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Abstract—Methods of manual analysis for infrared image and temperature detection of power
transmission and transformation equipment typically have problems, such as low efficiency, strong
subjectivity, easy to make mistakes and poor real-time feedback. In this paper, a high temperature
anomaly detection method based on SegFormer in infrared image of power transmission and
transformation equipment is proposed. Many infrared images of power transmission and transformation
equipment are collected and preprocessed, and the temperature information of each infrared image is
read out using the DJI sdk tool to construct the temperature data matrix. In the segmentation stage,
the SegFormer network is used to segment the key parts of the power transmission and transformation
equipment to obtain the mask for detection. The maximum values of the temperature data in the
mask area are calculated, and the high temperature anomaly detection at the key parts of the power
transmission and transformation equipment is realized. The test results on the test set show that the
overall performance of the method is the highest as compared to other methods such as FCN, UNet,
SegNet, DeepLabV3+, and an automatic temperature recognition can be realized, which has important
practical value for the detection of high temperature anomaly at the key parts of power transmission
and transformation equipment.

1. INTRODUCTION

Transmission and transformation equipment is an important part of the power system, and plays an
important role [1] in the stable and safe operation of the power system. However, the equipment in
the operation process will be affected by the voltage and current, which may produce some damage. In
the long-term, the damage can make the equipment defective causing the temperature anomalies of the
defective parts, which leads to more serious accidents. This will not only affect the stable operation of
the power system, but also cause higher equipment maintenance costs. Therefore, timely and accurate
detection of these defects in the transmission and transformation equipment is of great importance for
the safety and stability of the power system and the reduction of economic losses.

At present, there are many methods for detecting the defects in power transmission and
transformation equipment. Among them, infrared imaging technology is widely used in the field of fault
diagnosis of power transmission and transformation equipment due to its non-contact, high precision,
safety and other advantages. In related studies people mainly determine whether the power transmission
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and transformation equipment in [2] the infrared image is in an abnormal state through digital image
processing methods and deep learning methods.

Detection methods based on digital image processing can be roughly divided into threshold
segmentation [3], edge detection [4] and region segmentation methods [5]. However, the rationality
of a specific method largely depends on the expert experience. Since the infrared image background
is complex and the shooting angle is different, the specific parameters need to be set according to the
characteristics of a single device in practical application, which makes low detection efficiency and strong
subjectivity. The reliability and real-time performance of the device state detection method is difficult
to improve.

In recent years, the rapid development of smart grid and deep learning technology [6] has brought
new ideas for infrared image extraction methods of power transmission and transformation equipment.
Convolutional Neural Network (CNN) [7], by simulating the visual cognitive mechanism of biological
brain neurons, can establish a mapping relationship between low-level signals and high-level semantics,

Figure 1. Flowchart of detecting temperature at the key parts of power transmission and
transformation equipment.
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which makes the field of image segmentation enter a new period of development. Infrared image
segmentation models based on deep learning have also been proposed by many scholars. Hou et al. [8]
adopted the method of feature extractor plus classifier to identify insulators, but the recognition speed
is slow and the accuracy is low. Sampedro et al. [9] used a semantic segmentation method to analyze
insulator string. Wang et al. used Mask R-CNN to extract insulator instances in infrared images, and
obtained the temperature distribution of each insulator through function fitting. The method realizes
the automatic diagnosis of infrared faults in power equipment [10].

However, the traditional CNN mainly focuses on local feature extraction and captures the local
information of the image through the convolution operation of the local receptive field. The global
context modeling cannot be realized, and the relationship between different positions in the image can
not be considered at the same time and the long-distance dependence in the image can not be better
captured. Transformer [11] is a kind of deep neural network with global context modeling capabilities
based on the self-attention mechanism, which was first used in natural language processing (NLP) field.
The great success of Transformer in NLP has also inspired similar approaches in computer vision that
have demonstrated similar or better performance [12] than applied convolutional neural networks. As
a result, the literature [13, 14] has used ViT (Vision Transformer) for semantic segmentation tasks.
The literature [15] points out that although ViT has high performance, there are still some problems,
which can only output single-scale features. Therefore, SegFormer architecture was proposed [15], which
showed good performance in the semantic segmentation task of public data sets.

Based on the above analysis, in this study, we aim to solve the problem of high temperature anomaly
detection through the infrared images at the key parts of power transmission and transformation
equipment. To this end, we put forward the following framework, as shown in Fig. 1: First, the
infrared images of power transmission and transformation equipment are collected and preprocessed,
and the temperature information of each infrared image is read by DJI sdk tool to build the temperature
data matrix; Then Segformer network was used to segment the key parts of the power transmission
and transformation equipment to get the prediction result mask; Finally, the maximum value of the
temperature data in the mask area is calculated, that is, the maximum value of the temperature of the
key part of the power transmission and transformation equipment is obtained.

Figure 2. SegFormer network.
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2. NETWORK STRUCTURE

As shown in Fig. 2, SegFormer is a simple and efficient semantic segmentation architecture based on
Vision Transformer, a framework similar to DeepLabV3+, which is a network with an encoder-decoder
structure. However, the encoder module in the SegFormer architecture is a layered Transformer structure
consisting of multiple encoder layers to extract multi-scale features, each of which contains a multi-head
self-attention mechanism and feedforward neural network. The decoder module is a full multi-layer
perceptron (All-MLP), and each decoder layer similarly contains a multi-head self-attention mechanism
and feedforward neural network for further processing and enhancement of features. Multiple decoder
layers combine local attention and global attention to perform layer-by-layer fusion and upsampling
operations of features, aggregate information from different layers, and gradually recover the details of
the segmentation results. Finally, the output features of the decoder are passed through a segmentation
head for the final segmentation prediction.

2.1. Encoder

SegFormer’s encoder (MiT) has four different stages. In MiT’s stage-i, the input feature map

X̃i ∈ RCi×H×W is transformed into a patch embedded in Xi = PatchMerge(X̃i) ∈ RN×Ci ; where
Ci, H,W and N are the hidden dimension of the i-th stage, the height of the feature maps, the width
of the feature maps and the length of the sequence, respectively. The multi-head self-attention (MHA)

for each Transformer layer is then calculated Q = FC(Xi) ∈ RN×Ci , K = FC(Xi) ∈ RÑ×Ci and

V = FC(Xi) ∈ RÑ×Ci , where FC(·) is the linear layer. Both K and V have a small sequence length

Ñ = N/R, because in the original multi-head self-attention calculation process, Q,K and V of each
head have the same dimension N×C, N = H×W is the length of the sequence, and the time complexity
of self-attention calculation process is O(N2), which is computationally large for high-resolution images.
Therefore, a reduction ratio R is used in SegFormer to reduce the length of the sequence, thus reducing
the time complexity of self-attention to O(N2/R). Thus, the output of MHA can be obtained by
formula (1) and formula (2)

A(Q,K, V ) = Softmax

(
QKT√

Ñ

)
V ∈ RN×Ci (1)

Xmha = LN
(
X̂ + FC(A)

)
∈ RN×Ci (2)

where LN(·) is the layer normalized layer. Then the hybrid feedforward network (Mix-FFN) transforms
Xmha to Xffn

Xffn = LN (FC (GeLU (Conv(FC(Xmha)))) +Xmha) (3)

where Conv(·) represents the convolution operation. SegFormer does not use position encoding in the
image patch, taking into account the effect of zero filling on the position information, it directly uses a
3× 3 convolution in the FFN.

2.2. Decoder

SegFormer integrates a lightweight decoder that contains only the MLP layer. The key to achieving this
simple decoder is that SegFormer’s hierarchical Transformer encoder has a larger receptive field than a
traditional CNN encoder.

The All-MLP decoder proposed by SegFormer consists of four main steps. First, extract the
multilevel feature from the MiT encoder, denoted Fi, and unify the number of channels through the
MLP layer, as shown by formula (4). Second, the features F̂i are upsampled to a quarter size and then
concat together, as shown by formula (5). Third, MLP fuses the features after concatenation to get the
concatenated feature F , shown by formula (6). Finally, another MLP layer predicts the fused feature
F to get a segmentation Mask with a resolution of H/4×W/4×Numcls, as shown in formula (7)

F̂i = FC(Ci, C)(Fi), ∀i (4)
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F̂i = Upsample

(
W

4
× H

4

)
(F̂i), ∀i (5)

F = FC(4C,C)
(
Concat(F̂i)

)
, ∀i (6)

Mask = FC(C,Ncls)(F ) (7)

3. EXPERIMENTAL PROCESS AND ANALYSIS

3.1. Collection of Infrared Image Data Set of Power Transmission and Transformation
Equipment

To verify the effectiveness of this method, we used the FLIR thermal imager to collect the experimental
data set from the equipment of power transmission and transformation stations in Ningbo, Zhejiang
Province. The resolution of the collected infrared image was 640×512 pixels, and it was composed of five
kinds of power transmission and transformation equipment, including insulators, conductors, tensions,
drainage wires and wire clips. Part of the images are shown in Fig. 3. 556 infrared images are selected as
the original sample data. Through the image enhancement processing of the samples, such as rotation,
Gaussian blur, increasing noise and mirror symmetry, the data is expanded, and finally a infrared image
dataset containing 2780 pieces of power transmission and transformation equipment is established. In
the data set, the method of random sampling, according to the ratio of 7 : 1.5 : 1.5, selected 1946 images
as training samples, 417 as verification samples, 417 as test samples. The proportion of each device
type in the training set, verification set and test set remained the same. The data of the training set,
verification set and test set divided by the obtained pictures are shown in Table 1.

Figure 3. Some infrared images.

Table 1. Partition distribution of our image dataset.

Total number of data samples Image size
Number of training sets,

verification sets, and test sets

2780 640× 512

Training set: 1946

Verification set: 417

Test set: 417

3.2. Implementation Details

The experimental platform of this paper is Ubuntu 16.04 operating system, CPU is Intel(R) Xeon(R)
Silver 4110, memory is 128GB, GPU is NVIDIA GeForce RTX 2080Ti, video memory is 11GB, version
is 525.60.11. The CUDA version is 10.1 and cuDNN version is 8.0. The development environment is
Python3.7 and Pytorch1.7.
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In the training model stage, the processed data set is tested. The training hyperparameters [16] of
the proposed algorithm are shown in Table 2. In Table 2, the variable Epoch represents the number of
training iterations; Batchsize represents the number of images input to the model during each iteration
training. Optimizer represents the optimizer that adjusts the parameters of the model during training;
Lr stands for learning rate; Weight decay is the L2 regular term used to prevent overfitting; The
learning rate is adjusted by a fixed step. Stepsize indicates the interval for adjusting the learning rate,
and Gamma indicates the adjustment multiple. The loss function uses the cross entropy loss function.

Table 2. Hyperparameter settings.

Epoch Batchsize Optimizer Lr Weight decay Stepsize Gamma

300 8 Adam 0.0005 0.0001 10 0.92

Figure 4 shows the loss of the training set of the model with the increase of the number of iterations
under the above hyperparameter setting conditions.

Figure 4. Image segmentation loss curve in the SegFormer model.

3.3. Evaluation Metric

The network is evaluated using six different metrics: Accuracy, Precision, Recall, F1 score (F1),
Intersection over Union (IoU), and Mean Intersection over Union, MIoU). These metrics are used in both
semantic segmentation and classification problems. All of these metrics are calculated using TP(true
positive), FP(false positive), TN(true negative), and FN(false negative).

TP is expressed as the number of pixels that the model predicted to be the target class and are
actually the target class; FP represents the number of pixels predicted by the model to be the target
class but actually not the target class; FN represents the number of pixels that the model predicts is
not the target class, but actually is the target class; TN represents the number of pixels that the model
predicts is not the target class, but is actually not the target class.

Accuracy represents the percentage of the total predicted value that the prediction results were
correct, as shown in formula (8)

Accuracy =
TP

TP + FN + FP + TN
(8)
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The accuracy rate is defined in formula (9), which represents the probability that a certain category
is predicted correctly in the predicted outcome.

Precision =
TP

TP + FP
(9)

Recall rate refers to the probability that a category is predicted correctly in true values, as defined
in Equation (10).

Recall =
TP

TP + FN
(10)

F-measure combines accuracy and recall rate into one measure to comprehensively evaluate the
performance of the detection method, which is given in formula (11). In the experiment, the accuracy
rate, recall rate, and F1-score are averages of the test set.

F1 = 2× Precision × Recall

Precision + Recall
(11)

The intersection ratio represents the ratio between the intersection and the union of two sets of
predicted values and true values of the model for a certain class. The calculation formula is shown
in (12).

IoU =
TP

TP + FN + FP
(12)

The average intersection ratio represents the average of the intersection and union ratio between the
predicted value and the real value set, which can reflect the degree of overlap between the segmentation
result and the real label. The calculation formula is shown in (13).

MIoU =
1

k + 1

k∑
i=0

TP

TP + FN + FP
(13)

3.4. Comparison of Different Networks

To test the validity of the method used in this paper, FCN [17], U-Net [18], SegNet [19] and
DeepLabV3+ [20] semantic segmentation networks are implemented under the same environment, and
the comparison experiments with the method in this paper are carried out on the test set. The results
are shown in Table 3 and Table 4.

As can be seen from Table 3 and Table 4, compared with other comparison methods, the method
in this paper achieves the highest in all indicators except rate Recall. In mIoU, it is 2.06, 0.65, 0.42
and 0.75 percentage points higher than the classical segmentation models in recent years, such as FCN,
U-Net, Deeplabv3+ and SegNet, respectively. Accuracy is higher than FCN, U-Net, Deeplabv3+ and
SegNet by 8.93, 3.59, 1.7 and 4.47 percentage points, respectively. In Precision, it exceeded FCN,
U-Net, Deeplabv3+ and SegNet by 3.94, 1.26, 3.79 and 2.38 percentage points respectively; And beat
FCN, U-Net, Deeplabv3+ and SegNet by 6.55, 2.01, 6.36, 2.67 percentage points respectively, in F1.
In Recall, although DeepLabV3+ is the highest, DeepLabV3+ is still inferior to SegFormer in terms
of overall results. In terms of specific categories, the segmentation results of the proposed method are
significantly better than those of other methods in terms of the accurate segmentation of five types of
power transmission and transformation equipment, including insulators, conductors, tensioning tubes,
drainage wires and wire clips, as well as the background. The segmentation accuracy of the SegFormer
model in this paper reached 98.92%, indicating that the method proposed in this paper can effectively
segment the key parts of the power transmission and transformation equipment of infrared images,
and adapt to the high-precision requirements of actual segmentation. The high performance of the
Segformer model on Precision, Recall and F1 shows that it can better distinguish the pixels of the key
parts of the equipment from the background pixels. The performance of the network also achieves good
results on the main evaluation indexes IoU and MIoU, which also shows that the network has strong
generalizability.

In this paper, the experimental results of U-Net model, SegNet model, DeeplabV3+ model and
SegFormer model with good performance in the experiment are visualized on the test set, as shown in
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Table 3. Comparison results of different models on IoU and MIoU.

Models Categories IoU MIoU

FCN

Insulator 0.8141

0.7755

Wire 0.7462

Strained tube 0.6555

Drain wire 0.5929

Clamp 0.8787

Background 0.966

U-Net

Insulator 0.8437

0.8435

Wire 0.8534

Strained tube 0.7230

Drain wire 0.7768

Clamp 0.8831

Background 0.9812

DeepLabV3+

Insulator 0.86

0.8624

Wire 0.9043

Strained tube 0.7295

Drain wire 0.8011

Clamp 0.8941

Background 0.9853

SegNet

Insulator 0.843

0.8347

Wire 0.8463

Strained tube 0.7056

Drain wire 0.7569

Clamp 0.8761

Background 0.9801

SegFormer

Insulator 0.8792

0.8794

Wire 0.9220

Strained tube 0.7553

Drain wire 0.8357

Clamp 0.8924

Background 0.9882

Table 4. Comparison results of different models in Accuracy, Precision, Recall and F1.

Models Accuracy Precision Recall F1

FCN 0.9686 0.8359 0.9039 0.8686

U-Net 0.9827 0.9126 0.9155 0.9140

DeepLabV3+ 0.9850 0.8873 0.9544 0.8705

SegNet 0.9817 0.9014 0.9136 0.9074

SegFormer 0.9892 0.9252 0.9433 0.9341

Fig. 5, where (a) represents the original test image, (b) represents the ground truth corresponding to
the original test image, (c) represents the prediction result of DeepLabV3+ model, (d) represents the
prediction result of SegNet model, (e) represents the prediction result of U-Net model, and (f) represents
the prediction result of SegFormer model. In the prediction results of each model, the pixel value of
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(a) The original image (b) Ground Truth (c) DeepLabV3+

(d) SegNet (e) U-Net (f) SegFormer

Figure 5. Comparison of segmentation results.

0 in the output represents the background, the pixel value of 1 represents wires, the pixel value of 2
represents insulators, and the pixel value of 3 represents drainage lines. For better visualization, we use
pseudo colors to represent different pixel values, i.e., black represents the background, red represents
wires, green represents insulators, and blue represents drainage lines. As can be seen from the actual
test results, the segmentation results of the proposed algorithm are basically consistent with the results
of experts’ manual labeling. In addition, to pay more attention to the segmentation of the target, the
invalid background interference information was also suppressed. Compared with other methods, the
present method can retain image details better. From the perspective of the overall visual effect, no
matter the background of the aerial image is simple or complex, the SegFormer model used in this paper
can not only segment the target clearly, but also segment the target more finely, with better usability
and robustness.

3.5. Temperature Detection

The infrared image of transmission and transformation equipment taken by handheld infrared thermal
imager is taken as an example to illustrate the automatic detection method proposed in this paper.
The shooting scene is the substation of a company of Zhejiang Power Grid, and the instrument used is
FLIR T640 infrared thermal imager. By SegFormer deep learning segmentation model, the pixel-level
segmentation results of the infrared image are shown in Fig. 6. Wires, insulators and drainage wire are
segmented at the pixel level, and the segmentation result figure mask is obtained. In the mask, the neural
network divides the input infrared image into four categories, including the background represented by
the black color with output pixel value of 0, a wire represented by the red color with output pixel
value of 1, an insulator represented by the green color with output pixel value of 2, and a drainage
line represented by the blue color with output pixel value of 3. The purpose of this segmentation
is to separate the key parts of the equipment from the complex background, in order to reduce the
interference from the complex background and measure more accurately the temperature of the key
parts in the image. Then the mask is multiplied with the image temperature data matrix obtained
from DJI sdk to obtain the temperature data in the mask region. Finally, the maximum temperature
of key parts of power transmission and transformation equipment as shown in Fig. 7 is obtained. The
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Figure 6. Segmentation mask. Figure 7. Temperature data image.

obtained maximum temperature of the wire, the insulator and the drainage wire are 37.4◦C, 35◦C and
39.8◦C respectively, all of which are lower than their respective temperature thresholds, that is, the
temperature of the equipment is normal.

4. CONCLUSION

To overcome the problem of low efficiency of manual inspection of power transmission and transformation
equipment, this paper proposes a method of infrared image high temperature anomaly detection of
power transmission and transformation equipment based on SegFormer. The collected infrared images
of power transmission and transformation equipment are preprocessed, and the temperature information
of each infrared image is read out by using DJI sdk tool to construct the temperature data matrix. In the
segmentation stage, SegFormer network was used to segment the key parts of the power transmission and
transformation equipment to get the prediction mask. Then, the maximum values of the temperature
data in the mask area are calculated, and the high temperature anomaly detection of the key parts
of the power transmission and transformation equipment is realized. The test results of this method
show that the model proposed in this paper reaches the highest in all indexes except rate Recall,
among which MIoU, Accuracy, Precision, Recall and F1 reach 0.8794, 0.9892, 0.9252, 0.9433 and 0.9341
respectively. It also shows that the method proposed in this paper can effectively segment the key
parts of the transmission and transformation equipment through the infrared images, and can meet
the high precision requirements of practical segmentation. The method proposed in this paper makes
it possible to diagnose the fault of transmission and transformation equipment on site, which is of
great significance for reducing the monitoring cost of transmission and transformation equipment and
improving the intelligent level of substation.
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