadband Green’s Function (BBGF-MST) for band
field calculations. In this paper, we successfully extended the method to the vector electromagnetic case of 3D periodic structures. In the
MST-BBGF approach, the broadband transformation to vector spherical waves for 3D is derived using the Broadband Green’s function.
The band eigenvalue problem is expressed in terms of the single scatterer T matrix which is independent of the periodic lattice nor the
Bloch vector. For the first five bands, the dimension of the KKR eigen equation is merely 6, as 6 vector spherical waves are utilized
for the scattered waves. We make extensive comparisons of the results with the commercial software COMSOL in both accuracy and
computation efficiency. The CPU requirement on a standard laptop for the MST-BBGF method is merely 0.309 seconds for the first 5
bands. The MST-BBGF method is accurate and is at least two orders of magnitude faster than commercial software COMSOL. In the
band field calculations, we employ the approach of extended coefficient to use the low order eigenvector of 6 to extend to 240 vector
spherical wave coefficients without the need of recalculating the eigenvalue nor the eigenvector of the KKR equation. The extended
coefficients approach gives accurate band field solutions for the entire (0, 0, 0) cell.

1. INTRODUCTION

The calculation of band diagrams and band field solutions is
of interest for applications in photonic crystals and topo-

logical photonics [1–7]. The plane wave method [1] offers the
advantage of a linear eigenvalue problem, but suffers from poor
convergence, requiring a large number of plane waves. The fi-
nite element method (FEM) [8] and finite difference method
(FDM) [9] have also been used, as they readily allow for im-
position of Bloch boundary conditions. Both FEM and FDM
methods require volumetric discretization of the unit cell. In the
case of 3D vector electromagnetic waves, the FEM and FDM
will result in large matrix dimensions for the eigenvalue prob-
lem. Analytical approximations, such as tight binding approx-
imations, have also been used for vector 3D problems in topo-
logical photonics [2].
We have recently combined the Broadband Green’s Func-

tions (BBGF) with Multiple Scattering Theory (MST) for effi-
cient band field calculations [10–16]. Multiple scattering the-
ory formulates the multiple scattering of waves among scatter-
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ers, and it utilizes the Green’s function in terms of translational
addition theorem to represent the propagation between the scat-
terers [17–21]. The MST-BBGF method offers two unique fea-
tures [10–16]. Firstly, the BBGF method allows for rapid cal-
culations of band diagrams for multiple frequencies, making it
a broadband method. Secondly, unlike classical Green’s func-
tion expansions, the BBGF method exhibits rapid convergence
by utilizing imaginary wavenumber extractions [16]. Previ-
ously the method was developed for 2D and the scalar waves
for 3D [15]. It is important to develop the methodology for
vector 3D case as the CPU requirements for vector 3D cases of
photonic crystals are demanding in CPU.
The formulation of the band diagram and band field prob-

lems can be derived from the multiple scattering theory (MST).
The MST was initially developed by Foldy and Lax for random
medium and by Korringa for periodic problem. In this paper
we follow the equations of Foldy-Lax [17–21] and use the T
matrix of a single scatterer [19–21]. The T matrix is indepen-
dent of the lattice and is also independent of the Bloch vector.
Using vector spherical waves, addition theorem, and broadband
scalar Green’s function in spherical waves, the KKR (Korringa-
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FIGURE 1. Flowchart of MST-BBGF method.

Kohn-Rostoker) [21, 22] eigen-equation is derived. For the first
five bands, the dimension of the KKR eigen equation is only 6
as 6 vector spherical waves are sufficient to represent the scat-
tered field around the scatterer. The non-linear search for the
band eigen-frequency of the KKR eigen equations facilitated by
BBGF as matrix filling can be performed fast using the broad
band spherical waves coefficients of the periodic Green’s func-
tion. The CPU requirement for the MST-BBGF method for a
single Bloch vector is merely 0.309 seconds for the first 5 bands
on a standard laptop. The Fast MST-BBGF method is sev-
eral hundred times faster than COMSOL. After the band eigen-
frequency is calculated, we perform band field calculations. We
develop the extended coefficient approach that extends the low
order eigenvector of 6 to 70 and even 240 vector spherical wave
coefficients without the need to recalculate the eigen solution.
We show that the extended coefficients approach gives accurate
band field results for the entire (0, 0, 0) cell.
The organization of this paper is as follows. In Section 2, we

derive the KKR equation for the case of vector electromagnetic
waves in 3D periodic structures based on the MST of Foldy-
Lax (FL). It is shown that only the scalar lattice Green’s func-
tion, and not the dyadic lattice Green’s function, is required
for the calculations of the matrix elements of the KKR eigen-
equation. In Section 3, we show the fast broadband calculations
of the matrix elements for broadband filling by using BBGF. In
Section 4, we put the KKR equation in matrix form using the
low-dimensional T matrix. The eigen-frequency can be cal-
culated by iterative search over frequency. In Section 5, we
show how to use the extended coefficient approach to calculate
the extended coefficients of the exciting field and the scattered
field. Higher order coefficients can be calculated without the

need to re-calculate the KKR eigenfrequency of a larger ma-
trix. In Section 6, the results of this paper are shown for dielec-
tric sphere scatterers giving the T matrices as well as internal
field coefficients. In Section 7, we illustrate numerical results
of band diagrams and band fields. Extensive comparisons are
made with COMSOL in terms of accuracies and CPU require-
ments. Section 8 concludes the paper. Appendix A and B give
respectively the vector spherical harmonics and vector spheri-
cal waves [23]. Appendix C gives the derivation of KKR equa-
tion using the integral equation approach [24, 25]. Appendix D
gives the Huygen’s principle applied in the periodic structure to
calculate electric field from the surface fields of the scatterer.

2. DERIVATION OF KKR BASED ON FOLDY-LAX (FL)
MULTIPLE SCATTERING EQUATIONS
In the derivations of KKR equation, the common proce-
dure is to use integral equations and the lattice Green’s
function [22, 23, 24, 26]. In this section, we derived the
KKR equation based on Foldy-Lax (FL) Multiple Scattering
Equations without the use of integral equations [20, 21]. The
Foldy-Lax equations have been used for random media with
random positions of particles. In this section, the approach is
applied to periodic scatterers which is a special case of random
media.
The derivations in this paper involve many important ideas,

andwe summarize themwith the flowchart in Figure 1. Readers
can correlate the detailed derivation in the following sections to
steps in the flowchart. Step 1 and Step 2 show the advantage us-
ing scattered waves over exciting waves to formulate the prob-
lem. Steps 3∼5 show how KKR equation is constructed among
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periodical cells. Step 6 applies BBGF approach to speed up
broadband calculations.
Consider Np particles, centered at R̄q, q = 1, 2, ..., Np. The

Foldy-Lax equations state that the exciting electric field of par-
ticle q, Ēex(q)(r̄) is the incident wave, Ēinc(r̄), plus the scat-
tered field from all particles p, Ēs(p)(r̄), except particle q it-
self [20, 21].

Ēex(q) (r̄) = Ēinc (r̄) +

Np∑
p ̸=q

Ēs(p) (r̄) (1)

For periodic system, we can let the number of particlesNp =
∞. The Foldy-Lax equations were put forward by Foldy and
Lax heuristically [17, 18]. They can be derived rigorously from
Maxwell equations [20].
The vector spherical waves are listed in Appendix B that fol-

low the same notations as [20, 21]. The exciting field of particle
q, Ēex(q)(r̄), is expanded in regular (Rg) vector spherical waves
RgM̄mn and RgN̄mn centered at R̄q . Ēs(p)(r̄) is expanded in
vector spherical waves M̄mn and N̄mn centered at R̄p.

Ēex(q) (r̄) =
∑
n,m

[
w(M)(q)

mn RgM̄mn

(
k
(
r̄ − R̄q

))
+w(N)(q)

mn RgN̄mn

(
k
(
r̄ − R̄q

))]
(2)

where w
(M)(q)
mn and w

(N)(q)
mn are exciting fields coefficients of

particle q.

Ēs(p) (r̄) =
∑
ν,µ

[
as(M)(p)
µν M̄µν

(
k
(
r̄ − R̄p

))
+as(N)(p)

µν N̄µν

(
k
(
r̄ − R̄p

))]
(3)

where a
s(M)(p)
µν and a

s(N)(p)
µν are scattered field coefficients

from particle p.
We substitute (2) and (3) in (1),∑

n,m

[
w(M)(q)

mn RgM̄mn

(
k
(
r̄ − R̄q

))
+w(N)(q)

mn RgN̄mn

(
k
(
r̄ − R̄q

))]

= Ēinc (r̄) +

Np∑
p ̸=q

∑
ν,µ

[
as(M)(p)
µν M̄µν

(
k
(
r̄ − R̄p

))
+as(N)(p)

µν N̄µν

(
k
(
r̄ − R̄p

))]
(4)

We next expand outgoing vector spherical waves from R̄p in
terms of Rg vector spherical waves centered at R̄q .
Since r̄−R̄p = r̄−R̄q+(R̄q−R̄p) and let

∣∣R̄q − R̄p

∣∣ > r̄−
R̄q . From page 535 of [21] for r̄0 = R̄q − R̄p and r̄′ = r̄− R̄q ,

M̄µν

(
k
(
r̄ − R̄q +

(
R̄q − R̄p

)))

=
∑
n,m

[
Amnµν

(
k
(
R̄q − R̄p

))
RgM̄mn

(
k
(
r̄ − R̄q

))
+Bmnµν

(
k
(
R̄q − R̄p

))
RgN̄mn

(
k
(
r̄ − R̄q

))]
(5)

N̄µν

(
k
(
r̄ − R̄q +

(
R̄q − R̄p

)))
=

∑
n,m

[
Bmnµν

(
k
(
R̄q − R̄p

))
RgM̄mn

(
k
(
r̄ − R̄q

))
+Amnµν

(
k
(
R̄q − R̄p

))
RgN̄mn

(
k
(
r̄ − R̄q

))]
(6)

Express Ēinc(r̄) in terms of Rg waves centered at particle q,

Ēinc (r̄) =
∑
n,m

[
ainc(M)(q)
mn RgM̄mn

(
k
(
r̄ − R̄q

))
+ainc(N)(q)

mn RgN̄mn

(
k
(
r̄ − R̄q

))]
(7)

Substitute in Eq. (4)∑
n,m

[
w(M)(q)

mn RgM̄mn

(
k
(
r̄ − R̄q

))
+w(N)(q)

mn RgN̄mn

(
k
(
r̄ − R̄q

))]
=

∑
n,m

[
ainc(M)(q)
mn RgM̄mn

(
k
(
r̄ − R̄q

))
+ainc(N)(q)

mn RgN̄mn

(
k
(
r̄ − R̄q

))]
+

Np∑
p ̸=q

∑
ν,µ

{
as(M)(p)
µν

∑
n,m[

Amnµν

(
k
(
R̄q − R̄p

))
RgM̄mn

(
k
(
r̄ − R̄q

))
+Bmnµν

(
k
(
R̄q − R̄p

))
RgN̄mn

(
k
(
r̄ − R̄q

)) ]}

+

Np∑
p ̸=q

∑
ν,µ

{
as(N)(p)
µν

∑
n,m[

Bmnµν

(
k
(
R̄q − R̄p

))
RgM̄mn

(
k
(
r̄ − R̄q

))
+Amnµν

(
k
(
R̄q − R̄p

))
RgN̄mn

(
k
(
r̄ − R̄q

)) ]}(8)

In (8), balance coefficient of RgM̄mn(k(r̄ − R̄q)) gives
(Equation (10.4.25a) of Reference [21])

w(M)(q)
mn = ainc(M)(q)

mn +
∑
ν,µ

Np∑
p ̸=q

Amnµν

(
k
(
R̄q−R̄p

))
as(M)(p)
µν

+
∑
ν,µ

Np∑
p ̸=q

Bmnµν

(
k
(
R̄q − R̄p

))
as(N)(p)
µν (9)

In (8), balance coefficient of RgN̄mn(k(r̄ − R̄q)) gives
(Equation (10.4.25b) of Reference [21])

w(N)(q)
mn = ainc(N)(q)

mn +
∑
ν,µ

Np∑
p ̸=q

Bmnµν

(
k
(
R̄q−R̄p

))
as(M)(p)
µν
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+
∑
ν,µ

Np∑
p ̸=q

Amnµν

(
k
(
R̄q − R̄p

))
as(N)(p)
µν (10)

Consider a 3D periodic structure in Figure 2.

FIGURE 2. The scatterer is of an arbitrary shape and is enclosed by a
spherical boundary SB of radius b about the origin. The origin is the
center of the (0, 0, 0) cell. Let SC be the boundary of the (0, 0, 0) cell.

Let the lattice vector be given by

R̄mnl = mā1 + nā2 + lā3 (11)

m,n, l = 0,±1,±2, ... where ā1, ā2 and ā3 are the primitive
translation vectors. The cell index is given by (m,n, l). The
“center” cell is (0, 0, 0). We also condense the cell index to
(m,n, l) to one index “q” or “p” etc. The size(volume) of the
cell is Ω0 = ā1 × ā2 · ā3. The reciprocal lattice vectors are

Ḡmnl = mb̄1 + nb̄2 + lb̄3 (12)

m,n, l = 0,±1,±2, ... where

b̄1 = 2π
ā2 × ā3

Ω0

b̄2 = 2π
ā3 × ā1

Ω0

b̄3 = 2π
ā1 × ā2

Ω0
(13)

Let k̄i be a wave vector in the first Brillouin zone

k̄i = β1b̄1 + β2b̄2 + β3b̄3 − 1

2
≤ β1, β2, β3 ≤ 1

2
(14)

We apply the general Foldy-Lax MST of (9) and (10) to the
special case of 3D periodic structure. For band solutions, there
are no incident waves

ainc(M)(q)
mn = ainc(N)(q)

mn = 0 (15)

The Bloch condition relates scattered field and exciting field
coefficients to the center cell (0, 0, 0) through the Bloch phase
shift of exp(ik̄i · R̄q) and exp(ik̄i · R̄p). Thus,

w(M)(q)
mn = w(M)

mn exp
(
ik̄i · R̄q

)

w(N)(q)
mn = w(N)

mn exp
(
ik̄i · R̄q

)
(16)

as(M)(p)
mn = as(M)

mn exp
(
ik̄i · R̄p

)
as(N)(p)
mn = as(N)

mn exp
(
ik̄i · R̄p

)
(17)

where w(M)
mn , w(N)

mn , as(M)
mn , and as(N)

mn are the coefficients in the
center cell (0, 0, 0). Since the number of particles is infinite
in the periodic system, there is no loss of generality to set the
particle q to be in the center cell (0, 0, 0), so that R̄q = 0.
Substitute (15), (16) and (17) in (9) and (10),

w(M)
mn =

∑
ν,µ

d(A)
mnµν

(
k, k̄i

)
as(M)
µν

+
∑
ν,µ

d(B)
mnµν

(
k, k̄i

)
as(N)
µν (18)

w(N)
mn =

∑
ν,µ

d(B)
mnµν

(
k, k̄i

)
as(M)
µν

+
∑
ν,µ

d(A)
mnµν

(
k, k̄i

)
as(N)
µν (19)

where

d(A)
mnµν

(
k, k̄i

)
=

∑
R̄p ̸=(0,0,0)

Amnµν

(
−kR̄p

)
exp

(
ik̄i ·R̄p

)
(20)

d(B)
mnµν

(
k, k̄i

)
=

∑
R̄p ̸=(0,0,0)

Bmnµν

(
−kR̄p

)
exp

(
ik̄i ·R̄p

)
(21)

Eqs. (18) and (19) are the KKR equations for the band eigen-
value problem. The KKR equations need to be solved by
searching for the frequency eigenvalue which is a nonlinear
search. To simplify and solve the problem fast, we need
(i) fast broadband calculations of d

(A)
mnµν(k, k̄i) and

d
(B)
mnµν(k, k̄i) for many frequencies. Both d

(A)
mnµν(k, k̄i) and

d
(B)
mnµν(k, k̄i) are oscillatory because of the resonant modes of
periodic structures.
(ii) relate the scattered field coefficients as(M)

µν and a
s(N)
µν to

the exciting field coefficientsw(M)
mn andw(N)

νµ . This can be done
through the single scatterer T matrix. The T matrix is indepen-
dent of the lattice and independent of the Bloch vector k̄i. In
the past, the T matrix was limited to spherical scatterer. We
recently calculate T matrix of a plant or a tree with compli-
cated structures by using commercial software of FEKO and
HFSS [27–30]. Such a method can also be applied to scatterer
in photonic crystal and in topological photonics. The T ma-
trix is a smooth function of frequencies because the scatterers
in photonic crystals are small to moderate size compared with
the wavelengths.
(iii) There is a distinct difference between scattered wave co-

efficients as(M)
µν , as(N)

µν and excitation field coefficients, w(M)
mn ,

w
(N)
mn . The dimension of scattered field coefficients is depen-

dent on the size of the scatterers. For the numerical results in
this paper, it is sufficient to keep only the electric dipole and
the magnetic dipole, so that the number of scattered field co-
efficients is only 6. For the excitation field, it arises from the

22 www.jpier.org



Progress In Electromagnetics Research, Vol. 179, 19-36, 2024

scattering of waves from all other scatterers to the scatterer in
cell (0, 0, 0). The number of coefficients required depends on
the spatial position r̄ of the field point relative to the scatterer
in the cell (0, 0, 0). When the field point r̄ is on the surface
of the scatterer of (0, 0, 0), only 6 excitation field coefficients
are required giving an eigenvalue problem of 6 by 6. When the
spatial position r̄ is on the boundary of the cell (0, 0, 0), more
excitation coefficients are required and these were calculated
by the extended excitation coefficients approach applied to the
eigenvector. The extended excitation coefficients approach is
discussed in Section 5.
The KKR equations (18) and (19) were derived from Foldy-

Lax equations which were proposed heuristically by Foldy and
Lax. In Appendix C, by using the integral equation approach,
the derived KKR equations are identical to that of (18) and (19).

3. FAST BROADBAND CALCULATIONS OF THE MA-
TRIX ELEMENTS
Combine Eqs. (20) and (21) and Appendix B (B7) and (B8),

d(A)
mnµν

(
k, k̄i

)
=

γµν
γmn

(−1)
m
∑
p

(−1)
p

a (µ, ν |−m,n| p) a (ν, n, p)
∑

R̄s≠(0,0,0)

exp
(
ik̄i · R̄s

)
hp (kRs)Y

µ−m
p

(
θR̄s

, ϕR̄s

)
(22)

d(B)
mnµν

(
k, k̄i

)
=

γµν
γmn

(−1)
m+1

∑
p

(−1)
p

a (µ, ν |−m,n| p) b (ν, n, p)
∑

R̄s ̸=(0,0,0)

exp
(
ik̄i · R̄s

)
hp (kRs)Y

µ−m
p

(
θR̄s

, ϕR̄s

)
(23)

where (θR̄s
, ϕR̄s

) are the angles of spherical coordinates asso-
ciated with R̄s and Rs = |R̄s|.
Next we relate

∑
R̄s ̸=(0,0,0) exp(ik̄i · R̄s)hp(kRs)Y

µ−m
p (θR̄s

,
ϕR̄s

) to the response Green’s function gR(k, k̄i, r̄).
The response Green’s function gR(k, k̄i, r̄) has the r̄ position

in cell (0, 0, 0). It is the summation of point sources from other
cells into the (0, 0, 0) cell with each point source weighted by
the Bloch phase shift exp(ik̄i · R̄s). It is a scalar function, and
the dyadic version is not required in the derivations.

gR
(
k, k̄i, r̄

)
=

∑
R̄s ̸=(0,0,0)

exp
(
ik̄i · R̄s

) exp (ik̄i · (r̄ − R̄s)
)

4π
∣∣r̄−R̄s

∣∣
(24)

Since gR(k, k̄i, r̄) is nonsingular at the origin and is a solu-
tion of the scalar wave equation, it can be expanded in scalar
Rg spherical waves.

gR
(
k, k̄i, r̄

)
=
∑
n=0

n∑
m=−n

D̃(V )
mn

(
k, k̄i

)
jn (kr)Y

(m)
n (θ, ϕ) (25)

where D̃
(V )
mn (k, k̄i) are the coefficients of scalar wave expan-

sions and we used superscript (V ) to denote the difference from
our previous definition in [15]. Form Harrington [31] and Sara-
bandi [32], we have

exp
(
ik̄i · (r̄ − R̄s)

)
4π

∣∣r̄ − R̄s

∣∣ =
ik

4π

∞∑
n=0

n∑
m=−n

(−1)
m
(2n+ 1)

hn (kRs)Y
(−m)
n

(
θR̄s

, ϕR̄s

)
jn (kr)Y

(m)
n (θ, ϕ) (26)

Setting (24) and (25) to be equal we obtain

D̃(V )
mn

(
k, k̄i

)
=

ik

4π
(−1)

m
(2n+ 1)

∑
R̄s ̸=(0,0,0)

exp
(
ik̄i · R̄s

)
hn (kRs)Y

(−m)
n

(
θR̄s

, ϕR̄s

)
(27)

Then substituting (27) in (22)–(23), we obtain

d(A)
mnµν

(
k, k̄i

)
=

4π

ik

γµν
γmn

(−1)
µ
∑
p=0

(−1)
p

a (µ, ν |−m,n| p) a (ν, n, p)
(2p+ 1)

D̃
(V )
p(m−µ)

(
k, k̄i

)
(28)

d(B)
mnµν

(
k, k̄i

)
=

4π

ik

γµν
γmn

(−1)
µ+1

∑
p=0

(−1)
p

a (µ, ν |−m,n| p) b (ν, n, p)
(2p+ 1)

D̃
(V )
p(m−µ)

(
k, k̄i

)
(29)

Previously, in [15], we have derived expressions for fast
broadband computations of D̃nm(k, k̄i) using different defini-
tions of spherical harmonics and associated Legendre polyno-
mials. The conversion to D̃

(V )
nm (k, k̄i) from D̃nm(k, k̄i) in this

vector 3D paper is

D̃(V )
nm

(
k, k̄i

)
=(−1)

m ik

4π

√
(2n+1) (n−m)!

(n+m)!
D̃nm

(
k, k̄i

)
n = 0, 1, 2, 3, ...; m = 0,±1, ...,±n (30)

Let

AC (ν, µ, n,m, pA) =
γµν
γmn

(−1)
m

a (µ, ν |−m,n| pA) a (ν, n, pA) (31)

BC (ν, µ, n,m, pB) =
γµν
γmn

(−1)
m+1

a (µ, ν |−m,n| pB) b (ν, n, pB) (32)

Then

d(A)
mnµν

(
k, k̄i

)
=

∑
pA

AC (ν, µ, n,m, pA) (−1)
pA

(−1)
(µ−m)

4π

ik (2pA + 1)
D̃

(V )
pA(m−µ)

(
k, k̄i

)
(33)
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d(B)
mnµν

(
k, k̄i

)
=

∑
pB

BC (ν, µ, n,m, pB) (−1)
pB

(−1)
(µ−m)

4π

ik (2pB + 1)
D̃

(V )
pB(m−µ)

(
k, k̄i

)
(34)

We note the following

a) d
(A)
mnµν(k, k̄i) and d(B)

mnµν(k, k̄i) are for vector 3D electro-
magnetic waves and start with n, ν = 1.

b) The D̃(V )
pmp(k, k̄i) coefficients are generated from scalar 3D

waves with the gR(k, k̄i) is the Green’s function arising
from scattering from other particles. We start with n = 0
in (25). We start with p = 0 in (28) and (29)

c) The summations over pA and pB are over alternate values
for given n, ν

pA = |n− ν| , |n− ν|+ 2, ..., n+ ν − 2, n+ ν (35)
pB = |n− ν|+ 1, ..., n+ ν − 3, n+ ν − 1 (36)

4. FAST BROADBAND CALCULATIONS OF MATRIX
ELEMENTS OF THE KKR EQUATION
In matrix form, we have

[
w̄(M)

w̄(N)

]
=

 d
(A)

d
(B)

d
(B)

d
(A)

[
ās(M)

ās(N)

]

=

 d
(MM)

d
(MN)

d
(NM)

d
(NN)

[
ās(M)

ās(N)

]
(37)

For vector spherical waves there are two indices, n = 1, 2, ...
and m = −n,−n + 1, ..., 0, 1, ..., n. There are also M and N
vector wave functions.
We use the following indexing

w̄(M) =



w
(M)
−11

w
(M)
01

w
(M)
11

w
(M)
−22

w
(M)
−12

w
(M)
02

w
(M)
12

w
(M)
22


; w̄(N) =



w
(N)
−11

w
(N)
01

w
(N)
11

w
(N)
−22

w
(N)
−12

w
(N)
02

w
(N)
12

w
(N)
22


(38)

Let Nmax be the maximum n. Then the maximum combined
index of l = (m,n) is Lmax = Nmax(Nmax + 2).
Thus, if we truncate with n = 1, dimension of column vector

w̄(M) is 3 while if we truncate at n = 2, dimension of w̄(M) is
8, etc. The indexing of w̄(M), w̄(N), ās(M), ās(N) column vec-

tors follow the same rule. The indexing of the matrices d
(MM)

,

d
(NN)

, d
(MN)

, d
(NM)

follow the same rule and are of dimen-
sion Lmax × Lmax.

d
(MM)

= d
(NN)

= d
(A)

(39)

d
(MN)

= d
(NM)

= d
(B)

(40)

In a compact form

w̄ = dās (41)
where

w̄ =

[
w̄(M)

w̄(N)

]
(42)

ās =

[
ās(M)

ās(N)

]
(43)

where

d =

 d
(A)

d
(B)

d
(B)

d
(A)

 (44)

Because bothM andN vector waves are needed, the dimen-
sion of the vector 3D KKR equation is LV

max = 2Lmax. The
dimensions of w̄ and ās are LV

max × 1. The dimension of d is
2Lmax × 2Lmax = LV

max × LV
max.

In MST, the relation between the scattered field coefficients
and the exciting field coefficients is via the single scatterer T
matrix in vector spherical waves. The T matrix is independent
of the lattice nor the Bloch vector. The dimension of the T
matrix for photonic crystal problem is small to moderate as the
single scatterer has small to moderate size in wavelengths. Let
T (k) be the T matrix in matrix notations. Then

ās = T (k) w̄ (45)

w̄ = T
−1

(k) ās (46)

T
−1

(k) ās = dās (47)

The capital T (k) matrix is of complex values. The KKR
equation above is complex. For non-absorptive scatterers, the
small t matrix is used which is real.
Let

t = i

(
I + T

−1
)

(48)

Then we have
Λās = 0 (49)

where

Λ =
i

4

(
d+ I

)
− 1

4
t (50)

Eq. (49) is the KKR equation that includes the T matrix. The
dimension of the KKR equation using MST is LV

max × LV
max.
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The exciting field and scattered fields are truncated with the
sameNmax for the KKR equation. For the example in this paper,
Nmax = 1, which corresponds to electric dipole and magnetic
dipole. The dimension of the KKR equations is 6 by 6. The
choice gives the accurate band diagram for the first 5 bands.
For the KKR eigen-equation, we choose Nmax = NL so that
the dimension of the KKR equation is

LV
L = 2NL (NL + 2) (51)

The search for band eigenvalue is through nonlinear iterative
search. The-normalized frequency is fN with k corresponding
to k = 2π

√
ε/ε0 where ε is the permittivity of the background,

and ε0 is the free space permittivity. For a given Bloch vector
k̄i, after finding the root of the KKR equation, let the calculated
eigenvalue frequency be fNe and wavenumber ke. The associ-
ated normalized eigenvector is ās(ke)which is of dimension of
LV
L × 1. The eigenvector ās(ke) is that of the scatterer of the

(0, 0, 0) cell.

5. APPROACH OF EXTENDED COEFFICIENTS
Near the boundary of the scatterer, we useNmax = NL for both
scattered field coefficients and exciting field coefficients. This
means

as(M)
µν , as(N)

µν ν ≤ NL (52)

w(M)
mn , w(N)

mn n ≤ NL (53)

Exciting coefficients are also written in terms of scattering co-
efficients through the summation involving d

(A)
mnµν(k, k̄i) and

d
(B)
mnµν(k, k̄i) as Eqs. (18) and (19) to give elements of squared
matrix. This was used in solving the KKR eigen-equation.
Then the eigensolution of k is calculated, and the eigenvector
a
s(M)
µν , as(N)

µν ν ≤ NL is calculated.
However, to compute the band field solution for the entire (0,

0, 0) cell, we need higher order exciting field coefficients when
the distance of the field point from the scatterer increases. This
is because the cell can be significantly larger than the scatterer.
This means that we still have for the scattered field coefficients

as(M)
µν , as(N)

µν ν ≤ NL (54)

But for the exciting field coefficients, we need

w(M)
mn , w(N)

mn n ≤ Nsph (55)

with Nsph ≥ NL.
We still use the same Eq. (18) and Eq. (19) to calculate excit-

ing coefficients from scattering coefficients; however the ma-
trix sizes for d(A)

mnµν(k, k̄i) and d(B)
mnµν(k, k̄i) become rectangu-

lar due the increase of n.

w(M)
mn =

NL∑
ν=1

ν∑
µ=−ν

d(A)
mnµν

(
k, k̄i

)
as(M)
µν

+

NL∑
ν=1

ν∑
µ=−ν

d(B)
mnµν

(
k, k̄i

)
as(N)
µν ; 1 ≤ n ≤ Nsph (56)

w(N)
mn =

NL∑
ν=1

ν∑
µ=−ν

d(B)
mnµν

(
k, k̄i

)
as(M)
µν

+

NL∑
ν=1

ν∑
µ=−ν

d(A)
mnµν

(
k, k̄i

)
as(N)
µν ; 1 ≤ n ≤ Nsph (57)

The governing relations of (54)–(55) are expressed in
Eqs. (56)–(57).

Only d(A)
mnµν(k, k̄i) and d(B)

mnµν(k, k̄i) have to be recalculated
at the eigenvalue k, and not for a lot of k’s to get higher or-
der exciting coefficients. We do not need to calculate eigen-
value problem again which is time-consuming for higher order.
Once higher order exciting coefficients are done, we can calcu-
late, by using T matrix, the higher order scattering coefficients
a
s(M)
µν , a

s(N)
µν NL + 1 ≤ ν ≤ Nsph.

The formulations are general and applicable to scatterers
of general shape. We are working on using commercial soft-
ware such as FEKO and HFSS to extract T matrix for irregular
shaped scatterer [27–30]. In the next section, we consider the
special case of dielectric spherical scatterers.

6. DIELECTRIC SPHERE
In this paper, the results will be illustrated for dielectric spheres
as scatterers. Consider a sphere of permittivity ε1, with ra-
dius b, in a background of permittivity ε. The corresponding
wavenumbers are k1 for the scatterer and k for the background.
The T matrix is diagonal for spherical scatterers.

T
(MM)
mnm′n′ = T (M)

n δmm′δnn′ (58)

T
(NN)
mnm′n′ = T (N)

n δmm′δnn′ (59)

T
(MN)
mnm′n′ = T (NM)

n = 0 (60)

where

T (M)
n (k) =

− jn (k1b) (kbjn (kb))
′ − jn (kb) (k1bjn (k1b))

′

jn (k1b)
(
kbh

(1)
n (kb)

)′
− h

(1)
n (kb) (k1bjn (k1b))

′
(61)

T (N)
n (k) = (62)

− (k1b)
2
jn (k1b) (kbjn (kb))

′−(kb)
2
jn (kb) (k1bjn (k1b))

′

(k1b)2jn(k1b)
(
kbh

(1)
n (kb)

)′
−(kb)2h

(1)
n (kb) (k1bjn(k1b))

′

jn is the spherical Bessel function, and h
(1)
n is the spherical

Hankel function of the first kind.

Using t = i(I + T
−1

), then

t
(MM)
mnm′n′ = t(M)

n δmm′δnn′ (63)

t
(NN)
mnm′n′ = t(N)

n δmm′δnn′ (64)

t
(MN)
mnm′n′ = t(NM)

n = 0 (65)

t(M)
n (k)=

jn(k1b) (kbnn(kb))
′−nn(kb) (k1bjn(k1b))

′

jn(k1b) (kbjn(kb))
′−jn(kb) (k1bjn(k1b))

′ (66)
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(a) (b)

FIGURE 3. Frequency response of (a) absolute value of determinant, (b) sign of determinant.

TABLE 1. CPU simulation time breakdown table from frequency scanning method, bi-section method, and commercial software (COMSOL).
(BBGMST on 1.8GHz Dual-Core Intel Core i5; 8GB 1600MHz DDR3); (COMSOL on 2.7GHz Intel Xeon Gold 6226; 128GB 2666MHz DDR4).

Method
Number of
bands

Number of
frequencies

Set-up
(sec)

D̃ and det(Λ)
(sec)

Total cputime
(sec)

BBGMST w/Frequency scanning 5 8000 0.165 6.316 6.481
BBGMST w/Bisection 5 109 0.165 0.144 0.309

COMSOL 5 N/A N/A N/A 34

t(N)
n (k)= (67)

(k1b)
2
jn (k1b) (kbnn (kb))

′ − (kb)
2
nn (kb) (k1bjn (k1b))

′

(k1b)
2
jn (k1b) (kbjn (kb))

′ − (kb)
2
jn (kb) (k1bjn (k1b))

′

where nn is the spherical Neuman function. The advantages of
t
(M)
n and t

(N)
n are that they are real while T (M)

n and T
(N)
n are

complex.
After the exciting fields are determined, the internal fields are

given in terms of vector spherical wave functions and internal
field coefficients. The electric field inside the scatterer is,

Ēint=

∞∑
n=1

[
c(M)
mn RgM̄mn (k1r̄) + c(N)

mnRgN̄mn (k1r̄)
]

(68)

where

c(M)
mn = w(M)

mn B(M)
n (69)

c(N)
mn = w(N)

mnB
(N)
n (70)

B(M)
n =

i

kb

1

jn(k1b) (kbhn(kb))
′−hn(kb) (k1bjn(k1b))

′ (71)

B(N)
n =

i (k1b)

(k1b)
2
jn(k1b) (kbhn(kb))

′−(kb)
2
hn(kb) (k1bjn(k1b))

′ (72)

7. NUMERICAL RESULTS

We choose simple cubic lattice (Figure 2) with the lattice con-
stant a = 1. The radius of the spherical scatterer is b = 0.2a.
The background permittivity is ε = ε0. The scatterer has per-
mittivity εp = 8.9ε0.
We shall first illustrate the calculations of the band eigen-

value and band field at the point X in the first Brillouin zone.
For the point k̄i = 0.2b̄1, it means (β1, β2, β3) = (0.2, 0, 0).
We will also illustrate the band diagram for the first 5 bands

with 0 ≤ β1 ≤ 0.5, β2 = β3 = 0. In the calculations of the
broadband spherical wave coefficients D̃(V )

nm (k, k̄i) with imag-
inary wavenumber extractions, we use Nspa = 2, Nspe = 3,
ξ = 2π

a , R = 0.5a.

7.1. Eigenvalue and Normalized Eigenvector at
k̄i = 0.2b̄1, (β1, β2, β3) = (0.2, 0, 0)

The eigenvalue part is the CPU intensive part of the method be-
cause the nonlinear search has to be carried over many frequen-
cies. Based on discussion in the previous section, Nmax = NL

are the same for scattered field and exciting field. For b = 0.2,
we choose a low NL = 1, maximum n = 1, for D̃(V )

nm (k, k̄i).
We have 3 pairs of (n,m) = (1,−1), (1, 0), and (1, 1). Thus,
the dimension of the eigenvalue equation is 6 when being ap-
plied to vector spherical waves M̄ and N̄ , and dimension of
the matrix of the KKR eigenvalue equation, Λ(k)ās = 0, with
Lmax = 3, LV

max = 6. The normalized frequency is fN (k) =
k
2π

√
ε0
ε .
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TABLE 2. Scattered field coefficients for fNe = 0.7852.

n m l a
s(M)
mn a

s(N)
mn

1 −1 1 −0.7071 0
1 0 2 0 0
1 1 3 0.7071 0

TABLE 3. Extended coefficient at fNe = 0.7852 up to n = 5: exciting coefficients, w(M)
mn and w

(N)
mn , scattering coefficients inside, c(M)

mn and c
(N)
mn ,

and outside the scatterer, as(M)
mn and as(N)

mn .

n m l w
(M)
mn w

(N)
mn c

(M)
mn c

(N)
mn a

s(M)
mn a

s(N)
mn

1 −1 1
0.7071

+0.2423i
0

−0.0018

+3.0092i
0

−0.7072

−0.0004i
0

1 0 2 0 0 0 0 0 0

1 1 3
−0.7071

−0.2423i
0

0.0018
−3.0092i

0
0.7072

+0.0004i
0

2 −2 4 −0.1438 0
−0.0416

−0.0003i
0 −0.001i 0

2 −1 5 0 0 0 0 0 0

2 0 6 0.1174 0
0.034

+0.0002i
0 0.0008i 0

2 1 7 0 0 0 0 0 0

2 2 8 −0.1438 0
−0.0416

−0.0003i
0 −0.001i 0

3 −3 9 0.4668i 0 0.0322i 0 0 0
3 −2 10 0 0 0 0 0 0
3 −1 11 −0.3616i 0 −0.0249i 0 0 0
3 0 12 0 0 0 0 0 0
3 1 13 0.3616i 0 0.0249i 0 0 0
3 2 14 0 0 0 0 0 0
3 3 15 −0.4668i 0 −0.0322i 0 0 0
4 −4 16 −0.6286 0 −0.0125 0 0 0
4 −3 17 0 −0.476 0 −0.0059 0 0
4 −2 18 0.3521 0 0.007 0 0 0
4 −1 19 0 −1.2594 0 −0.0155 0 0
4 0 20 −0.6065 0 −0.012 0 0 0
4 1 21 0 −1.2594 0 −0.0155 0 0
4 2 22 0.3521 0 0.007 0 0 0
4 3 23 0 −0.476 0 −0.0059 0 0
4 4 24 −0.6286 0 −0.0125 0 0 0
5 −5 25 −0.137i 0 −0.0008i 0 0 0
5 −4 26 0 −0.2204i 0 −0.0008i 0 0
5 −3 27 −0.0737i 0 −0.0004i 0 0 0
5 −2 28 0 −0.3818i 0 −0.0014i 0 0
5 −1 29 −0.1759i 0 −0.0011i 0 0 0
5 0 30 0 0 0 0 0 0
5 1 31 0.1759i 0 0.0011i 0 0 0
5 2 32 0 0.3818i 0 0.0014i 0 0
5 3 33 0.0737i 0 0.0004i 0 0 0
5 4 34 0 0.2204i 0 0.0008i 0 0
5 5 35 0.137i 0 0.0008i 0 0 0
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

FIGURE 4. Surface fields for band 3. (a) Eθ , (b) Hr , (c) Hϕ along scatter surface with θ = 90◦ from MST-BBGF method, (d) Eθ , (e) Hr , (f) Hϕ

along scatter surface with θ = 90◦ from COMSOL; tangential field from MST-BBGF, (g) Eθ , (h)Hθ , (i) Eϕ, (j)Hϕ.

Figure 3 shows frequency response of the determinant. Fig-
ure 3(a) shows the absolute value of the determinant. It shows
5 zeros within fN = 0.1 ∼ 0.9 which corresponds to the first 5
eigenvalues. In Figure 3(b), we look into the sign of the deter-
minant. A tiny imaginary part is added to ξ, 2π/a+0.000001i,
to suppress the oscillation of the sign for the imaginary part of
the determinant. We correlate these two figures and we notice
where the eigen-values appear:

a) the roots happen with the sign change of real part, and they
are non-degenerate.
b) the roots lie within the places when the sign change of

imaginary part. However, a further check of whether they are
local minimum is needed to determine a real root. These roots
found through the sign of imaginary part change are degenerate,
and they come in pairs.
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FIGURE 5. Electric field of band 3 (fn = 0.7852) along y-axis.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(e1) (f1) (g1) (h1)

(e2) (f2) (g2) (h2)

FIGURE 6. 3D band field slices in (0, 0, 0) cell, (a1)∼(h1) fromMST-BBGF method and (a2)∼(h2) from COMSOL. (a1), (a2) band 1, 1st degenerate
(fa1

n = 0.1927; fa2
n = 0.1925), (b1), (b2) band 1, 2nd degenerate (f b1

n = 0.1927; f b2
n = 0.1925), (c1), (c2) band 2, 1st degenerate (fc1

n = 0.734;
fc2
n = 0.7324), (d1), (d2) band 2, 2nd degenerate (fd1

n = 0.734; fd2
n = 0.7324), (e1), (e2) band 3 (fe1

n = 0.7852; fe2
n = 0.7847), (f1), (f2) band 4,

1st degenerate (ff1
n = 0.8227; ff2

n = 0.8207), (g1), (g2) band 4, 2nd degenerate (fg1
n = 0.8227; fg2

n = 0.8207), (h1), (h2) band 5 (fh1
n = 0.8718;

fh2
n = 0.8708).
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With these observations, we also perform the bi-section
method to locate these eigenvalues from the sign of real and
imaginary parts of determinant individually. We then have the
first 5 eigenvalues at 0.1927(degenerate), 0.734(degenerate),
0.7852, 0.8227(degenerate), and 0.8718.
Table 1 shows the comparison of simulation time among pro-

posed methods of MST-BBGF and COMSOL commercial soft-
ware. The frequency scanning approach is compared with the
bi-section method in searching for k. The CPU requirement in
this paper for the MST-BBGF method is merely 0.309 seconds
for the first 5 bands on a standard laptop. The method outper-
forms commercial software COMSOL which requires 34 secs
that was run on a latest desktop/server. Taking account that
the desktop server is 10 times faster than the standard laptop,
this means that the Fast MST-BBGF method is several hundred
times faster than COMSOL. 108060 unknowns or degrees of
freedom were solved with COMSOL version 5.5.
We illustrate band field solutions for fNe = 0.7852. The

eigenvector for the MST-BBGF method is the scattered field

coefficients. The 6 by 1 eigenvector
[

ās(M)

ās(N)

]
is normalized.

The results of Table 2 show that the band field solution is that
of a magnetic dipole since a

s(N)
mn = 0. The advantage of the

MST-BBGF method is that the bands are either electric dipole
or magnetic dipole or a combination of both. Thus, the MST-
BBGF can be regarded as an analytical method as distinct from
finite methods of FEM, FDTD and MoM.

7.2. Higher Order Vector Spherical Waves Based on the Ap-
proach of Extended Coefficients
After the eigenvalue and eigenvector of the scattered field co-
efficients are obtained, we calculate the band field solutions for
the entire (0, 0, 0) cell using Equations (56) and (57) in the ex-
tended coefficients approach. We calculate up to n = Nsph =
10 with Lmax = 120. We list the coefficients up to n = 5
in Table 3. From the table, it can be seen that based on the
extended coefficients approach, the scattered field coefficients
remain the same as up to n = 2, and the higher order scattered
field coefficients, n > 2, do not contribute. On the other hand,
the contribution of higher order exciting field coefficients to the
band field depends on the distance r from the center of the cell
(0, 0, 0).

7.3. The Band Field Solution
We next plot the band field solution within the (0, 0, 0) cell in
Figure 4. We demonstrate the results for surface field on the
surface of the scatterer and 3D fields within the cell. We also
perform extensive comparisons against results from COMSOL.
First, at the boundary of the scatterer r = b = 0.2a, we con-
sider the cut along peripheral of the sphere with θ = 90◦. Af-
ter the complex scaling of the eigenvector, we compare signif-
icant surface terms with COMSOL’s results for significant sur-
face terms. The results of MST-BBGF agree well with that of
COMSOL.We observe that some results from COMSOL suffer
from some small oscillation. The size of eigenvalue problem

for MST-BBGF is small giving essentially an analytical solu-
tion. The simple summation over vector spherical waves gives
smooth surface fields. Figure 4 also shows the tangential field
along the entire scatterer surface.
In Figure 5, we compare the band fields along the y-axis for

the absolute value of electric field. From MST-BBGF method,
we show results from NL = 1 which is of lower order. At cell
boundary, y = −0.5, 0.5, it shows non-zero field. However,
after we extend the coefficients for exciting field, the field at
the cell boundary becomes zero. The results then are in agree-
ment with what COMSOL’s results. This explains why higher
order coefficients of the exciting field are required in calculat-
ing band field away from the scatterer. Since the surface fields
compare well in Figure 4, we further include another band field
calculation from Huygen’s principle for field outside the scat-
terer. The results of Huygen’s principle show excellent agree-
ment with those fromMST-BBGF method. Huygen’s principle
is implemented using vector Green’s theorem which involves
lattice dyadic Green’s function and its derivative. The method
of Huygen’s principle is described in Appendix D. In Figure 6,
we show the 3D band field slices within the (0, 0, 0) cell for
first five bands from MST-BBGF method and COMSOL, re-
spectively. We observe good agreement especially for band 3
and band 5 which are not degenerate. For degenerate bands like
band 1, 2, and 4, we also observe quite close similarity.

7.4. Band Diagram
In Figure 7, we plot the band diagram for the first five bands
between Γ and X points in the first Brillouin zone for β2 =
β3 = 0 and 0 ≤ β1 ≤ 1

2 . The lowest band is close to a straight
line near Γ point meaning that an effective permittivity can be
derived. The lowest band is that of metamaterials which is a
special case of photonic crystal [10, 11]. The entire five bands
are in good agreement betweenMST-BBGFmethod and COM-
SOL.

FIGURE 7. Band diagram of first five bands between Γ andX points.

8. CONCLUSIONS
In band diagram calculations, the CEMs (computational
electromagnetic methods) have been applied including
FDFD/FDTD, FEM, and MoM. In these methods, subsectional
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basis functions are used to represent the electromagnetic fields.
The band structures in a photonic crystal are results of multiple
scattering among the scatterers that are periodically positioned.
In this paper, we use a method that is different from CEM,
viz. the multiple scattering theory (MST). The basis functions
are analytical vector spherical waves of the reference scatterer
in the (0, 0, 0) cell which are used to represent the scattered
waves. There are only 6 basis functions, so that the unknowns
are 6 coefficients. The coefficients in other cells are related to
the coefficients of the center cell by the Bloch condition. The
band diagram equation, KKR equation, is merely of dimension
6 by 6 for the first 5 bands. To calculate the matrix elements of
the KKR matrix equation, the translational addition theorem
is used, and the summation over all other scatterers gives the
response Green’s function gR. The broad band Green’s func-
tion method (BBGF) with imaginary wavenumber extraction
is used to compute the gR fast. Using this BBGF method, the
matrix elements of the KKR equation are calculated fast for
many frequencies so that an iterative search can be readily
applied to calculate the band frequency eigenvalues. The
efficiency of the MST-BBGF method is shown to be more
than two orders of magnitude faster than COMSOL. After the
band eigenvalues are determined, the exciting fields and the
band field solutions throughout the entire cell are calculated
by using the approach of extended coefficients up to 240
vector spherical wave coefficients. In MST, the T matrix is
that of an isolated single scatterer which is independent of the
lattice and independent of the Bloch vector. For future work
of considering irregular shaped scatterer, the T matrix can
be precalculated separately using various techniques such as
MoM, FEM and FDFD/FDTD, and commercial software such
as HFSS, FEKO, and CST in the frequency range of interest
and then used for all lattices and Bloch vectors [27–30].

ACKNOWLEDGEMENT
The work of Tsang and Gao were supported by University of
Michigan. The work of Liao was supported by National Taipei
University of Technology. The work of Tan and Bai were sup-
ported by Zhejiang University startup funds and National Nat-
ural Science Foundation of China (61901411). The work of
Xiaolan Xu was supported by the Jet Propulsion Laboratory of
the California Institute of Technology.

APPENDIX A. LEGENDRE POLYNOMINALS AND
SPHERICAL HARMONICS
We first define associated Legendre polynomials and spherical
harmonics used in this paper as there are several definitions.
The associated Legendre polynomial and spherical harmonics
are for both positive and negative values ofm.

Pm
n (x) =

(−1)
m

2nn!

(
1− x2

)m
2

dn+m

dxn+m

(
x2 − 1

)m (A1)

Y m
n (θ, ϕ) = Pm

n (cos θ) exp (imϕ) (A2)

withm = 0,±1, ...,±n.

The three vector spherical harmonics are

P̄mn (r̂) = r̂Y m
n (θ, ϕ) (A3)

B̄mn (r̂) =

[
θ̂
dPm

n (cos θ)
dθ

+ϕ̂
im

sin θ
Pm
n (cos θ)

]
eimϕ (A4)

C̄mn (r̂) =

[
θ̂

im

sin θ
Pm
n (cos θ)−ϕ̂

dPm
n (cos θ)
dθ

]
eimϕ (A5)

The two vector spherical waves are

M̄mn (kr̄) = γmnh
(1)
n (kr) C̄mn (r̂) (A6)

N̄mn (kr̄) = γmn

[
n (n+ 1)h

(1)
n (kr)

kr
P̄mn (r̂)

+

(
krh

(1)
n (kr)

)′

kr
B̄mn (r̂)

 (A7)

with n = 1, 2, ... andm = 0,±1, ...,±n.
Where

γmn =

√
(2n+ 1) (n−m)!

4πn (n+ 1) (n+m)!
(A8)

Since Pm
n (−x) = (−1)n+mPm

n (x), then

Y m
n (π − θ, π + ϕ) = (−1)

n
Y m
n (θ, ϕ) (A9)

APPENDIX B.Aµνmn(kr̄o) ANDBµνmn(kr̄o)

Aµνmn (kr̄0) =
γmn

γµν
(−1)

µ
∑
p

a (m,n |−µ, ν| p) a (n, ν, p)hp (kr0)Y
m−µ
p (θ0, ϕ0) (B1)

Bµνmn (kr̄0) =
γmn

γµν
(−1)

µ+1
∑
p

a (m,n|−µ, ν|p, p−1) b(n, ν, p)hp(kr0)Y
m−µ
p (θ0, ϕ0)(B2)

where

a (n, ν, p) =
iν−n+p (2ν + 1)

2ν (ν + 1)

[ν (ν + 1) + n (n+ 1)− p (p+ 1)] (B3)

b (n, ν, p) = − iν−n+p (2ν + 1)

2ν (ν + 1)
[(n+ ν + p+ 1)

(ν + p− n) (n+ p− ν) (n+ ν − p+ 1)]
1
2 (B4)

a (m,n |µ, ν| p) = (−1)
m+µ

(2p+ 1)[
(n+m)! (ν + µ)! (p−m− µ)!

(n−m)! (ν − µ)! (p+m+ µ)!

] 1
2

(
n ν p

m µ − (m+ µ)

)(
n ν p

0 0 0

)
(B5)
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a (m,n |µ, ν| p, q) = (−1)
m+µ

(2p+ 1)[
(n+m)! (ν + µ)! (p−m− µ)!

(n−m)! (ν − µ)! (p+m+ µ)!

] 1
2

(
n ν p

m µ − (m+ µ)

)(
n ν q

0 0 0

)
(B6)

where
(

n ν p
m µ −(m+ µ)

)
is Wigner 3j symbols. Note

that the expression a(n, ν, p) in (B3) has symmetry in n, ν
and p. The expression is different from a(n, ν, p) in (10.4.16)
of [21] which is more complicated. By simplifying (10.4.16)
of [21], it can be shown that it is the same as (B3).
For changing sign in the argument, r̄0 → −r̄0, Aµνmn and

Bµνmn this corresponds to (θ0, ϕ0) → (π − θ0, π + ϕ0). Then
we use Y m−µ

p (π − θ0, π + ϕ0) = (−1)pY m−µ
p (θ0, ϕ0).

Aµνmn

(
−kR̄s

)
=

γmn

γµν
(−1)

µ
∑
p

(−1)
p
a (m,n |−µ,

ν| p) a (n, ν, p)hp (kRs)Y
m−µ
p (θRs

, ϕRs
) (B7)

Bµνmn

(
−kR̄s

)
=

γmn

γµν
(−1)

µ+1
∑
p

(−1)
p
a (m,n |−µ,

ν| p, p− 1) b (n, ν, p)hp (kRs)Y
m−µ
p (θRs

, ϕRs
) (B8)

APPENDIX C. KKR EQUATIONS FROM THE INTEGRAL
EQUATION METHOD
The commonmethod of derivingKKR equation is from integral
equation. We show the derivations in this section. Let SBj

be the boundary of sphere in periodic cell j. V0i is the region
inside SBi, and V1i is the region outside SBi in periodic cell i.
By using green’s theorem, we can derive the following integral
equations [23].∑

j

∮
SBj

dS′
[
G0 (r̄, r̄

′) · n̂′ ×∇′ × Ēs
j (r̄

′)

+∇×G0 (r̄, r̄
′) · n̂′ × Ēs

j (r̄
′)
]

=

{
Ē0i (r̄) for r̄ inV0i; i = 1, 2, 3, ... (C1)
Ēex

i (r̄) for r̄ inV1i; i = 1, 2, 3, ... (C2)

where
Ē0i (r̄

′) = Ēex
i (r̄′) + Ēs

i (r̄
′) (C3)

Note the integration of the entire cells in written as the sum-
mation of each cell.
Exciting field in cell i can be expanded using spherical har-

monics with respect to the center r̄i.

Ēex
i (r̄) =

∑
m,n

[
a(M)(i)
mn RgM̄mn (k (r̄ − r̄i))

+a(N)(i)
mn RgN̄mn (k (r̄ − r̄i))

]
(C4)

where a(M)(i)
mn and a(N)(i)

mn are exciting field coefficients for cell
i.
G0(r̄, r̄

′) is essentially G0(r̄ − r̄′). We further write it w.r.t.
the center of cell j, r̄i.

G0 (r̄ − r̄′) = G0 ((r̄ − r̄i)− (r̄′ − r̄i)) (C5)

For r̄′ on SBj and r̄ inside V1i, we have

|r̄ − r̄i| < |r̄′ − r̄i| (C6)

From Equation (2.8.20) in Tsang’s volume 1 (page 93) [23],
with proper index exchange, we have

G0 (r̄ − r̄′) = ik
∑
m,n

(−1)
m

[
RgM̄mn (k (r̄ − r̄i)) M̄−mn (k (r̄

′ − r̄i))

+RgN̄mn (k (r̄ − r̄i)) N̄−mn (k (r̄
′ − r̄i))

]
(C7)

∇×G0 (r̄ − r̄′) = ik2
∑
m,n

(−1)
m

[
RgN̄mn (k (r̄ − r̄i)) M̄−mn (k (r̄

′ − r̄i))

+RgM̄mn (k (r̄ − r̄i)) N̄−mn (k (r̄
′ − r̄i))

]
(C8)

for |r̄ − r̄i| < |r̄′ − r̄i|.
We then substitute (C5), (C7), and (C8) into (C2). After bal-

ancing RgM̄mn(k(r̄ − r̄i)) and RgN̄mn(k(r̄ − r̄i)), we have∮
SBi

dS′ [ik (−1)
m
M̄mn (k (r̄

′ − r̄i)) · n̂′ ×∇′ × Ēs
i (r̄

′)
]

+

∮
SBi

dS′ [ik2 (−1)
m
N̄mn (k (r̄

′ − r̄i)) · n̂′ × Ēs
i (r̄

′)
]

+
∑
j ̸=i

∮
SBj

dS′ [ik (−1)
m
M̄mn (k (r̄

′ − r̄i))

·n̂′ ×∇′ × Ēs
j (r̄

′)
]
+

∑
j ̸=i

∮
SBj

dS′ [ik2 (−1)
m

N̄mn (k (r̄
′ − r̄i)) · n̂′ × Ēs

j (r̄
′)
]
= a

(M)(i)
−mn (C9)∮

SBi

dS′ [ik (−1)
m
N̄mn (k (r̄

′ − r̄i)) · n̂′ ×∇′ × Ēs
i (r̄

′)
]

+

∮
SBi

dS′ [ik2 (−1)
m
M̄mn (k (r̄

′ − r̄i)) · n̂′ × Ēs
i (r̄

′)
]

+
∑
j ̸=i

∮
SBj

dS′ [ik (−1)
m
N̄mn (k (r̄

′ − r̄i))

·n̂′ ×∇′ × Ēs
j (r̄

′)
]
+

∑
j ̸=i

∮
SBj

dS′ [ik2 (−1)
m

M̄mn (k (r̄
′ − r̄i)) · n̂′ × Ēs

j (r̄
′)
]
= a

(N)(i)
−mn (C10)

Note that we separate the self cell contribution and non-self
cell contributions in (C9) and (C10).
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Before evaluating the integrals, we first consider the ad-
dition theorem of spherical harmonics M̄mn(k(r̄

′ − r̄i)) and
N̄mn(k(r̄

′ − r̄i)).
From Equations (10.4.10) and (10.4.11) in page 535 of [21],

we have for j ̸= i

M̄mn (k (r̄
′ − r̄i)) = M̄mn (k ((r̄

′ − r̄j) + (r̄j − r̄i)))

=
∑
µν

{
Aµνmn (k (r̄j − r̄i))RgM̄µν (k (r̄

′ − r̄j))

+Bµνmn (k (r̄j − r̄i))RgN̄µν (k (r̄
′ − r̄j))

}
(C11)

N̄mn (k (r̄
′ − r̄i)) = N̄mn (k ((r̄

′ − r̄j) + (r̄j − r̄i)))

=
∑
µν

{
Bµνmn (k (r̄j − r̄i))RgM̄µν (k (r̄

′ − r̄j))

+Aµνmn (k (r̄j − r̄i))RgN̄µν (k (r̄
′ − r̄j))

}
(C12)

for |r̄′ − r̄j | < |r̄j − r̄i|.
Scattered field in cell j can be expanded using spherical har-

monics w.r.t. the center r̄j .

Ēs
j (r̄

′) =
∑
m′,n′

[
a
(M)(s)(j)
m′n′ M̄m′n′ (k (r̄′ − r̄j))

+a
(N)(s)(j)
m′n′ N̄m′n′ (k (r̄′ − r̄j))

]
(C13)

∇′ × Ēs
j (r̄

′) = k
∑
m′,n′

[
a
(M)(s)(j)
m′n′ N̄m′n′ (k (r̄′ − r̄j))

+a
(N)(s)(j)
m′n′ M̄m′n′ (k (r̄′ − r̄j))

]
(C14)

Now we substitute (C11)∼(C14) into (C9) and (C10) and
consider n̂′ = r̂′.∑

j ̸=i

∮
SBj

dS′ [ik2 (−1)
m
M̄mn (k (r̄

′ − r̄i)) · n̂′ × Ēs
j (r̄

′)
]

=
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν

b2 (−1)
µ+1

jν (kb)

[
kbh

(1)
ν (kb)

]′
kb


+
∑
j ̸=i

∑
νµ

∑
m′,n′

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i))

a
(M)(s)(j)
(−µ)ν

(
b2 (−1)

µ
h(1)
ν (kb)

[kbjν (kb)]
′

kb

)
(C15)

∑
j ̸=i

∮
SBj

dS′ [ik2 (−1)
m
N̄mn (k (r̄

′ − r̄i)) · n̂′ × Ēs
j (r̄

′)
]

=
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν

b2 (−1)
µ+1

jν (kb)

[
kbh

(1)
ν (kb)

]′
kb


+
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i))

a
(M)(s)(j)
(−µ)ν

(
b2 (−1)

µ
h(1)
ν (kb)

[kbjν (kb)]
′

kb

)
(C16)

∑
j ̸=i

∮
SBj

dS′ [ik (−1)
m
M̄mn (k (r̄

′ − r̄i)) · n̂′ ×∇′

×Ēs
j (r̄

′)
]
=

∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i))

a
(M)(s)(j)
(−µ)ν

b2 (−1)
µ+1

jν (kb)

[
kbh

(1)
ν (kb)

]′
kb


+
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν

(
b2 (−1)

µ
h(1)
ν (kb)

[kbjν (kb)]
′

kb

)
(C17)

∑
j ̸=i

∮
SBj

dS′ [ik (−1)
m
N̄mn (k (r̄

′ − r̄i)) · n̂′ ×∇′

×Ēs
j (r̄

′)
]
=

∑
j ̸=i

∑
νµ

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i))

a
(M)(s)(j)
(−µ)ν

b2 (−1)
µ+1

jν(kb)

[
kbh

(1)
ν (kb)

]′
kb


+
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν

(
b2 (−1)

µ
h(1)
ν (kb)

[kbjν (kb)]
′

kb

)
(C18)

Among these integrals, many of sub-integrals are zero be-
cause of the orthogonality from Eq. (1.4.52) [23].∫ π

0

dθ sin θ
∫ 2π

0

dϕV̄ (α)
mn (θ, ϕ) V̄

(β)
−m′n′ (θ, ϕ)

= δαβδmm′δnn′zαmn (C19)

where V̄mn is among P̄mn, B̄mn, C̄mn. zαmn is the normaliza-
tion coefficient. Note that spherical harmonics are written using
P̄mn, B̄mn, C̄mn from Eqs. (1.4.56) and (1.4.57) from [23].
Substitute (C15)∼(C18) into (C9) and (C10).∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i)) a

(M)(s)(j)
(−µ)ν b2 (−1)

µ
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(
− i

k2b2

)
+
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν b2 (−1)

µ

(
− i

k2b2

)
= a

(M)(i)
−mn (C20)

∑
j ̸=i

∑
νµ

ik2 (−1)
m
Bµνmn (k (r̄j − r̄i)) a

(M)(s)(j)
(−µ)ν b2 (−1)

µ

(
− i

k2b2

)
+
∑
j ̸=i

∑
νµ

ik2 (−1)
m
Aµνmn (k (r̄j − r̄i))

a
(N)(s)(j)
(−µ)ν b2 (−1)

µ

(
− i

k2b2

)
= a

(N)(i)
−mn (C21)

Note that the Wronskian is applied.

j′n (ω)h
(1)
n (ω)− jn (ω)h

(1)′
n (ω) = − i

ω2
(C22)

Also, for j = i in (C9) and (C10), they are all zero.
We further simplify and arrange in the indices in (C20)

and (C21).

a
(M)(i)
−mn =

∑
j ̸=i

∑
νµ

[
Aµνmn (k (r̄i − r̄j)) a

(M)(s)(j)
µν

+Bµνmn (k (r̄i − r̄j)) a
(N)(s)(j)
µν

]
(C23)

a
(N)(i)
−mn =

∑
j ̸=i

∑
νµ

[
Bµνmn (k (r̄i − r̄j)) a

(M)(s)(j)
µν

+Aµνmn (k (r̄i − r̄j)) a
(N)(s)(j)
µν

]
(C24)

(C23) and (C24) show the same equations as (9) and (10)
considering no incident field. This means that the rest of the
derivation for KKR equations is the same, (11)∼(18). The
derivation in this appendix shows that starting from integral
equation (IE) method we end up with the same KKR equations
as those from Foldy-Lax MST equations. The multiple scat-
tering concept of Foldy-Lax can be directly applied to start the
derivation for KKR. This dramatically saves the derivation, and
furthermore the embedded idea ofmultiple scatteringwithin pe-
riodical cells is also clearer.

APPENDIX D. HUYGEN'S PRICIPLES APPLIED USING
PERIODIC DYADIC GREEN'S FUNCTIONS
For MST-BBGF, the matching of boundary conditions is not on
the surface of the scatterer but on the surface of the enclosing
sphere using the derived T matrix coefficients of the scatterer.
The surface fields on the spherical surface are essentially ana-
lytical. Thus, it is also convenient to use the surface fields and
Huygen’s principle to derive the band fields everywhere out-
side the circumscribing sphere. In this section, we derive the
equations of the Huygen’s principle. Consider a periodic lat-
tice and let the lattice constant be a. Let the cells be labeled

as (m,n, l). All the cells have the same scatterer placed in a
background medium. Consider the (0, 0, 0) cell, the scatterer
can be of irregular shape and is enclosed by a circular boundary
SB of radius b. Let SC be the boundary of the (0, 0, 0) cell. We
use V1 to denote region inside SB and V0 be the region outside
the scatterer but within the cell (0, 0, 0). Let Ē be the electric
field of the vector wave function in V0. It satisfies the wave
equation.
Apply vector Green’s theorem from [23],∫

V

dr̄
(
P̄ · ∇ ×∇× Q̄− Q̄ · ∇ ×∇× P̄

)
=

∮
dSn̂ ·

(
Q̄×∇× P̄ − P̄ ×∇× Q̄

)
(D1)

where n̂ is outward normal.
Let

P̄ = Ē (r̄′) (D2)

Q̄ = G0 (k, r̄, r̄
′) · c̄ (D3)

G0(k, r̄, r̄
′) is free space dyadic Green’s function and c̄ is arbi-

trary constant vector.

∑
σ

∮
SBσ

dS′
[
G0 (r̄, r̄

′) · n̂′ ×∇′ × Ē (r̄′)

+∇×G0 (r̄, r̄
′) · n̂′ × Ē (r̄′)

]
= Ē (r̄) for r̄ in V0 of (0, 0, 0)
= 0 for r̄ in V1 of (0, 0, 0) (D4)

where SBσ is the circular boundary of scatterer in cell σ.

D.1. Translate
∮
SBσ

to (0, 0, 0) Cell

r̄′ = r̄′′ + R̄σ (D5)
r̄′ on SBσ means r̄′′ on SBσ of (0, 0, 0), and R̄σ is the distance
between center of cell σ and the origin.

∑
σ

∮
SBσ

dS′′
[
G0

(
r̄, r̄′′ + R̄σ

)
· n̂′′ ×∇′′ × Ē

(
r̄′′ + R̄σ

)

+∇×G0

(
r̄, r̄′′ + R̄σ

)
· n̂′′ × Ē

(
r̄′′ + R̄σ

)]
= Ē (r̄) for r̄ in V0 of (0, 0, 0)
= 0 for r̄ in V1 of (0, 0, 0) (D6)

D.2. Bloch's Theorem
The Bloch’s theorem is applied to represent electric field using
phase shifts between cell centers.

Ē
(
r̄′′ + R̄σ

)
= Ē (r̄′′) exp

(
ik̄i · R̄σ

)
(D7)
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∮
SB

dS′′

[∑
σ

G0

(
r̄, r̄′′ + R̄σ

)
exp

(
ik̄i · R̄σ

)
· n̂′′ ×∇′′

×Ē (r̄′′) +∇×
(
G0

(
r̄, r̄′′ + R̄σ

)
exp

(
ik̄i · R̄σ

))
· n̂′′

×Ē (r̄′′)
]

= Ē (r̄) for r̄ in V0 of (0, 0, 0)
= 0 for r̄ in V1 of (0, 0, 0) (D8)

D.3. Lattice Dyadic Green's Function
The electric field is now shifted to (0, 0, 0) cell, and we then
wrap up the summation of dyadic free space Green’s function
with phase shift into lattice dyadic Green’s function.

GP (r̄, r̄′′) =
∑
σ

G0

(
r̄, r̄′′ + R̄σ

)
exp

(
ik̄i · R̄σ

)
(D9)

The simplified integral equation is∮
SB

dS′
[
iωµGP (r̄, r̄′) · n̂′ × H̄ (r̄′) +∇×GP (r̄, r̄′)

·n̂′ × Ē (r̄′)
]

= Ē (r̄) for r̄ in V0 of (0, 0, 0)
= 0 for r̄ in V1 of (0, 0, 0) (D10)

where we can also wrap up free space Green’s function with
phase shift for lattice Green’s function gP [15] to give the fol-
lowing lattice dyadic Green’s function.

GP (r̄, r̄′′) =

(
I +

1

k2
∇∇

)
gP

(
k, k̄i, r̄, r̄

′′) (D11)

Assuming inversion symmetry for k̄i and R̄s.

gP
(
k, k̄i, r̄

)
= gP

(
iξ, k̄i, r̄

)
− ξ2 + k2

2ξ

(
d

dξ

)

gP
(
iξ, k̄i, r̄

)
+

(
ξ2 + k2

)2
8ξ

(
d

dξ

1

ξ

d

dξ

)
gP

(
iξ, k̄i, r̄

)
+

(
ξ2 + k2

)3
Ω

∑
s

exp
(
ik̄is · r̄

)
[

1

(k2is + ξ2)
3 − (k2is − k2)

]
(D12)

where

gP
(
iξ, k̄i, r̄

)
=
∑
s

exp
(
−ξ

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣ exp
(
ik̄i · R̄s

)
(D13)

Note that r̄ in gP (iξ, k̄i, r̄) is for r̄ − r̄′′ using notation in

GP (r̄, r̄
′′) for simplicity.

Without losing generality, we let r̄′′ be the origin.
Then

GP (r̄, 0) =

(
I +

1

k2
∇∇

)∑
s

exp
(
−ξ

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣
exp

(
ik̄i · R̄s

)
− ξ2 + k2

2ξ

(
d

dξ

)(
I +

1

k2
∇∇

)∑
s

exp
(
−ξ

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣ exp
(
ik̄i · R̄s

)
+

(
ξ2 + k2

)2
8ξ(

d

dξ

1

ξ

d

dξ

)(
I +

1

k2
∇∇

)∑
s

exp
(
−ξ

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣
exp

(
ik̄i · R̄s

)
+

(
ξ2 + k2

)3
Ω

∑
s

[
1

(k2is+ξ2)
3
(k2is−k2)

]
(
I − k̄isk̄is

k2

)
exp

(
ik̄is · r̄

)
(D14)

For∇×GP (r̄, 0) · ā, we know∇× (If(r̄)) · ā = ∇f(r̄)× ā.

∇×GP (r̄, 0) · ā = ∇
∑
s

exp
(
iα

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣ exp
(
ik̄i · R̄s

)

×ā− ξ2 + k2

2ξ

(
d

dξ

)
∇
∑
s

exp
(
iα

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣ exp
(
ik̄i · R̄s

)

×ā+

(
ξ2 + k2

)2
8ξ

(
d

dξ

1

ξ

d

dξ

)
∇

∑
s

exp
(
iα

∣∣r̄ − R̄s

∣∣)
4π

∣∣r̄ − R̄s

∣∣
exp

(
ik̄i · R̄s

)
× ā+

(
ξ2 + k2

)3
Ω

∇
∑
s

[
1

(k2is + ξ2)
3
(k2is − k2)

]
exp

(
ik̄is · r̄

)
× ā (D15)

With the known surface field, n̂′× Ē(r̄′) and n̂′×H̄(r̄′) calcu-
lated from the eigen-vector, we can apply them to the integral
equation using Huygen’s principles shown here to calculate the
electric fields outside the scatterer.
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