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A Novel Passive Millimeter Wave Image Noise Suppression Method
Based on Pixel Non-Local Self-Similarity

Jin Yang! 2 and Yuehua Lil "

Abstract—To solve the problem of mixed noise in a passive millimeter-wave (PMMW) imaging system
that affects object detection, recognition, and classification, this paper proposes a blind denoising
algorithm based on pixel non-local self-similarity (PNSS) prior to PMMW images. Firstly, an adaptive
filtering algorithm is introduced, utilizing PNSS prior to estimating the noise intensity and improving the
problem of noise residual caused by parameter uncertainty in traditional filtering processes. Secondly,
a three-level joint denoising algorithm is developed, accompanied by an iterative regression algorithm
to effectively filter the mixed noise in PMMW images while preserving image contours. Finally, the
effectiveness of the proposed method is demonstrated through a comparison with patch similarity-based
prior denoising methods and high-dimensional mixed noise denoising methods. Experimental results
substantiate that the proposed PNSS blind denoising method successfully suppresses mixed noise in
PMMW images, enhances subjective visual perception, and presents a novel approach for denoising
under various PMMW imaging mechanisms.

1. INTRODUCTION

Passive Millimeter Wave (PMMW) imaging systems achieve imaging by detecting electromagnetic
thermal radiation from natural scenes and utilizing the difference in the energy distribution of millimeter
wave radiation between the target scene and the object. Thanks to the ability of millimeter waves to
penetrate complex environments such as clouds, smoke, dust, and clothing, PMMW imaging systems
can obtain information that is inaccessible to infrared (IR) and optical detection. At the same time,
PMMW imaging systems do not actively emit electromagnetic waves, making them highly covert and
difficult to detect. Therefore, they are widely used in security imaging, military reconnaissance, and
battlefield environment sensing [1-5]. However, practical PMMW images often suffer from severe noise,
low resolution, and blurring compared to IR and optical images. These issues arise from factors such as
antenna aperture size, diffraction effects, and partial coherence between targets, making it challenging
to identify targets effectively from the scene [2]. Therefore, noise suppression is one of the critical
challenges for PMMW imaging systems.

Currently, there are two main research focuses on PMMW image denoising. One approach involves
modifying the inversion algorithm for different imaging mechanisms [6-10], while the other aims to
improve image quality based on image features [2,11-13]. For instance, an adaptive reconstruction
method has been proposed for the total-power radiometer imaging mechanism [8]. This method operates
directly on the raw samples from the sensor and constructs each pixel via a smoothing Kernel, resulting
in improved contrast and reduced noise. Another approach is the adaptive clean algorithm proposed
in [9], which corrects the magnitude of the target and selects a matching point spread function (PSF)
based on the azimuth of the target. This method enhances the information of the target in the near-field
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synthetic aperture imaging mechanism. Additionally, a real-time calibration method for the visibility
function of millimeter-wave passive imaging has been proposed in [10]. This method effectively corrects
the additive error of the visibility function and is applied to the hybrid structure composed of a phased
array and synthetic aperture. However, these methods are specific to certain imaging mechanisms
and lack generalization. Therefore, there is a need to enhance PMMW image quality based on image
features.

Previous studies have shown that the non-local self-similarity (NSS) prior approach is advantageous
for improving image quality [14,15]. Building upon the patch non-local self-similarity prior theory,
previous works [11,12] have improved Non-local Means (NLM) and Block-Matching and 3D filtering
(BM3D) algorithms to suppress Gaussian noise in PMMW images. These methods have some
improvements for PMMW images. However, in the actual imaging process of the PMMW imaging
system, in addition to thermal noise, there is impulsive noise caused by uneven power density and strip
noise caused by channel inconsistency and antenna baseline position errors. Therefore, it is necessary
to suppress impulse noise and strip noise while filtering out thermal noise. Considering that the pixel
is the smallest component of a natural image, the NSS prior can be extended from the patch level to
the pixel level. Previous works [16-19] have demonstrated the effectiveness of using pixel non-local self-
similarity (PNSS) and proposed the non-local Haar (NLH) algorithm that achieves superior denoising
performance on real-world quasi-Gaussian noise images and remains competitive with state-of-the-art
deep learning methods [16]. In this paper, we extend the concept of PNSS to PMMW image restoration
and propose a three-level joint denoising algorithm based on PNSS. Experimental results show that
our proposed method effectively improves the quality of PMMW images and enhances subjective visual
perception. In summary, our major contributions are manifold:

(i) We introduce the theory of pixel non-local self-similarity for preprocessing PMMW images. Based
on the PNSS prior, and we accurately estimate the noise level and propose a novel blind denoising
method to remove noise from PMMW images.

(ii) In the process of suppressing mixed noise, we propose a three-level joint denoising model and
utilize an iterative regression algorithm to effectively eliminate mixed noise in PMMW images
while preserving image texture and contours.

(iii) Experimental results on optical images and real PMMW images demonstrate that our proposed
method outperforms traditional methods in terms of performance.

(iv) This research provides a new technique for reducing mixed noise in PMMW images obtained from
all imaging mechanisms.

The rest of this paper is organized as follows. Section 2 introduces the theory of pixel non-locally
self-similarity. Section 3 provides a detailed description of the mixed noise filtering algorithm. Section 4
presents simulation results for optical and PMMW images. Finally, Section 5 concludes this paper.

2. PIXEL NON-LOCAL SELF-SIMILARITY THEORY

Non-local self-similarity is the essence of successfully achieving image denoising. Both the classical
NLM and BM3D algorithms utilize patch-level self-similar priors for denoising [14, 15] while ignoring
their intra-patch variance. As the smallest element in a natural image, pixels also exhibit certain
similarities among different pixels within the same patch. Therefore, in addition to searching for similar
patches, further exploration of similar pixels can facilitate a priori denoising at the pixel level.

The search for non-local similar pixels first necessitates finding non-local similar patches.
Subsequently, each similar patch is reshaped into a column vector, and the column vectors of all similar
patches are aggregated into a similar patch matrix. For each row of pixels, situated at the same position
of different patches, the patch-level non-local prior ensures that the pixels in the same row are similar
to a certain degree. Finally, as suggested by [16], we calculate the Euclidean distance between different
rows to measure pixel similarity. We select the rows with the closest similar pixels to form a similar
patch matrix. For a noisy image, Table 1 illustrates the process of searching for similar pixels.
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Table 1. Searching non-local similar pixels.

Input: y, € R*** (PMMW reconstruction image)

1) Extract local patches
Partitioning the PMMW image y, into interlocking local patches y; € R¥** 1 € (1,---,Y).
(Assume there are total Y patches, the size of each local patch is w x w.)

2) Search similar patches

For a reference patch y; ;, we calculate Euclidean distance D, ;; between y; ; and y;,; (other patches in a window
of size C x C around y; ;) as

Duij = llyri — yullo- (1)
Select d — 1 most similar patches and stretch each local patch as a column vector w x w — w? x 1.

Stack the d most similar patches (including itself) column by column to form a noisy patch matrix as

1,1 1,d
Y, T

2
Y=y, yd = : : € RY x4, (2)

1 2.d

w2
Y
3) Search similar pixels

For the i — th row yi,i € (1, ... w2), we calculate the Euclidean distances d;j between 3 and ylj (other rows in
Y:) as

4 = [|vi — ot (3)
Select g rows with the smallest distance in Y; and aggregate them as a pixel similarity matrix:
yli1 A ylil’d
ve=1 0 [er™ (4)
yligvl syl

where {i1,...,ig} C {1,...,w*}i€e (1,---,w?),l€(1,---,Y).
4) Repeating 3) to find all similarity matrices in Y;.
5) Repeating 2) and 3) to find all similarity matrices for Y patches.

Omit index i, the pixel similarity matrix is abbreviated as Y;7.

Output: Y € RY *d (the pixel similarity matrix)

3. THE PROPOSED METHOD

In this section, we introduce our proposed Pixel Non-local Self-Similarity (PNSS)-based method for
blind denoising of PMMW images. The method consists of three parts: 1) Noise and signal intensity
estimation (Section 3.1), 2) Harr Transform domain Wiener soft threshold denoising and adaptive
median filtering (Section 3.2), and 3) Edge enhancement (Section 3.3). The structure of the method is
illustrated in Fig. 1.
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Figure 1. The structure diagram of PMMW image mixed noise suppression.

3.1. Noise Level and Signal Intensity Estimation
3.1.1. Noise Level Estimation

Accurate noise estimation can enhance the precision of various filtering parameters, enabling blind
denoising. Given that the selected g rows of pixels in the pixel similarity matrix are very similar, we
use the standard deviation of the Euclidean distance between g rows to calculate local noise intensity:

) >3 (@)

To increase method robustness, we expand noise level estimation from local to global. We estimate
the local noise level for all noisy similar pixel matrices in the image and set the global noise intensity
as the mean of local noise intensities: v

1
O'g = ? Z aj.
=1

In strongly textured regions, distinguishing between signal and noise is challenging, leading to
possible overestimation of noise intensity. To address this, we sort local noise estimates from smallest

()

(6)
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to largest, discard the maximum local noise intensity, and calculate the modified global noise level as

R,
bg=v—7 20 (7)
=1
where 6; is the sorted local noise intensities.

3.1.2. Local Signal Intensity Estimation

Estimating signal intensity is critical for determining subsequent Wiener filter coefficients. We achieve
simple signal intensity estimation through two-stage hard threshold denoising in the Haar transform
domain. First, we apply the Lifting Haar Wavelet Transform (LHWT) on the pixel similarity matrix
to generate a noise coefficient matrix as

Gl =T (7)), (8)

where T' () denotes the orthogonal LHWT.
We then perform the first hard threshold filtering on the noise coefficient matrix via

P 0 CY (i, ) < |y —my| 62
where f1,, and m,, represent the mean and median pixel intensities of Y}, and i € (1,--- ,g),j € (1,--- ,d)

denote the row and column indices of C’f .

According to wavelet theory, the coefficients of the last two rows (excluding the first column) of
the noise coefficient matrix fall within the high-frequency band [20], which is likely noise and should be
filtered out. To this end, we perform a second hard threshold filtering via

- CY (i, j
ety =4 T o (10)
0 (i=g-19) & #1)
We approximate the filtered noise coefficient matrix as the local signal intensity. To better retain
detail information, we adopt the concept of iterative regression and obtain the noisy image y), as

Yk = WY(k-1), + (1 =) yn, (11)

where k € (1,--- ,K), and « is the iteration coefficient.

3.2. Mixed Noise Suppression

This section details three stages of blind PMMW image denoising using Wiener filtering and median
filter. Initially, we apply Wiener soft threshold blind denoising on the noise coefficient matrix in the
Haar transform domain. We construct the Wiener filter coefficients using the previously estimated
signal intensity in (10) and noise intensity in (7), and perform Wiener filtering on C} in (8):
-2
|
Cl=+—35 cy. (12)
‘Clg‘ + &2

Then, we perform the inverse LHW'T on the filtered coefficient matrix to obtain the denoised pixel
matrices via

Y] =17""(C)), (13)

where T71(---) denotes the inverse LHWT.

We aggregate all the denoised pixel matrices to create the denoised image ¥,,.

On analyzing the nature of Wiener filtering, we observe its notable denoising effect on thermal
noise with statistical regularity. However, due to the existence of mixed noise, impulse noise and strip
noise still persist after Wiener filtering. To effectively remove the mixed noise in the PMMW images,
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we opt for the median filter, which possesses a significant filtering effect on impulse noise. In traditional
median filtering, the fixed size of the filter window often limits the denoising effect under severe noise
pollution. To enhance the denoising effect, we automatically adjust the filter window W based on global
noise intensity and perform the modified median filter as

Y = med{y, (i —m,j—n),(m,n€W)}. (14)

In order to maintain image details, the Wiener soft threshold filtering utilized in (12) specifically
targets the noise coefficient matrices Cf of the original noisy image y,. It does not operate on the
coefficients of the denoised image y(y), obtained after two-stage hard-threshold filtering. Therefore,

some noise residue is typically left after Wiener and median filtering. To achieve a superior denoising
outcome, we perform a second Wiener soft threshold filtering as

=g
C, = ‘2 Cy, (15)

=g —
where C; is the noise coefficient of y, which has been preprocessed with median filtering and a
preliminary Wiener filter.
— . —g
We obtain the denoised pixel matrix yf by performing inverse LHWT transforms for C;. Lastly,
we aggregate all the denoised pixel matrices to form the final denoised image .

3.3. Edge Enhancement

After three stages of denoising, the mixed noise is removed while the contour information is blurred. For
PMMW images with less texture, contour information is the key to PMMW image processing compared
with enhancing texture information. As the edge in the basic denoised image y is still blurry, and some
serious noise has not been removed completely, we perform an enhancement algorithm based on the
Laplacian of Gaussian (LoG) operator as follows:

glog = g + g * V2G7 (16)

0’G  9°G 1 z? + 9 _a?4y?
V2G5 — - —9 205067 | 17
0z + o2 2moroat ( OLoG? >€ ol (17)

where o7.¢ is the Gauss standard deviation.

3.4. Complexity Analysis

The proposed method contains three steps: 1) in Section 3.1, the complexity of patch matching is
O(abC2w2§, while the complexity of pixel matching is O(abdw?); the complexity of noise estimation
is O(abgw?); and the complexity of signal intensity estimation based on LHWT is O(abgdw?). Since
the above process iterates K times, the complexity of Section 3.1 is O(abKw? * max(C?, dw?, gd)); 2)
in Section 3.2, the complexity of Wiener soft threshold filtering is O (abdw?), and the complexity of
adaptive median filtering is O(abW log(W)); 3) in Section 3.3, the complexity of image enhancement is
O(abW?). Since we have C' > W, C? > gd, the first step has the highest complexity, and the complexity
of our method is O(abKw? x* max(C?, dw?)).

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we conduct experiments on multiple images to verify the effectiveness of the proposed
filtering algorithm. (1) Optical images: Select two classic digital images (Lena, Pepper), which are
affected by varying standard deviations of Gaussian noise and different probabilities of impulse noise. (2)
Real PMMW images: Real PMMW images were acquired using different mechanisms (Dicke Radiometer
Imaging System, Interferometric Synthetic Aperture Radiometer Imaging System) in the 3 mm band.
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4.1. Implementation Details

All following experiments are done under the MATLAB r2020a environment. The proposed method
includes 8 main parameters, where patch size is w; number of similar patches is d; number of similar
pixel rows is g; the Gauss standard deviation is o.g; window size for searching similar patches is C;
regularization parameter is «; iteration number is K; and the median filter window is W. We set
a = 0408, K =4 for 0 < 64 <30, a = 0.618, K = 3 for 6, > 30, W = 3 x 3 for 0 < 64 < 60, and
W =5 x5 for 64 > 60. In order to perform Haar transform, d and g should be set to powers of 2.
Since searching for too many pixels or patches may reduce the accuracy of non-local self-similarity, we
set d = 16 and g = 4 as suggested by [16]. The performance increases with the increase of patch size w
and window size C. To achieve a balance between performance and speed, we set w = 10 and C = 40.
The details of other parameters are set as shown in Table 2.

Table 2. Parameters of our proposed method.

Parameter w d g opoag C «o K w
0<0,<30 0.408 4 3x3
Value 30<46,<60 10 16 4 1.6 40 0.618 3 3x3
G4 > 60 0.618 3 5x5

The Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measurement (SSIM) [21]
are used as objective evaluation criteria to evaluate the performance of the proposed methods. In
evaluating PMMW images, due to the lack of ground truth PMMW images, we adopt the method
noise [14] proposed by Buades et al. as a subjective evaluation criterion for indirectly judging the
effectiveness of the denoising algorithm. The method noise represents the information filtered out
during image processing and can be defined as

n(Dp,u) = u— Dp(u), (18)

where w is the noisy image, and Dy, is the filtering operator.

Moreover, the different methods include Non-local Means (NLM), Block-Matching and 3D (BM3D),
Mean Filtering (MF), Non-local Haar (NLH), Adaptive Manifolds High-dimensional Mean Median Filter
(AM-HMF) which are used to compare their performance with that of the proposed algorithm.

4.2. Experiments on Optical Images

The first experiment was performed on the standard images corrupted with different noise levels. Table 3
summarizes the PSNR and SSIM scores of the denoising obtained by some representative state-of-the-
art methods on the optical images. The best results are highlighted in bold. Furthermore, Fig. 2 shows
the trend of PSNR and SSIM with noise intensity.

It is evident that PSNR and SSIM values of the six algorithms tend to decrease with increasing
noise intensity, indicating a decline in algorithm performance. The MF algorithm operates inconsistently,
effectively removing noise at low levels but experiencing a significant performance drop with increased
noise intensity. On the other hand, the denoising capabilities of the BM3D and NLH algorithms remain
relatively stable, with PSNR and SSIM values initially decreasing and then increasing with higher noise
intensity. This can be attributed to their superior denoising abilities for Gaussian noise. However, these
benefits are compromised when dealing with mixed noise, particularly noticeable in the NLH algorithm.
Meanwhile, the NLM and AM-HMF algorithms exhibit a stepwise degradation in performance as the
noise intensity increases. This degradation is primarily caused by the noise component dominating
the image, making it progressively more challenging to restore the original image. Despite the adverse
effects of strong noise on image denoising, the algorithm proposed in this study consistently outperforms
the others. Its denoising performance for mixed noise is not limited to a specific noise intensity level.

Figures 3 and 4 display the qualitative results of the visual quality of the six methods. Due to space
limitations, here we present the denoising results for the weak and strong noise cases. As observed in
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Table 3. Quantitative results (PSNR and SSIM) of a comparative study on the optical images.

Noise level Lena Pepper

Std (o) 10 20 30 40 50 60 10 20 30 40 50 60
Probability (%) 1 2 3 4 5 6 1 2 3 4 5 6
PSNR comparison (dB)

MF 31.29 2791 25.17 2297 21.16 19.64 30.76  27.61 25.00 22.86 21.10 19.62
NLM 28.51 26.60 25.87 25.20 24.21 23.21 2776  25.95 2542 24.88 23.87 22.77
BM3D 27.43 27.58 27.67 27.05 26.77 25.56 26.61 26.64 26.76 26.12 25.38 24.11
NLH 25.33  23.50 23.96 24.41 24.84 24.70 25.24 23.50 23.96 24.41 24.84 24.70
AM-HMF 29.94 29.15 28.26 27.39 25.58 22.84 29.47 28.68 27.29 26.30 24.88 22.95
The proposed 33.03 31.22 29.84 28.59 27.48 26.51 32.14 30.54 29.19 27.99 26.89 25.90
SSIM comparison

MF 0.979 0.958 0.925 0.884 0.836 0.784 0.978 0.957 0.926 0.888 0.844 0.798
NLM 0.966 0.947 0.935 0.925 0.908 0.888 0.960 0.942 0.932 0.921 0.904 0.884
BM3D 0.956 0.955 0.957 0.953 0.953 0.943 0.951 0.946 0.945 0.940 0.934 0.921
NLH 0.934 0.900 0.904 0.912 0.921 0.921 0.933 0.895 0.897 0.898 0.902 0.899
AM-HMF 0.975 0.971 0.965 0.958 0.937 0.885 0.972 0.966 0.954 0.944 0.925 0.888
The proposed 0.986 0.980 0.973 0.966 0.957 0.949 0.983 0.976 0.967 0.957 0.948 0.938

20 -

—#— Proposed —%— AM-HMF

BM3D

=
» 0.85
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0.8

0.75

—#— Proposed —%— AM-HMF
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1 2 3 4 5 6 2 3 4 5 6
Noise intensity K Noise intensity K
(a) (b)

Figure 2. Comparison of performance between six methods for Lena image. (a) PSNR, (b) SSIM.

Fig. 3, the NLM, BM3D, and NLH methods successfully reduce Gaussian noise in weak noise images,
but struggle to filter impulse noise effectively. In contrast, the MF method effectively eliminates impulse
noise while retaining Gaussian noise. The AM-HMF method, utilizing a high-dimensional mean median
filter and adaptive manifolds, exhibits the capability to address most noise but results in blurred image
details and edges. Our method employing a three-stage blind denoising algorithm, effectively removes
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(h)

Figure 3. The performance of six methods for Lena image with weak noise (o = 20, Probability = 2%).
(a) Original image, (b) noisy image, (c) denoised by NLM, (d) denoised by BM3D, (e) denoised by MF,
(f) denoised by NLH, (g) denoised by AM-HMF, (h) denoised by the proposed method.

Figure 4. The performance of six methods for Pepper image with strong noise (o = 40, Probability =
4%). (a) Original image, (b) noisy image, (c¢) denoised by NLM, (d) denoised by BM3D, (e) denoised
by MF, (f) denoised by NLH, (g) denoised by AM-HMF, (h) denoised by the proposed method.
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most of noise and yields the most favorable denoising outcomes. Moving on to the strong noise image
presented in Fig. 4, the MF method fails to sufficiently eliminate most noise, resulting in unsatisfactory
results. The NLM and BM3D methods perform better than MF, but the outcomes are still suboptimal.
NLH, despite its proficiency in reducing Gaussian noise, retains more impulse noise. The denoised
image appears overly smoothed with the AM-HMF method. In contrast, our method achieves greater
effectiveness by removing most noise while preserving edge and structural information.

@ © B @ (h) i
1) el) (f1) (g1) (h1) (i1)

Figure 5. The performance of the proposed algorithm for real PMMW images obtained by the Dicke
radiometer imaging system. (a) Reference scene, (b) target scene, (c) real PMMW image, (d) denoised
by NLM, (e) denoised by BM3D, (f) denoised by MF, (g) denoised by NLH, (h) denoised by AM-HMF,
(i) denoised by the proposed method, (d1)—(il) the corresponding method noise of different methods.
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4.3. Experiments on Real PMMW Images

The second experiment was performed on Real PMMW Images acquired through various imaging
mechanisms. Fig. 5 and Fig. 6 demonstrate the performance of our denoising method.

The visual quality results of the six methods for PMMW images and the corresponding method noise
are displayed in Fig. 5. As shown in Fig. 5, the MF method denoises poorly and retains most of the noise.
In contrast, the NLM, BM3D, and NLH methods successfully reduce most of the noise in the PMMW
image, but filtering effectiveness is limited for stripe noise and strong noise points. The AM-HMF
method is more effective, but there is still residual noise, and the edge blurring is obvious. The proposed
method effectively eliminates most noise in the PMMW image while preserving edges. Furthermore, we
have successfully identified a metal ring (Fig. 5(i)), the structure of an automobile (Fig. 6(d1)), semi-
concealed metal disk (Fig. 6(d2)), and distant heater (Fig. 6(d3)) in the denoised images, rendering our
method useful for specialized engineering applications, such as target identification, security imaging,

(b3) (c3) (d3)

Figure 6. The performance of the proposed algorithm for real PMMW images obtained by
interferometric synthetic aperture radiometer imaging system. (al) Reference scene: car at a distance
of 6m, (a2) reference scene: human carrying semi-concealed metal disk at a distance of 3.3m, (a3)
reference scene: heater at a distance of 5m, (bl)—(b3) the corresponding target scene, (c1)—(c3) the
corresponding real PMMW images, (d1)—(d3) the corresponding denoised images by our method.
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and military reconnaissance. Therefore, our proposed method is practical and efficient for working with
real PMMW images.

5. CONCLUSIONS

This paper proposes a blind filtering algorithm based on pixel non-local self-similarity for mixed noise in
PMMW images. The algorithm performs the Haar transform on the pixel similarity matrix, achieving
a better combination of pixel self-similarity prior and transform domain methods. The introduced
noise and signal intensity estimation methods provide effective parameter estimation for subsequent
blind filtering. The proposed three-stage filtering model effectively suppresses mixed noise, and target
edges are enhanced using an image enhancement algorithm based on the Laplace Gaussian operator.
Experimental results demonstrate that the proposed filtering algorithm can filter out the mixed noise
of PMMW images and outline the target structure, providing a reference for the blind filtering of mixed
noise in PMMW images under various imaging mechanisms.

REFERENCES

1. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, “An accurate imaging algorithm for millimeter
wave synthetic aperture imaging radiometer in near-field,” Progress In Electromagnetics Research,
Vol. 141, 517-535, 2013.

2. Zhu, S., Y. Li, J. Chen, and Y. Li, “Passive millimeter wave image denoising based on adaptive
manifolds,” Progress In Electromagnetics Research B, Vol. 57, 63-73, 2014.

3. Cheng, Y., Y. Wang, Y. Niu, H. Rutt, and Z. Zhao, “Physically based object contour edge
display using adjustable linear polarization ratio for passive millimeter-wave security imaging,”
IEEE Transactions on Geoscience and Remote Sensing, 1-15, 2020.

4. Peng, R., J. Chen, Z. Liu, and Z. Guo, “Millimeter wave image super resolution using multichannel
depth convolution neural network,” Progress In Electromagnetics Research M, Vol. 113, 225-235,
2022.

5. Yang, H., Z. Yang, A. Hu, C. Liu, T. J. Cui, and J. Miao, “Source-free domain adaptive detection
of concealed objects in passive millimeter-wave images,” IEEE Transactions on Instrumentation
and Measurement, Vol. 72, No. 5005015, 1-15, 2023.

6. Fu, P., D. Zhu, F. Hu, Y. Xu, and H. Xia, “A near-field imaging algorithm based on
angular spectrum theory for synthetic aperture interferometric radiometer,” IEEE Transactions
on Microwave Theory and Techniques, Vol. 70, No. 7, 3606-3616, 2022.

7. Sun, D., Y. Shi, and Y. Feng, “Blind deblurring and denoising via a learning deep CNN denoiser
prior and an adaptive LO-regularised gradient prior for passive millimetre-wave images,” IET Image
Processing, Vol. 14, No. 17, 4774-4784, 2020.

8. Sarkis, M., “Adaptive reconstruction of millimeter-wave radiometric images,” IFEE Transactions
on Image Processing, Vol. 21, No. 9, 4141-4151, 2012.

9. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, “Adaptive CLEAN algorithm for millimeter wave
synthetic aperture imaging radiometer in near field,” IET Image Processing, Vol. 9, No. 3, 218-225,
2015.

10. Zhao, Y., W. Si, A. Hu, and J. Miao, “A real-time calibration method of visibility function for

passive millimeter wave imaging,” IEEFE International Conference on Microwave and Millimeter
Wave Technology, 2020.

11. Li, Y. and Y. Li, “Passive millimeter-wave image denoising based on improved algorithm of non-
local mean,” International Journal of Advancements in Computing Technology, Vol. 4, No. 10,
158-164, 2012.

12. Li, Y., Y. Li, H. Su, Z. Li, and S. Zhu, “Passive millimeter wave image denoising based on improved
version of BM3D,” Advances in Information Sciences & Service Sciences, Vol. 4, No. 22, 106113,
2012.



Progress In Electromagnetics Research M, Vol. 120, 2023 67

13.

14.

15.

16.

17.

18.

19.

20.

21.

Zhu, S., Y. Li, and Y. Li, “A PMMW image denoising based on adaptive manifolds and high-
dimensional mean median filter,” Optik, Vol. 126, No. 24, 5624-5628, 2015.

Buades, A., B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 60-65, 2005.

Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-
domain collaborative filtering,” IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080-2095,
2007.

Hou, Y., J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao, “NLH: A blind pixel-level non-
local method for real-world image denoising,” IEEE Transactions on Image Processing, Vol. 29,
5121-5135, 2020.

Hou, H., Y. Shao, Y. Geng, Y. Hou, P. Ding, and B. Wei, “PNCS: Pixel-level non-local method
based compressed sensing undersampled MRI image reconstruction,” IEEE Access, Vol. 11, 42389—
42402, 2023.

Xu, J., Z.-A. Liu, Y.-K. Hou, X.-T. Zhen, L. Shao, and M.-M. Cheng, “Pixel-level non-local image
smoothing with objective evaluation,” IEEE Transactions on Multimedia, Vol. 23, 4065-4078, 2021.
Zhu, R., X. Li, Y. Wang, and X. Zhang, “Medical image fusion based on pixel-level nonlocal self-
similarity prior and optimization,” International Conference on Database Systems for Advanced
Applications, 2022.

Sweldens, W., “The lifting scheme: A custom-design construction of biorthogonal wavelets,”
Applied and Computational Harmonic Analysis, Vol. 3, No. 2, 186200, 1996.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE Transactions on Image Processing, Vol. 13, No. 4,
600-612, 2004.



