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ABSTRACT: This study investigates beamforming and optimization in Multiple-Input-Multiple-Output Orthogonal-Frequency-Division-
Multiplexing (MIMOOFDM) radar systems. The objective of this research is tomitigate the range-angle coupling effect inMIMOOFDM
radar systems by adopting range compensation and distance-angle decouplingmethods, which is to ensure that the signal processing during
radar waveform formation does not impact the aforementioned coupling effect. In distance compensation, the CVX toolbox is used to
minimize peak sidelobe. A mathematical model is established, and an optimal set of transmission frequencies is achieved through the
use of the Alternating-Direction-Method-of-Multipliers (ADMM) algorithm in the context of distance-angle decoupling. Both methods
effectively eliminate distance-angle coupling and enhance detection and identification capabilities of MIMO OFDM radar systems.

1. INTRODUCTION

In recent years, the field of MIMO OFDM radar has attracted
considerable interest and research focus [1–3]. This cutting-

edge technology has the potential to revolutionize radar systems
and find diverse applications in various domains. Despite the
progress made so far, the design of appropriate MIMO OFDM
radar waveforms and beams remains a challenging task [4, 5].
This is primarily due to the complex interplay of multiple pa-
rameters that need to be carefully balanced for optimal perfor-
mance.
In current context, MIMO radar beamforming optimization

methods can be categorized into twomain approaches. The first
approach involves optimizing the covariance matrix of trans-
mitted beams under certain constraints to select suitable beam-
forming patterns for practical engineering projects. This theory
is then used to design radiation beam patterns for individual
transmitting antenna elements based on the optimized covari-
ance matrix [6–8]. The second approach directly focuses on
optimizing the actual waveforms of each transmitting antenna
array element to select suitable transmitting beamforming pat-
terns that meet practical engineering requirements [9–11].
In 2006, Antonik and others [12] proposed a distance-related

beam direction diagram in the context of frequency diversity
array radar. In the same year, Antonik et al. presented vari-
ous waveform analyses for different transmitting modes [13]
and distance-dependent array-level waveform diversity [14].
Subsequently, Secmen et al. [15] analyzed the periodicity of
frequency-controlled arrays in both distance and angle dimen-
sions. It was demonstrated in [16] that frequency-controlled
array antennas exhibit periodicity in beam scanning, and ref-
erence [17] validated this periodicity using four microstrip an-
tennas and four frequency synthesizers. Sammartino et al. [18]
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combined MIMO radar systems and proposed a new beam
design method dependent on distance and angle. In the fre-
quency control array radar, Sammartino et al. [19] integrated
the centralized MIMOwith waveform diversity and studied the
beam pattern distributed MIMO with spatial diversity of fre-
quency controlled arrays as well as the beam pattern related
to distance but angle independent, providing greater flexibil-
ity. Wang and Shao [20] and Khan and Qureshi [21] proposed
a time-dependent frequency offset method for frequency con-
trolled arrays to design radar beams, which decoupled the radar
beam pattern on a two-dimensional plane of distance and an-
gle to eliminate the periodicity of the beam pattern. In [22],
a subarray-based frequency-controlled array radar beam de-
sign method was proposed, which jointly estimated the dis-
tance and azimuth of the target for background application, and
further proposed an array beam optimization design method
based on minimizing the Cramer-Rao bound [23]. In [24], from
the perspective of distance-angle decoupling, the method of
frequency-controlled encoding was used to redesign the car-
rier combination of the array and re-optimize the Cramer-Rao
bound [25].
In future MIMO OFDM radar applications, techniques such

as utilizing first-order even functions (as suggested in refer-
ence [26]) for channel parameter estimation and considering the
wave function concept from the nonlinear Schrödinger equa-
tion (reference [27]) may improve target localization and track-
ing accuracy. Additionally, the study of electromagnetic wave
propagation in plasma waveguides [28] can enhance our un-
derstanding of spectrum utilization to minimize interference
and optimize signal transmission. Optimization algorithms
from references [29–32] may be applied to waveform design in
MIMO OFDM radar systems, adding practical value to future
applications.
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The paper presents two methods, the distance compensation
method and distance-angle decoupling method, to eliminate the
distance-angle coupling effect in radar systems. The distance
compensation method compensates for phase delays between
received signals of array elements relative to a reference ele-
ment based on distance. The distance-angle decoupling method
treats the distance-angle coupling as the objective function and
utilizes the ADMM algorithm to minimize it, achieving echo
distance-angle decoupling. Both methods effectively improve
radar performance by eliminating the distance-angle coupling
effect.

2. MIMO RADAR BEAMFORMING AND OPTIMIZA-
TION

2.1. Beamforming Optimization Based on Distance Compensa-
tion Method
Assume M and N array elements for the transmitting and re-
ceiving arrays, respectively, in the form of uniform linear ar-
rays. The signal transmitted by the m-th array element of the
transmitting array, after reflecting off a far-field point target and
reaching the n-th array element of the receiving array, can be
expressed as:

xn,m (t) = σsm (t) · Pn,m (θt, θr) (1)

where σ is the radar cross section. Pn,m (θt, θr) is the relative
phase difference between the signals arriving at the n-th ele-
ment and the reference element. θr and θt represent the incident
angles at the receiving end and transmitting end, respectively,
which can be written as:

Pn,m (θt, θr) = e[−j2πfm(Rt+Rr
c −τt,m(θt)−τr.n(θr))] (2)

where τt,m (θt) = (m−1)dt sin(θt)
c and τr,n (θr) =

(n−1)dr sin(θr)
c . dr and dt represent the spacing between

antenna elements at the receiving end and transmitting end,
respectively. Rr and Rt represent the distance terms at the
transmitting end and receiving end, respectively.
If it is a mono-static radar system, θt = θr, (2) can be rewrit-

ten as:

Pn,m (θ) = e

[
−j2π

(
Rt+Rt

λm
− (m−1)dt sin(θ)

λm
− (n−1)dr sin(θ)

λm

)]
(3)

The distance terms Rt+Rr

λm
of multi-carrier signals introduce

varying phase differences for transmission signals of differ-
ent frequencies when they arrive at the same receiving array
element. Therefore, distance compensation is applied dur-
ing angle-domain beamforming [33, 34]. After compensation,
Equation (3) can be rewritten as:

Pn,m (θ) = e

[
j2π

(
(m−1)dt sin(θ)

λm
+

(n−1)dr sin(θ)
λm

)]
(4)

In an ideal scenario, all signal transmission and reception
channels exhibit identical responses, and the total received sig-
nal by the receiving array is denoted as:

x (t) =

N∑
n=1

M∑
m=1

xn,m (t) (5)

Express the above Equation (5) in vector form:

X (t) = α (θt,F) · βH (θr) · σs (t) (6)

whereα (θt,F) =
[
1, e

(
j2πdt sin(θ)

λ2

)
, · · · , e

(
j2π(M−1)dr sin(θ)

λM

)]
∈

CM×1 and

β (θr) =

[
1, e

(
j2πdr sin(θ)

λ2

)
, · · · , e

(
j2π(M−1)dt sin(θ)

λN

)]
∈ CN×1

is the steering vector of the transmitted signals from each
array element and the receiving channel, respectively.
F = (f0, f1, · · · , fM ) represents the frequencies of the
transmitted signals at each array element.
The element λ in β (θr) is a variable whose value is the same

as the λ in the first term of the summation in equation (4). This
is because the first term of the summation in Equation (4) is a
component of α (θt,F), while the second term is a component
of β (θr). Equation (4) effectively extends the vector represen-
tation of the single-carrier array signal model to the result of
the multi-carrier orthogonal waveform MIMO radar. The sec-
ond term in Equation (4) reflects the diversity characteristic of
orthogonal waveformMIMO radar waveforms. In the first term
of equation (4),m takes on any value from 1 to any one ofM ,
and in the second term of Equation (4), n ranges from 1 to N ,
equivalent to the Kronecker product of the transmitting steering
vector and receiving steering vector. Whenm ranges from 1 to
M , a vector of sizeN×M rows and 1 column is obtained. The
physical interpretation of m taking values from 1 to M is the
transmission of signals on multiple carrier frequencies. Thus,
the transmitting-receiving joint steering vector pointing to the
direction of θ is represented as:

Ar (θr) = β1 (θ)⊗ β2 (θ)⊗ · · · ⊗ βN (θ) (7)

To optimize the total sidelobe energy, the objective function
is expressed as:

max
θ

J (θ) =
1

N

N∑
i=1

|si (θ)|2 (8)

where si (θ) = e
−j2π(N−1)d sin(θ)

λi represents the received signal,
and i denotes the i-th antenna.
The total sidelobe energy can be calculated using the for-

mula:

Pside (θ) =
1

N

N∑
i=1

∣∣∣∣∣∣
∑
j≠i

kj (θ)xj

∣∣∣∣∣∣
2

(9)

where xi represents the i-th transmitted signal and |xi|2 repre-
sents the power of the i-th transmit signal.
The objective function is reformulated as:

max
ω

J(ω) =
E
[
|y(θ)|2

]
E
[
|d(θ)|2

] (10)
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where E denotes the expectation operation, y (θ) the beam-
forming output, d (θ) the desired signal, and the physical mean-
ing of this objective function is to maximize the energy of the
beamforming output while minimizing the energy of the side-
lobes.
In the same radar system, the required signal energy is usu-

ally constant, so the objective function can be simplified to
max y (θ).
To maximize signal power, the beamforming weight vec-

tor is obtained by projecting the transmitting-receiving joint
steering vector onto it, resulting in the output signal: y(θ) =
ωHAr(θSL) + n. Constraint ωHAr0(θ0) = 1 is applied to
convert MIMOOFDM radar beamforming into a constraint op-
timization problem, aiming to find optimal weights with min-
imized sidelobes. The mathematical representation of the ob-
jective function with constraints is as follows:

min
ω

max
θSL∈ΘSL

∣∣ωHAr (θSL)
∣∣

s.t.ωHAr0 (θ0) = 1 (11)

where θSL includes all angles within the sidelobe range, and θ0
represents the azimuth angle of the reference target.
This problem is a constrained convex optimization task in-

volving an objective function. The optimal weight vector is
determined using the CVX toolbox [35], and then it is used in
equation (10) to create the optimized beam pattern.

2.2. Beamforming Optimization Based on Distance-angle De-
coupling Method
In the assumed scenario, considering a target with a length of L
meters and a scanning angle φ between the target and the radar
line of sight, the requirement for the cross-correlation of target
echoes received by adjacent array elements imposes a relation-
ship on the frequency increment between adjacent elements:
∆f = c

2L sin(φ) . This relationship allows the calculation of the

frequency increment between adjacent array elements. For the
MIMO OFDM radar system discussed in this paper, which em-
ploys a uniform linear array for multi-frequency MIMO radar,
there exists coupling between distance and elevation angle. The
signal model established is as follows:
The elevation measurement error caused by distance mea-

surement inaccuracies and the distance measurement error re-
sulting from elevation measurement inaccuracies are expressed
as follows:

ε∆θ (∆R) =

N∑
k=1

wkβek

N∑
k=1

β2
ek +

N∑
l=1

β2
rl

∆R

ε∆R (∆θ) =

N∑
k=1

αekβek

N∑
k=1

β2
ek +

N∑
l=1

β2
rl

∆θ (12)

where k is the k-th array element, θ the elevation angle, ∆R
the range quantization error, and ∆θ the elevation angle mea-
surement error.

wk =
4π (fk − f0)

c

βek =
2πfkd sin (θ)

c
(13)

where fk is the frequency of the k-th array element. There-
fore, the numerator terms for elevation and range measurement
errors can be rewritten as:

N∑
k=1

wkβek =
4kfk sin (θ)π2

c

(
fk
f0

− 1

)
(14)

To minimize the impact of range-elevation coupling, the ob-
jective function can be established as follows:

min {|ε∆θ (∆R)| + |ε∆R (∆θ)|} (15)

Ultimately, the range-elevation coupling problem has been
transformed into a mathematical optimization problem with
constraints, and the mathematical model is as follows:

min
∣∣∣∣4kfk sin (θ)π2

c

(
fk
f0

− 1

)∣∣∣∣
s.t. fk,min ≤ fk ≤ fk,max (16)

The objective function exhibits convexity [36], allowing the
use of theADMMalgorithm [37]. By incorporating constraints,
the augmented Lagrangian function is obtained as follows:

L (y, fk, u, z)=

K∑
k=1

uk

(
y− 4kfk sin (θ)π2

c

(
fk
f0

−1

)
−zk

)

+
ρ

2

K∑
k=1

(
y− 4kfk sin (θ)π2

c

(
fk
f0

−1

)
−zk

)2

+y (17)

where y =
∣∣∣ 4kfk sin(θ)π2

c

(
fk
f0

− 1
)∣∣∣, u is the Lagrange multi-

plier, and it is a scalar. z is the auxiliary variable. ρ is a positive
penalty parameter.
Then, alternating updates of y, fk, z, and u:

(1) Update y:

yt+1 = argmin y L
(
y, f t

k, u
t, zt

)
(18)

By solving the derivative of this equation to be 0, we can
obtain the analytical solution of yt+1:

yt+1 =

K∑
k=1

(
4kf2

k
sin(θ)π2

c

(
fk
f0

− 1
)
+ ρzt − ut

)
K∑

k=1

4k2f2
k
sin(θ)π2

c + ρ

(19)
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(2) Update fk:

fk
t+1 = argmin fkL

(
yt+1, fk, u

t, zt
)

(20)

By solving the derivative of this equation to be 0, we can
obtain the analytical solution of f t+1

k :

f t+1
k =

√
ρ

√(
4k2 sin(θ)π2

c +ρ
)

8k sin(θ)π2

c

− 1
2f0

1 + c2ρ
8k2sin2(θ)π4

(21)

(3) Update z:

zt+1
k =max

(
0, yt+1+4kf t+1

k

sin (θ)π2

c

(
f t+1
k

f0
−1

)
+ut

k

)
(22)

FIGURE 1. Distance compensation method: Conventional beamform-
ing vs. Beamforming with optimize weight vector, dt = dr .

FIGURE 2. Distance compensation method: Conventional beamform-
ing vs. Beamforming with optimize weight vector, dt = Ndr .

(4) Update u:

ut+1
k = ut

k+yt+1−4kf t+1
k

sin (θ)π2

c

(
f t+1
k

f0
− 1

)
−zt+1

k

(23)

(5) Determining the convergence criterion for termination of
iterations: ∣∣yt − yt−1

∣∣ < ε (24)
where ε is the required precision for the convergence cri-
terion.

Repeating alternate updates of y, fk, z, and u until conver-
gence. When the iteration reaches convergence, that is, satis-
fies the stopping criterion, and the final output Equation (16)
achieves the minimum value, the value of each fk is obtained.
The principle of correlating echoes between elements of the

MIMO OFDM radar transmitting array allows computation of

FIGURE 3. Distance-Angle decoupling method: Conventional beam-
forming vs. Beamforming with optimize weight vector, dt = dr .

FIGURE 4. Distance-Angle decoupling method: Conventional beam-
forming vs. Beamforming with optimize weight vector, dt = Ndr .
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(a)

(b) (c)

FIGURE 5. Projection of unoptimized radar beamforming 3D plot with default frequencies. (a) ∆f1 = 30 kHz. (b) ∆f2 = 90 kHz. (c) ∆f3 =
30MHz.

the optimal carrier frequency combination. The coupling ef-
fect between range and angle is taken as the objective function,
and it is computed using the ADMM to minimize this objective
function. The resulting optimal carrier frequency combination
is then utilized as the frequency combination for the transmit-
ting array, aiming to achieve the decoupling of echo in terms of
range and angle. The choice of the ADMM algorithm is moti-
vated by its suitability for convex optimization problems. For
convex optimization problems, the ADMM algorithm guaran-
tees convergence to the global optimum, thus avoiding the com-
plexities associated with matrix operations and optimization.
This approach reduces computational complexity and enhances
target detection performance.

3. NUMERICAL RESULTS BETWEEN THE DISTANCE
COMPENSATION METHOD AND THE DISTANCE-
ANGLE DECOUPLING METHOD
The objective of this section is to simulate MIMOOFDM radar
angle-dimensional beamforming by utilizing the signal model
and objective functions established earlier, along with the spec-

ification of relevant simulation parameters. The feasibility of
the proposed radar beamforming optimization technique is ver-
ified through numerical results.
We begin by considering a transmitting array with M = 5

elements and a receiving array with N = 13 elements. The
reference element’s carrier frequency is set to f0 = 30GHz,
and the corresponding wavelength is λ = c/f0, where c is the
speed of light. The inter-element spacing is set to d = λ/4.
The carrier frequencies of the transmit array elements linearly
increase starting from the reference element, with them-th ele-
ment’s carrier frequency denoted as fm = f0+(m−1)∆f [38],
where∆f represents the frequency increment.
The target distance is set to L = 10 meters, the radar’s scan-

ning angle fixed at φ = 30◦, and the elevation angle θ set to
60◦. To compare the results between different methods, the
number of transmitting elements is set toK = 5. The angles in
the sidelobe region are within the range [−90◦ : −10, 10 : 90◦],
and the target azimuth angle θ0 is 0◦. The constraint range for
frequency is limited to

[
2.71× 109, 3.31× 109

]
to avoid inter-

ference and achieve high resolution. The convergence criterion
is set to ε = 10−6.
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(a)

(b) (c)

FIGURE 6. Projection of unoptimized radar beamforming 3D plot with default frequencies. (a) ∆f1 = 30 kHz. (b) ∆f2 = 90 kHz. (c) ∆f3 =
30MHz.

3.1. Distance Compensation Method
In this study, a simulation analysis was conducted to examine
MIMO OFDM radar beamforming based on the proposed sig-
nal model. The unoptimized and optimized radar beam pat-
terns were compared in Fig. 1 and Fig. 2, respectively, for cases
where dt = dr and dt = Ndr in the radar’s angular dimen-
sion. The initial carrier frequency is f0 = 30GHz with a fre-
quency spacing of ∆f = 30MHz, resulting in additional car-
rier frequency components: f1 = 3.03GHz, f2 = 3.06GHz,
f3 = 3.09GHz, and f4 = 3.12GHz, corresponding to M = 5
components.
The unoptimized radar beam pattern exhibits sidelobes only

15 dB lower than the main lobe, indicating potential interfer-
ence with the radar system requirements. In order to address
this issue, with the objective of minimizing sidelobe levels,
beamforming is achieved by adjusting weight vectors. Since
the optimization problem is convex in nature, it is solved us-
ing the CVX toolbox. By optimizing the weight vectors, the
main lobe of the beamforming becomes more focused, and the
sidelobes are reduced, thereby achieving a lower peak sidelobe

level. The optimized beam patterns in Fig. 1 and Fig. 2 showed
increased main lobe widths after optimization, from 18◦ to 22◦
and from 4◦ to 8◦, respectively. This wider coverage of the
main lobe effectively distributed the energy over a broader an-
gular range.
Moreover, the optimization process significantly reduced the

sidelobe levels. In Fig. 1, the sidelobe level decreased from
−15.7396 dB (unoptimized) to −36.0532 dB (optimized), and
in Fig. 2, it decreased from −9.51587 dB (unoptimized) to
−48.3097 dB (optimized).
The optimization successfully mitigated distance-angle cou-

pling effects, resulting in reduced sidelobes and concentrated
main lobes, leading to a substantial enhancement in beamform-
ing suppression performance.

3.2. Distance-Angle decoupling method

Table 1 presents the objective function with minimal distance-
angle coupling effects, and the optimal frequency combination
for transmitting signals is obtained using theADMMalgorithm.
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FIGURE 7. Projection of radar beamforming 3D plot optimized by
ADMM algorithm.

TABLE 1. ADMM algorithm optimization of combined carrier signals

No. (Carrier) Hz
Carrier Frequency 1 2865510460
Carrier Frequency 2 3000026569
Carrier Frequency 3 3066660112
Carrier Frequency 4 3105583367
Carrier Frequency 5 2808905056

Figs. 3 and 4 show the radar’s angular dimension beam patterns
for dt = dr and dt = Ndr, respectively. Further optimization
using the CVX toolbox yields the optimized radar beam pat-
terns. In Fig. 3, sidelobe levels are noticeably reduced after
optimization, from −15.9147 dB to −40.6656 dB. Within the
sidelobe region of [−90◦ : −10◦, 10◦ : 90◦], the lowest side-
lobe value reaches −78.279 dB. Similarly, in Fig. 4, the side-
lobe level significantly decreases from the unoptimized value
of −9.31982 dB to −58.2488 dB. Within the sidelobe region
of [−90◦ : −5◦, 5◦ : 90◦], the lowest sidelobe value reaches
−82.1211 dB.
In addition, a comparison of 3D radar beam patterns and

their projections can be observed between Figs. 5 and 6. We
investigated the impact of interelement frequency increments
on distance-angle coupling without decoupling distance and an-
gle. The selected frequency increments were ∆f1 = 30 kHz,
∆f2 = 90 kHz, and ∆f3 = 30MHz.
When the frequency increment was 30 kHz (Fig. 5(a)), the

maximum value occurred at approximately 10 meters. For
90 kHz (Fig. 5(b)), it was at approximately 4 meters, and for
30MHz (Fig. 5(c)), even shorter. Increasing the frequency
increment reduced the maximum value distance period of the
beam pattern, improving detection speed and efficiency, but
compromising accuracy and resolution due to the narrower de-
tection range, especially for distant targets.

FIGURE 8. Radar beamforming 3D plot optimized by ADMM algo-
rithm.

Achieving a shorter maximum value distance period required
significantly increasing the radar system’s frequency incre-
ment, leading to increased complexity. At higher frequency
increments, beamforming optimization did not yield desirable
results. Thus, we chose ∆f1 = 30 kHz as the appropriate fre-
quency increment.
Then, Figs. 5 and 6 reveal that the unoptimized initial car-

rier frequency combination exhibits interdependencies rather
than independent amplitude values at various distances and an-
gles. Multiple peaks exist in the angular dimension, forming
an elliptical-shaped beam pattern, indicating the presence of
distance-angle coupling effects throughout the entire angular
dimension. In contrast, in Figs. 7 and 8, after optimizing the
transmission carrier frequency combination, the beam pattern
exhibits only a single main lobe in the angular dimension, with-
out multiple peaks. The optimized radar beam pattern shows a
more concentrated main lobe, lower sidelobes, and fewer bright
spots, forming a circular transmission beam pattern, effectively
eliminating the distance-angle coupling effects. Moreover, the
optimized frequency differences between adjacent array ele-
ments for signal transmission are all greater than 30MHz and
are no longer equal. This optimization of frequency differences
effectively controls the phase of the transmitted signal, thereby
controlling the directionality of the radar transmission beam,
enabling precise targeting of desired targets and enhancing the
performance and efficiency of the radar system.

4. CONCLUSION
This paper presents a novel approach to address the challenge of
reconciling slow-time and fast-time signal processing inMIMO
OFDM radar beamforming. The key innovation lies in the
introduction of frequency diversity to the transmitting array.
In radar systems, frequency diversity is the technique of de-
composing a radar signal into multiple subcarriers, each with
a different frequency. This decomposition is achieved through
OFDM technology, which divides a high-speed data stream into
several low-speed data streams. Each low-speed data stream
is modulated onto different subcarriers, and the orthogonality
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between these subcarriers helps mitigate frequency-domain in-
terference. However, there exists a trade-off between fast-time
and slow-time processing. By applying the optimal carrier fre-
quency increment to the transmitting array elements, the cross-
correlation among echoes received by different array elements
can be minimized, thereby improving target detection perfor-
mance in the slow-time domain. This represents an enhance-
ment stemming from slow-time signal processing.
Nonetheless, within the entire array pulse echo, there is cou-

pling between range and angle, which is detrimental to fast-time
signal processing. This paper, taking into account the physi-
cal reality, employs the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm to optimize the transmitting carrier
frequency combination for array elements. This optimization
ensures both the decorrelation of echoes among array elements
and the decoupling of range and angle within the entire array
pulse echo. Consequently, this approach enhances the perfor-
mance of slow-time signal processing while preserving the per-
formance of fast-time signal processing.
In summary, the methods presented in this article address the

conflict between MIMO OFDM radar performances in slow-
time and fast-time signal processing. They optimize beamform-
ing, resulting in a narrower main lobe and reduced side lobes.
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