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Bacteria Using Hyperspectral Transmission Microscopic

Imaging and Machine Learning
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Abstract—In this paper, we developed a hyperspectral transmission microscopic imaging (HTMI)
system for rapid detection of pathogenic bacteria, which can realize precise identification and
classification of mixed pathogenic bacteria to a single-bacterium level. The system works in trans-
illumination patterns and a self-developed dispersive hyperspectral imaging module is used as the
detection setup, providing spectral images with high SNR, and showing excellent performances with
spatial resolution of 2.19µm and spectral resolutions less than 1 nm. Hyperspectral microscopic imaging
of five types of bacteria in low concentration were performed. The merging spatial-spectral profiles of
individual bacteria for each species were extracted and utilized for species identification, achieving high
classification accuracy of 93.6% using a simple PCA-SVM method. Species identification experiments
of the mixed bacterial samples were further carried out, and the results demonstrate the validity and
capability of the system assisted with simple machine learning methods to be used as an effective
and rapid diagnostic tool for elaborate identification of mixed bacterial pathogen samples, providing
guidance for the use of correct antibiotics.

1. INTRODUCTION

Pathogenic bacterial infection is one of the challenging problems in the field of worldwide public health,
which can be a significant threat to the physical health and life safety of the infected patient without
prompt diagnosis and treatment [1–3]. Bacterial identification is a crucial process in the treatment of
pathogenic infectious diseases, serving as the foundation for developing appropriate treatment protocols
for patients, which is essential during clinical diagnosis [4, 5]. Currently, the conventional bacterial
identification methods are mainly based on plate culture, which has the advantage of low-cost and
reliable test results. However, it suffers from cumbersome and time-consuming steps including bacterial
cultivation, purification, amplification and staining, resulting in missing the optimal time for diagnosis
and treatment [6, 7]. The polymerase chain reaction (PCR) [8, 9] have strong specificity, but relies on
expensive detection kits and thus is usually only used in emergency situations. Some identification
approaches based on biosensors [10–12] are another research direction for rapid detection due to the
lightweight and portable advantages. But they face the challenges of low specificity and cannot make
effective judgments on complex electrical signals. How to achieve low-cost, high sensitivity, high
automation, and real-time rapid pathogen identification is still an urgent problem to be solved in
clinical medical diagnosis.

Hyperspectral imaging (HSI) combines two-dimensional (2D) images with spectra covering
thousands of narrow wavelength bands, forming a three-dimensional hyperspectral cube of image-
spectrum merging, with the advantages of non-invasive, non-destructive and label-free [13–15]. Some
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miniaturized hyperspectral or multispectral systems have been proposed and used in the field of food
safety assessment [16], disease diagnosis [17, 18], etc. For observation of microsamples and applications
in microbiology, combing HSI and optical microscopy is a common and effective method to improve
detection accuracy of samples at micron order or even nanoscale, and such hyperspectral microscopic
imaging (HMI) has been as reported in the literatures with a wide range of applications, e.g., microalgae
and fungi detection [19–21], tumor identification and growth stage assessment [22, 23], blood cells
identification [24, 25], and so on.

Recently, a few experimental studies of pathologic bacteria diagnosis based on HMI have been
reported [26–33]. Seo et al. have reported an identification method of Staphylococcus species using HMI
and classical classification algorithms [26]. However, the use of an acousto-optic tunable filter (AOTF)
for HMI greatly limits its spectral resolution to a few nanometers, which is insufficient for sophisticated
analyses of the inherent biochemical materials. In 2018, the above research group have performed
bacterial species classification based on the morphological characteristics in selected monochromatic
spectral images selected from HMI [27], which demonstrates that the accuracy of classifying bacteria
based only on morphological features of 2D images is limited (only 80.0%), and additional spectral
information can be helpful for improving the quality of classification. Liu et al. have proposed a method
to classify Gram-positive bacteria via HMI [28], but the characteristics spectral detection based on gram
staining can be operationally tedious and lacking of timeliness. C. Tao et al. have presented an AI-
assisted system for automagical identification of bacterial stains by combining HMI and self-developed
Buffer Net [29]. In 2023, the authors have further designed an end-to-end deep learning network,
called BI-Net, to extract species-dependent spectral fingerprints for pathologic classification [30]. In
general, current researches of bacterial classification are mainly based on HMI techniques coupled with
varying machine learning frameworks, e.g., 1D-CNN [31], Fusion-Net [32], and DenseNet [33], to achieve
rapid identification.Some other computational models have also been utilized in the field of cancer
identification [34, 35]. For identification of bacteria species, hyperspectral imaging is a cost-effective
and efficient method, which eliminates the need for expensive detection kits and facilities, as well as
time-consuming steps. It enables early detection at the cellular level. Limitations for such a method
include the need for extensive dataset collection, accurate sample labeling, and comparing to the “golden
truth” in order to improve the accuracy, sensitivity, and specificity of identification.

To further improve the classification accuracy, the development and optimization of the HMI system
to realize finer spectral resolution and higher spatial resolution is essential, which is the key of the
extraction and detection of robust species-dependent feature at single-cell level. In addition, previous
studies primarily emphasize the recognition of individual bacterial species. However, the identification
and classification of mixed bacteria in cases of multiple bacterial infection are critically important for
accurate clinical diagnosis.

In this paper, we demonstrated a hyperspectral transmission microscopic imaging (HTMI) system
for rapid identification and classification of mixed pathogenic bacteria to the single-cell level. Utilizing
the self-developed dispersive hyperspectral imaging module, the system shows excellent performance,
with spectral resolution less than 1 nm and spatial resolution of 2.19µm, respectively (using 40×
microscope objective magnification). We experimentally demonstrated the capabilities of the system by
performing classification experiments at five types of bacteria. Hyperspectral cube of single bacterium
was extracted from the hyperspectral microscopic images, and both the morphological differences and
spectra were then used as the species-dependent features for bacterial classification. Using a PCA-
SVM method, the average classification accuracy was found to be 93.6%. Furthermore, experiments of
classifying mixed bacterial samples were conducted, which demonstrates the effectiveness and capability
of the system as a rapid and reliable diagnostic tool for multiple bacterial infection, serving as guidance
for correct antibiotic treatments.

The paper is organized as follows: Section 2 introduces the principle of operation of the HTMI
system, as well as wavelength calibration and performance tests. In Section 3, classification experiments
of five types of pathogenic bacteria, as well as identification experiment of mixed bacterial samples,
were carried out based on the system combined with machine learning method. The paper ends with a
summary and outlook in Section 4.
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2. METHODS

2.1. System Setup and Calibration

Figure 1(a) shows detailed light path diagram of the system, with the physical photograph displayed
in Fig. 1(b). The operating principle of the HTMI system is as follows. The lighting source is a
high-power white LED with spectral range covering visible bands, which irradiates the sample in trans-
illumination mode to provide sufficient luminous flux and improve the imaging (signal-noise-ratio) SNR.
The transmission signal from the sample is then collected by a 40× magnification micro-objective
(Olympus, Lumplflw), passing through a tube lens (Thorlabs, TTL200), and is divided into two paths
by a beam splitter (BS). The combination of micro-objective and tube lens forms an infinity-corrected
optical system, where the tube lens is used for achromatization and aberration correction, which can
greatly improve the quality of microscopic imaging. One path of the light is reflected by the BS and
imaged at the CMOS plane to form a microscope image. The imaging plane of the common microscope
imaging module is conjugate with that of the hyperspectral imaging module, and thus the microscope
image can be used a conjugated image for the convenience of observation and adjustment of focusing.
Light from the other path of BS is converged and imaged at the plane where a 10µm width slit is
placed. One line region of the incident transmission light passing through the slit is then collimated
by a collimator lens, and dispersed and expanded in the spectral range 450–800 nm by the prism-
grating-prism (PGP), and then focused on the CMOS by an imaging lens. The spectrum of one line
region can be obtained. By moving the specimen holder in the x or y direction through the motion
stage, different line regions of the measurement sample can pass through the slit continuously and
corresponding spectral information can be collected. After the push-broom scanning of the motion
stage completed, the complete hyperspectral image can be obtained.

(a) (b)

Figure 1. (a) Light path diagram and (b) physical photograph of the self-developed microscopic
system.PGP: prism-grating-prism.

Spatial resolution has been characterized through performing hyperspectral imaging of a standard
resolution test plane (LBTEK, USAF1951 RB-J). Fig. 2(a) shows the image result of the standard
resolution test plane, with the enlargement pictures displaying the minimum line pairs. The minimum
resolution patterns can be seen clearly, indicating the spatial resolution of the system is around 2.19µm.

A Mercury Argon light is used as the calibration lighting source to illuminate the slit of the
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(a) (b)

(c) (d)

Figure 2. (a) Hyperspectral image of the standard resolution test board imaged by the system. (b)
Spectral image of the Mercury Argon Calibration Source. (c) Relationship between the wavelength and
pixel index as fitted by a second-order polynomial. (d) Spectral curve of the Mercury Argon Calibration
Source measured by our systemforthe wavelength calibration.

hyperspectral imager, and the line light is then dispersed and expanded in the spectral range 400–
800 nm by the PGP, and captured by the CMOS. The spectral image of the calibration lighting source
is shown in Fig. 2(b). The x-axis represents the spectral axis since the spectrum expands along this axis,
and the y-axis represents the spatial axis. The Mercury Argon lighting source emits multiple extremely
narrow spectral lines at 404.6 nm, 435.8 nm, 546.1 nm, 576.6 nm, and 578.6 nm, corresponding to the
five distinct lines seen in Fig. 2(b). The pixel indices for x corresponding to these wavelengths are 1410,
1311, 969, 876, and 870, respectively. The relationship between pixel index x and wavelength λ can be
described by a polynomial function [36]:

λ = a0 + a1x+ a2x
2 (1)

a0, a1, and a2 are the calibration coefficients, which are calculated to be [a0, a1, a2] =
[870.3,−0.3316,−1.7445e − 06] using the polynomial least square method [36]. The polynomial result
between the pixel index and wavelength value is shown in Fig. 2(c). Fig. 2(d) displays the spectral
curve of the calibration source obtained by the hyperspectral imager following spectral calibration.
The spectral resolution of the hyperspectral module depends on the maximum full width at half of the
spectral peak, which is less than 1 nm. High spatial and spectral resolution of HMI enable high-precision
morphological recognition and high-accuracy spectral differentiation of single micro bacteria.

2.2. Sample Preparation

Five types of food-borne bacterial pathogen, including Staphylococcus aureus (S. aureus), Escherichia
coliform (E. coli), Bacillus subtilis (B. subtilis), Pseudomonas aeruginosa (P. aeruginosa), and
Salmonella have been selected for the experiment. They were provided by Taizhou EnzeMedical
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Center, Zhejiang. The pathogen involved in our experiments stemmed from common samples in clinical
diagnosis, including urine, sputum, blood and tissue fluid.

All the bacteria were cultured on the blood plates in incubators for about 48 h to produce colonies.
The pure isolated colony extracted from the culture dish were dissolved into sterile deionized (DI) water.
And then, the bacterial solutions were centrifuged at 4500 rpm for 10min to separate the pathogens.
The bacterial pellets were re-suspended in 1.5mL of DI water. For hyperspectral microscopic imaging,
10µL of the suspension from each bacterial sample were dripped and spread at the center of a glass
slide, covered with a 20mm × 20mm coverslip, for observation, imaging and analysis at the next step.
Bacterial cultivations and isolation were carried out in a sterile condition to avoid sample pollution.
And all bacterial suspensions for testing are freshly prepared and used only on the day of preparation.
To minimize errors and ensure representative sampling, 50 sets of hyperspectral images were collected
for each type of bacterial samples using 5 groups of specimens. In total, for species classification
experiments, 250 (50 × 5) microscopic hyperspectral images for five different types of bacteria were
obtained and further analysis.

3. RESULTS AND DISCUSSION

In this section, we detailed a range of bacteria species detection and classification experiments using
our self-developed HTMI system. Hyperspectral imaging results of five types of bacteria and the
classification performance of bacterial species using PCA-SVM computational methods have been
displayed. We furthermore demonstrated the validity of the system to classify bacteria species in low
concentrations, as well as the capability of species identification of mixed bacterial samples. All the
experiments were carried out in the microbiology labat Taizhou Hospital for preparing and controlling
pathogenic bacteria.

3.1. Hyperspectral Imaging of Five Species of Bacteria

After sample preparation, the glass slide covered with bacterial samples was placed at the motion stage
and adjusted to be in focus for clear imaging. And then, the glass slide was moved at the intervals of
1µm with the horizontal displacement of the motion stage, and corresponding spectral data of the line
region was collected by the hyperspectral imaging module until the entire imaging region is scanned.
A total number of 1000 hyperspectral images from various line regions were collected in succession and
combined into a complete 3D hyperspectral cube following push-broom scanning. The total scanning
time for one hyperspectral imaging is about 30 s, which can be further reduced by increasing light source
intensity, and using a CMOS sensor with higher detection sensitivity and efficiency, etc. Fig. 3 displays
the hyperspectral images of the five types of bacteria, E. coli, S. aureus, B. subtilis, Salmonella, and P.
aeruginosa, from left to right respectively. The concentration of the bacteria is around 108/mL. Here,

Figure 3. Hyperspectral images of 5 different types of bacteria: E. coli, S. aureus, B. subtilis,
Salmonella, and P. aeruginosa. (Scale bar: 2µm).
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we utilized a 40× magnification microscope objective to observe the bacteria samples. The enlarged
pictures in Fig. 3 shows the morphological profile of single bacterium. The S. aureus circular in shape,
while the E. coli, B. subtilis, and P. aeruginosa are rod-shaped. The morphological features of different
bacteria species can be clearly seen and distinguished through the hyperspectral images, indicating the
high spatial resolution and excellent imaging performance of the system. By replacing the objective
with a higher magnification one, the difference in morphology and size characteristics of various bacteria
species can be magnified, though the demand of luminous flux will be largely increased as well.

Precise spectra and morphological features of bacteria can be automatically derived from the
hyperspectral images using regions of interest (ROI) separation. Taking the spectral image of E. coli
as an example, the spatial hyperspectral image of E. coli is transferred to a gray image, as shown in
Fig. 4(a). In our work, we identified the ROI by segmenting the single bacterium from the background
using a edge detection, erosion and dilation based on pixel gray value differences. The bacteria appear
as regions with relatively high gray value at the central area and low gray value at the edge, while
the background presents as the one with moderate gray value. An image filter is utilized to reduce
noise. Fig. 4(b) displays the segmented binary image, serving as the image mask template. After
imaging masking, each ROI was occupied by one individual bacterium and can be successfully extracted,
containing both spectral data and shape features. The transmission spectrum of one single bacterium
(in the ROI) can be calculated to be:

T (λ) =
1

Num

∑
x,y

H (x, y, λ), (x, y) ∈ ROI (2)

where the Num represents the number of pixels in a single bacterial region (one ROI), and H(x, y, z)
is the spectral data of a bacterial pixel at coordinate (x, y). The transmission spectra for a single
bacterium can be obtained from Eq. (2). Fig. 4(c) shows the spectral curves for about 20 individual
bacteria extracted from Fig. 4(b), from which one sees that the transmission spectra for the same type
of bacteria are quite similar.

(a) (b) (c)

Figure 4. (a) Gray spatial hyperspectral images of E. coli. (b) The binary image mask template. (c)
The spectra extracted from (b) for about 20 bacteria, each curve gives the transmission spectra for an
individual bacterium. (Scale bar: 2µm).

The transmission intensity spectra of the five types of bacteria are shown in Fig. 5(a), with spectral
range from 400 nm to 750 nm. Although material composition of bacteria is roughly the same, including
peptidoglycans, lipopolysaccharides, lipoproteins, etc., the differences in material content and biological
structure form unique spectral characteristics of specific type of bacteria species. The substances
produced by the interaction between the bacterial colonies and culture materials can also affect spectral
characteristics. For example, the P. aeruginosa produces pyocyanin on the blood plate, presenting blue-
green color. Figs. 5(b)–(f) show the normalized transmissivity spectra of five bacteria species at the valid
wavelength range of 500 nm–650 nm, respectively. These spectra are derived by dividing the intensity
spectra of the bacteria by the spectrum of lighting source, which can reduce the influence of lighting
source on bacterial spectra. Each expanded shadow indicates the deviation of different individual
bacteria of the specific type. The magnitude of the rise and decline varied among spectral curves of
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(a) (b) (c)

(d) (e) (f)

Figure 5. Verification of spectral characteristics of five different types of bacteria. (a) Transmission
intensity spectral curves of the five types of bacteria. Normalized transmissivity spectral curves with
the influence of the light source eliminated: (b) E. coli, (c) S. aureus, (d) B. subtilis, (e) Salmonella,
and (f) P. aeruginosa.

different types of bacteria. The spectra curves of P. aeruginosa are relatively smooth, with transmission
bands concentrated between 520 nm and 560 nm, indicating a dark green color characteristic. The
spectra of S. aureus have a transmission peak located around 580 nm, corresponding to a yellow color.

3.2. Classification of Bacteria Species Based on PCA-SVM Method

The spectral differences of bacteria species can serve as a basis of pathogens identification and
classification. To verify the validity of hyperspectral images in species classification, we compared
the classification performance using two data types as follows: 1) traditional gray images, containing
morphological information of the bacteria, e.g., extent area, perimeter, axis length and aspect ratio;
2) hyperspectral images with both spatial information and spectral characteristics. The two types of
datasets were used as input for a machine learning algorithm, separately.

Single gray bacterial imaging data was employed for bacterial classification. To reduce data
redundancy and maximize data variance, principal component analysis (PCA) approach is used to
transform the original imaging date into a smaller set of uncorrelated components, known as principal
components (PCs) [37, 38]. These components are ranked based on their variance, with the first
component capturing the most variance. After dimension reduction, support vector machine (SVM) [39–
41] is applied on the transformed data to classify and predict new instances. It finds an optimal
hyperplane that separates different classes in the reduced feature space. We employed a linear SVM
algorithm to classify the five categories of samples. The separation regions were determined using the
first two principal components (PC1 and PC2), as illustrated in Fig. 6(a). Several metrics, including
accuracy, sensitivity, and specificity are introduced to evaluate the performance of the classification
algorithm [42, 43]. Predictive accuracy measures the overall correctness of a classifier by calculating the
ratio of correctly predicted instances to the total number of instances. Sensitivity, or True Positive (TP)
Rate, is calculated by dividing TP by the sum of TP and false negatives (FN). Specificity is determined
by dividing TN by the sum of TN and false positives (FP). Precision can be used to evaluate the
reliability of the classifier in correctly identifying positive samples, which is calculated by dividing the
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number of TP results by the sum of TP and FP. The calculation expressions for these four metrics are
expressed as follows.

Accuracy =
TP + TN

TP + FP + FN + TN
(3a)

Sensitivity =
TP

TP + FN
(3b)

Specificity =
TN

TN + FP
(3c)

Precision =
TP

FP + TP
(3d)

The predictive accuracy provides an overall view of the classifier’s performance, while sensitivity
and specificity focus on different aspects of classification performance in terms of positive and negative
instances. The classification results based on the binary bacterial imaging data (using are presented
in Fig. 6(b). The results in the confusion matrix indicated that 80% accuracy was achieved.
Specifically,classification accuracies are 88.0%, 82%, 92.1%, 8.0%, and 54.0% for E. coli, S. aureus,
B. subtilis, Salmonella, and P. aeruginosa, respectively. Little improvement can be made by using more
principal components. The sensitivity and specificity to distinguish one species from other four species
were calculated to be 74.6% and 85.8%, respectively. The precision to distinguish one species (E. coli,
S. aureus, B. subtilis, Salmonella, and P. aeruginosa) from others were 83.0%, 89.1%, 67.8%, 100%,
61.4%. The receiver operating characteristic (ROC) curves are plotted in Fig. 6(c), and the area under
curve (AUC) for each classification scenario were 0.97, 0.97, 0.93, 1.00, and 0.85, respectively.

(a) (b) (c)

Figure 6. (a) Segmentation region of the gray images based on PC1 and PC2. (b) The confusion
matrix visualizes the accuracy obtained from PCA-SVM over 250 gray images of individual bacteria. 1:
E. coli ; 2: S. aureus; 3: B. subtilis; 4: Salmonella; 5: P. aeruginosa. (c) The ROC curves corresponding
to the SVM classifier in (a).

We also studied the bacterial classification performance using single hyperspectral bacterial imaging
data, which encoded both spatial characteristics and spectral features. After PCA processing, both the
two-dimensional image information and spectra are transformed into PCs. The first two PCs of each
dataset that corresponding to the same single bacterium are used as input for linear SVM classifier.
Due to the high dimensionality of the hyperspectral imaging dataset, visualizing the SVM segmentation
regions on a 2D plane can be challenging, and is thus omitted in Fig. 7. Fig. 7(a) shows the confusion
matrix and the average accuracy, sensitivity and specificity were calculated to be 93.6%, 93.6% and
98.4%, respectively. The precision to distinguish one species (E. coli, S. aureus, B. subtilis, Salmonella,
and P. aeruginosa) from others were 86.5%, 87.8%, 100%, 100%, 93.9%. The ROC curves are shown in
Fig. 7(b). In the segmentation results illustrated in Fig. 6(a), which using grey imaging data as input,
we see that the E. coli, B. subtilis, and P. aeruginosa can be hardly distinguished, as all three are
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(a) (b)

Figure 7. (a) The confusion matrix visualizes the classification accuracy obtained from PCA-SVM over
250 hyperspectral images of individual bacteria. 1: E. coli ; 2: S. aureus; 3: B. subtilis; 4: Salmonella;
5: P. aeruginosa. (b) The ROC curves corresponding to the SVM classifier.

rod-shaped with small morphological differences. Spectral data provides another dimension of feature
information relative to the biochemistry of the species, which can help greatly increase the accuracy of
identification and classification.

3.3. Bacteria Species Identification of Low Concentration Samples and Mixed Solution

Since the identification of single bacterium at nanoscale can be achieved using precise image-spectrum
merging information, as discussed in Section 3.2, we also considered the classification performance of
bacteria colonies/solutions in low concentration, as well as the mixed samples. Classification experiments
of low concentration bacteria were carried out. Dilute the bacterial samples from Section 3.2 by a factor
of 10, and apply 10µL of the diluted suspension for each species onto a glass slide for detection. Fig. 8
shows the hyperspectral images of the diluted suspension of E. coli, S. aureus, B. subtilis, Salmonella,
and P. aeruginosa, where the number of bacteria has significantly decreased. We collected a total of
250 hyperspectral images (50 sets per bacterial species) for species recognition and further analysis.
The classification results are presented in Fig. 9(a), where the results of the confusion matrix indicating
that the average accuracy calculated to be 9.4%, respectively. The ROC curves, with AUC of 0.97,
0.98, 0.99, 1.00, and 0.97, are plotted in Fig. 9(b). For bacteria colonies/solutions in low concentration,
light absorption of the biochemical substances is low, resulting in poor sensitivity for detection and
identification of single bacterium. However, benefiting from the high spectral-spatial resolution of the
self-developed hyperspectral microscopic system, high accuracy of above 90% can still be maintained in

Figure 8. Hyperspectral images of diluted suspensions of E. coli, S. aureus, B. subtilis, Salmonella,
and P. aeruginosa. (Scale bar: 2µm).
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(a) (b)

Figure 9. (a) The confusion matrix visualizes the classification accuracy achieved by PCA-SVM over
250 hyperspectral images of individual bacteria after diluting. 1: E. coli ; 2: S. aureus; 3: B. subtilis;
4: Salmonella; 5: P. aeruginosa. (b) The ROC curves corresponding to the SVM classifiers.

(a) (b) (c)

Figure 10. Species identification of mixed bacterial samples. (a) Gray hyperspectral image of the mixed
bacteria at the broad visible bands. (b) The image after the edge detection. (c) The classification
results (on the image mask) by the PCA-SVM method. E. coli, S. aureus, B. subtilis, Salmonella,
and P. aeruginosa were rendered in the different colors of red, turquoise, green, magenta, and yellow
respectively. (Scale bar: 5µm).

low concentration bacterial detection, which has great potential application values in clinical testing.
Furthermore, we have carried out species identification of mixed bacteria in a similar way. Five

diluted suspensions of different bacterial species were combined in equal amounts and placed in a
test tube, which was then shaken and dripped onto a glass slide for imaging. Fig. 10(a) displays the
transmission hyperspectral image of the mixed bacteria samples, which makes it difficult to distinguish
specific species. To extract single bacterial area from the image background, the imaging process
methods including edge detection, erosion and dilation were employed, resulting in the binary image
shown in Fig. 10(b). Both morphological and hyperspectral features of all bacteria can be extracted
and utilized for the classification labels of the PCA-SVM algorithm, with the identification results
depicted in Fig. 10(c). Based on the recognition outcomes, the five mixed bacteria species of E. coli,
S. aureus, B. subtilis, Salmonella, and P. aeruginosa were represented by the colors of red, turquoise,
green, magenta, and yellow, respectively. The concentration ratio of the five bacteria after PCA-SVM
classification is roughly equal, consistent with the results of previous equal mixing. Such an experiment
verifies the effectiveness of our rapid method in extraction, recognition, and classification of multiple
mixed bacteria, and has potential applications in bacterial infection analysis, providing diagnostic basis
for the use of correct antibiotics.
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4. SUMMARY AND OUTLOOK

In this paper, we have presented a hyperspectral transmission microscopic (HTMI) system for
elaborate hyperspectral imaging of pathogenic bacteria at single-cell level, which can realize precise
identification and classification of single and mixed bacterial samples using simple PCA-SVM method.
The system works in trans-illumination mode and utilizes a high-power LED as the light source,
thereby increasing the luminous flux and improving the SNR of the spectral images. The self-
developed dispersive hyperspectral module serves as the spectral detection setup, exhibiting outstanding
microscopy performance with spatial resolution of 2.19µm and spectral resolution less than 1 nm. In
the experiments, we have first performed hyperspectral microscopic imaging of five bacterial species in
low concentration. The single-cell hypercubes containing abundant morphological features and spectral
information were then extracted from the hyperspectral images, and used for species identification. With
the PCA-SVM method, we achieved a classification accuracy of 93.6% in distinguish one species from
four others. Additionally, we conducted species identification experiments with mixed bacterial samples,
and the results showcase the system’s practicality in clinical multiple bacterial infection diagnosis and
correct antibiotic treatments. The HTMI system provides a feasible and effective method for high-
accuracy, real-time detection and identification of single and mixed bacterial pathogen samples, which
is of great significant of clinical microbial confirmation and diagnosis.

In terms of further improvements, the sampling datasets can be expanded, and the classifying
models can be updated, allowing for identification of diverse bacterial species. Fluorescence
hyperspectral detection can be employed into the TMHI system to provide more specific information
relative to bacterial species, which can help improve the classification accuracy. The system can be
transformed from push-broom scanning to staring scanning mode by introducing a galvanometer, which
can reduce the impact of sample movement on image quality, as well as further greatly improve imaging
speed.
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