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ABSTRACT: To address the stressful and time-consuming problem with the current notched antenna modelling optimization tools, an
improved deep multilayer perceptron (DMLP) neural network framework is designed. The method introduces an attention mechanism
(Attn) layer to improve the interpretability of the model, uses the leaky ReLU activation function to prevent the gradient from vanishing,
and optimizes the structure of the DMLP model using an improved particle swarm algorithm (PSO) to improve the model prediction
accuracy. Then, the notch structure geometric parameters of the designed double-notch ultra-wideband (UWB) antenna serve as input to
predict the return loss S11 of the antenna. The experimental results show that the method reduces the root mean square error of prediction
for S11 by 73.01% compared to the traditional MLP and 64.14% compared to the unimproved DMLP, which provides a solution for
modelling notched UWB antennas and helps to optimize the design of this type of antenna.

1. INTRODUCTION

In addition to reducing electromagnetic interference from nar-
rowband communication systems, ultra-wideband (UWB)

antennas with notching properties can increase the antenna’s
bandwidth to a certain degree [1]. In the design of a notch UWB
antenna, traditional antenna simulation tools, such as high-
frequency structure simulation (HFSS), can accurately calcu-
late various performances of the antenna. However, the HFSS
frequently needs to repeatedly invoke the electromagnetic full-
wave numerical simulation and analysis module during the op-
timization process, which increases the design time and dif-
ficulty. Therefore, more efficient and feasible methods are
needed to optimize the antenna.
Deep neural network (DNN) is a highly nonlinear model with

practical applications in optimizing microwave devices as a
powerful data-driven tool with high optimization design effi-
ciency [2, 3]. DNN uses sample data to train the neural net-
work, and the trained network can immediately react to the
mapping connection between the geometric parameters of the
catch structure and the electromagnetic characteristics. The
trained network can also quickly provide the matching antic-
ipated output results when new data are input, thereby reduc-
ing the number of calls to the electromagnetic full-wave nu-
merical simulation in antenna design and shortening the design
time [4]. A novel multilayered neural network model is pro-
posed in [5], which deepens the network depth, applies batch
normalization techniques and leaky ReLU activation functions
to reduce the network model training time, and applies to wide-
range microwave parametric modelling. The results show that
the deep network is more accurate when modelling microwave
devices than the traditional shallow neural network. Refer-
ence [6] proposes using a particle swarm algorithm (PSO) to
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identify a deep trust network’s model structure, followed by a
deep model coupled with an extreme learning machine to get
the best fractal antenna design. Reference [7] proposes using an
adaptive chaotic particle swarm optimization algorithm to train
the feed-forward neural network. Reference [8] proposes using
genetic algorithms in neural networks to calculate the frequency
of a single-shorting-post antenna. These experiments demon-
strate that incorporating intelligent optimization algorithms can
improve the neural network model’s prediction accuracy. Ref-
erence [9] proposes a deep neural network behavioral model for
power amplifiers based on migration learning, which first acts
as a filter to extract the features of the power amplifier and then
as an adaptive layer to fit the output of the real power ampli-
fier. A back propagation (BP) neural network model with three
hidden layers and the Monte Carlo sampling approach is sug-
gested in [10] for quick prediction of the coupling cross-section
of conductor transmission lines.
Most of the aforementioned neural network modelling meth-

ods are built based on intuition and experience, which leads to
many parameter redundancies in the model’s training process
and causes computer arithmetic power consumption. Attention
mechanism (Attn) is a better method to solve this problem be-
cause it can observe the correlation between the decision and
the input and the connection weights, achieving the simplifi-
cation and refinement of the model [11, 12]. Thus, this paper
proposes an Attn-based improved deep multilayer perceptron
(DMLP) neural network model, which adopts the leaky ReLU
activation function to reduce the gradient disappearance prob-
lem and uses the Adam optimizer to speed up the algorithm
update [13] and the Dropout [14] to prevent the overfitting phe-
nomenon due to the deepening of network layers. Besides,
the improved particle swarm algorithm with compression fac-
tor (PSOCF) determines the number of hidden layer nodes and
the dropout discard rate of DMLP. The advantage of PSOCF
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over standard PSO is that it increases the compression factor
and expands the influence of inertia weighting to make it faster
and more stable in velocity updates. This method is applied
to the optimal design of a double-notch UWB antenna model
to achieve fast and accurate prediction of S11 by antenna notch
geometric parameters. TheAttn-based PSOCF-DMLP network
model put out in this research exhibits fewer errors than the con-
ventional MLP, DMLP, PSO-DMLP, and PSOCF-DMLP net-
works, according to experimental findings, which attests to the
viability of this network model.

2. IMPROVED DMLP NETWORK ARCHITECTURE

2.1. DMLP
DMLP, or “deep neural networks with multiple neuron layers,”
inserts three or more fully connected hidden layers between the
input and output layers. The DMLP’s input layer receives data;
the middle layer does calculations; and the output layer pro-
duces results. A deep network’s capacity to fit data is better
than a shallow-layer network’s. However, arbitrary increases in
the number of layers can lead to overfitting and reduced predic-
tive power [15]. Common anti-overfitting means are layer nor-
malization (LN) regularization [16], batch normalization [17],
and Dropout. By eliminating specific neurons with probability
p, Dropout decreases the intricate co-adaptive interactions be-
tween neurons, preventing overfitting and enhancing network
generality.

FIGURE 1. PSOCF algorithm flow chart.

2.2. Improved Particle Swarm Algorithm
PSO is a swarm intelligence algorithm that simulates the preda-
tory behaviour of birds. PSO compares the flight space of the
bird to the search space for solving the problem and the bird
in the search space to the potential solution of each optimiza-
tion problem, i.e., the particle [18, 19]. Each particle has two
properties: velocity and position. Velocity represents the di-
rection and distance the particle will move in the next iteration,
while position is the solution to the problem. The expressions
for particle velocity and position are as follows:

Vid(t+ 1) = wVid(t) + c1 rand1(pbestid −Xid(t))

+c2 rand2(gbestid −Xid(t)) (1)
Xid(t+ 1) = Xid(t) + Vid(t+ 1) (2)

where w is the inertia factor; c1 is the individual learning fac-
tor; c2 is the social learning factor; rand1 and rand2 are [0,
1] uniformly distributed random numbers; Vid(t) and Xid(t)
represent the particle i’s velocity and position in generation t;
Vid(t + 1) and Xid(t + 1) represent the particle i’s velocity
and position in generation t + 1; pbestid and gbestid define
the particle i’s own historical experience and group experience
gained via learning. c1 and c2 are non-negative constants that
control the weights of the local and global optimums, respec-
tively. In the case of setting too large a value of c1, the par-
ticles will stay in the local range for too long as well as the
algorithm convergence will be slow, and if the c2 value is set
too large, the particle will quickly converge to the local opti-
mal and easily fall into the optimal local solution. To make
an effective balance between the two, the PSO algorithm needs
to be improved. PSOCF adds the compression factor φ to the
front of the overall velocity equation after removing the inertia
weight parameter from the PSO velocity attribute. Such an im-
provement not only enhances the local space search capacity of
the algorithm but also successfully manages the particle flight
speed, assures algorithm convergence, and removes the veloc-
ity boundary limit [20]. Figure 1 shows a flow diagram of the
PSOCF algorithm used to find the optimal value.
The speed update expression of PSOCF is as follows.

Vid(t+ 1) = φ

{
Vid(t) + c1 rand1(pbestid −Xid(t))

+c2 rand2(gbestid −Xid(t))

}
(3)

φ =
2∣∣2− C −
√
C2 − 4C

∣∣ (4)

C = c1 + c2 (5)

2.3. Attention Mechanism Layer
Attn is an information selection mechanism widely used in
deep neural networks today. It is divided into two stages, first
calculating the attention distribution, calculating the probabili-
ties corresponding to different feature vectors according to the
weight assignment principle, and then calculating a weighted
average of the input information based on the attention distri-
bution and continuously updating and iterating a better matrix
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FIGURE 2. Attn layer network architecture.

of weight parameters [21]. The additive model of Attn calcu-
lates the weight coefficients in the following way.

sn = vTTanh(Wxn + b) (6)

αn =
exp(sn)∑n
i=1 exp(sn)

(7)

attnn =

N∑
n=1

αnxn (8)

In the formula, xn represents the nth value of the input vector
x; sn represents the matching degree between xn and the query
vector; v andW are the weights; b is the bias; αn represents the
attention probability distribution value determined by the nth
input vector; and attnn is the output after a weighted average of
the nth input vector. Figure 2 depicts the structure of the Attn
layer.
The input to the Attn layer is an array of features [x1, x2, ...,

xn], and the input data is passed through four fully connected
layers to obtain the attention distribution of the feature, i.e., the
softmax function as the activation of the last layer function to
calculate the importance of each characteristic for the task. This
attention distribution is then multiplied with the input to obtain
the representation of the input data at the next stage, and then
the higher-level representation of the input data, the attnn out-
put, is obtained through four fully connected layers, denoted by
[a1, a2, ..., an].

2.4. Attn-PSOCF-DMLP Neural Network Architecture
The Attn-PSOCF-DMLP neural network model proposed in
this paper consists of an input layer, an attention layer, a fully
connected layer, and an output layer. The dimensional param-
eters of the notch structure of the notched UWB antenna are
taken as input samples, and the antenna return loss S11 is taken
as an output sample. Compared with the shallow-layer neu-
ral network, this paper deepens the number of hidden layers of
the fully connected layer. It has six fully connected layers, in-
cluding five hidden layers and one output layer. In addition,
Dropout operations are embedded among all connected layers
to prevent overfitting that occurs during training. The learning
rate is automatically updated using the Adam optimizer instead
of the traditional stochastic gradient descent algorithm to speed
up the model weight update, increase the convergence speed
of the algorithm, and jump out of local minima. A variant of
the ReLU activation function, leaky ReLU, is applied to solve
the problem that neurons do not learn when they enter negative

intervals [22].

Leaky ReLU(x) =
{

x, x > 0
λx, x ≤ 0

, λ ∈ (0, 1) (9)

FIGURE 3. Attn-PSOCF-DMLP neural network architecture.

Due to deep neural networks with low explanatory power
and many parameter redundancies in the model training pro-
cess, this paper adds the Attn layer to the deep neural network
model to improve the interpretability of DMLP while simpli-
fying the model and improving the model prediction accuracy.
Attn is a plug-and-play module. To not change the structure
of DMLP, the Attn layer is placed in the first layer of the net-
work in this paper. The input of the Attn layer is the six notches
geometric parameters with the most significant influence on an-
tenna performance. The input information is weighted by Attn
and input to the network model. The selection of the number of
hidden nodes is significant for neural networks. The number of
hidden nodes is not only related to the excellent and fast perfor-
mance of the model but also a direct cause of overfitting during
training. Therefore, this paper uses the PSOCF algorithm to op-
timize the number of hidden nodes and the dropout discard rate
p for a DMLP to determine the network architecture. Figure 3
shows the PSOCF-DMLP network architecture diagram based
on Attn.
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(a) (b)

FIGURE 4. The current distribution in antenna surface. (a) 3.5GHz and
(b) 7.5GHz.

(a) (b)

FIGURE 5. Dual-notch UWB antenna structure. (a) Front view and (b)
back view.

Antenna parameters l h l1 h1 l2

Value (mm) 30 18 8 3 6.5
Antenna parameters h2 l3 h3 l4 h4

Value (mm) 4 6 15 3.5 3.5
Notch parameters H1 L1 H2 L2 H3

Value (mm) 0.5 8 11 4 0.2
Notch parameters L3 H4 L4 — —

Value (mm) 2.5 10 0.2 — —

TABLE 1. Geometric parameters of the dual-notch UWB antenna. FIGURE 6. Double band-notched UWB antenna S11 simulation curve dia-
gram.

3. MODELLING AND OPTIMIZATION OF DUAL-
NOTCH UWB ANTENNA

3.1. Analysis and Design of Antenna Structure
This paper selects UWB antenna miniaturization double
notch [23] as the research object, the antenna design for Teflon
dielectric substrate, with loss tangent 0.02, dielectric constant
4.4, and thickness 1.6mm. With an inverted E-shaped notch
on the upper part of the antenna front and a barbell-shaped
notch structure on the lower part, the bandwidth of the an-
tenna reaches 2.8 ∼ 14GHz, generating 3.2 ∼ 3.8GHz and
7.1 ∼ 8.0GHz trap band. Figure 4 shows the antenna current
distribution simulation diagram at different notch frequencies.
It can be seen that the energy is concentrated at the notch’s
position so that the antenna’s energy cannot be radiated out-
ward, thus the frequency band of the antenna produces a notch.
Figure 5 shows the structure of a miniaturized dual-notch
UWB antenna.
Figure 6 shows the S11 simulation curve derived using HFSS

software, and Table 1 shows the antenna geometric parameters.

As can be seen from Figure 6, the antenna meets the operating
requirements of S11 < −10 dB in the 2.0–14.0GHz band and
the bandwidth requirements of UWB antennas. Moreover, after
the two slots are etched, two notch waves of 3.2–3.8GHz and
7.1–8.0GHz are realized, effectively avoiding the interference
of the wireless metro area network band and X-band.

3.2. Optimization Steps of Antenna Modelling Based on Im-
proved DMLP

This paper uses Python 1.11 to build network architecture on an
i5-7200U CPU. The modelling optimization steps of the minia-
turized dual-notch UWB antenna based on AttnPSOCF-DMLP
neural network are as follows:
Step 1: Obtain the data set. After extracting simulation sam-

ples of the notch structural parameters and modelling a dual-
notch, the double-notch UWB antenna was modelled using
HFSS software. Following modeling, the notch geometric pa-
rametersH1, L1, H2, L2, L3, andH4, which had the great-
est influence on antenna performance, were simulated and sam-
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FIGURE 7. Attn-PSOCF-DMLP neural network flow chart.

Parameters Range/mm Parameters Range/mm
H1 0.4–0.7 L2 3.8–4.1
L1 7.9–8.1 L3 2.4–2.6
H2 10.8–11.0 H4 9.9–10.1

TABLE 2. Parameter optimization dimension of notch structure. FIGURE 8. PSOCF-DMLP model and PSO-DMLP model optimization
process.

pled. Table 2 depicts sample sampling. The antenna frequency
is set to 2 ∼ 14.0GHz, and the step geometry of the samples
is set to 0.1mm. After 1254528 samples are generated with
HFSS, transpose every 121 rows of S11 to make it into 1 row.
The geometric parameter becomes one row reserved for every
121 rows, meaning that six geometric parameters correspond-
ing to 121S11 values become a new sample, meaning that the
six geometric parameters map a function curve about S11. Fi-
nally, 1296 new samples are obtained to form the dataset. The
dataset was divided into 80% for training and 20% for testing
the model.
Step 2: Data preprocessing. Here min-max is chosen to nor-

malize the data and map the data to the interval [0, 1]. After
normalization, the optimization process becomes narrower, and
converging to the optimal solution is more accessible.
Min-max data normalization:

xnew =
x−min x

max x−min x
(10)

where xnew is the normalized input data; x is the actual input
data; minx and maxx are the minimum and maximum values of
the input data.
Step 3: Build the network model and define the Attn and

PSOCF algorithms. PSOCF finds the most suitable solution
by calculating the fitness of each particle corresponding to the
solution and then iterating over the particles according to the
features they need to optimize. A particle is an array of [num-
ber of hidden layer nodes: node, dropout discard rate: p], with
test loss as the fitness. Then the network construction of DMLP
is completed after embedding the Attn layer into the input layer
of DMLP.
Step 4: Initialization of weights. After establishing the

model, by using the uniform distribution of Kaiming to initial-
ize the weights, the scale of the output value of the deep neu-
ral network can be maintained within a specific range, which
can alleviate gradient disappearance and gradient explosion in
backpropagation [24].
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FIGURE 9. Prediction fitting results for network models with and with-
out Attn applied.

FIGURE 10. Prediction curves of five network models and fitting of
HFSS simulation curves.

Step 5: PSOCF algorithm optimization DMLP. In the
training process, particle optimization is carried out through
PSOCF, and the optimal particle position corresponding to the
final DMLP (node, p) is output, then the optimized DMLP
model is obtained [6]. Set the particle interval; each node takes
the value of [130, 1000]; p takes the value of [0.15, 0.8]; the
average accuracy of cross-validation of test samples is selected
as the fitness function; the number of PSOCF iterations is
20; both learning factors are 2.05; the number of particles is
5; the batch geometric is 128; the number of neural network
iterations is 2000; the learning rate is 0.001; use the MSE loss
function and Adam optimizer for model optimization.

MSE =
1

m

m∑
i=1

(yi − f(xi))
2 (11)

where yi (i = 1, 2, ...,m) and f(xi) (i = 1, 2, ...,m) denote
the actual and predicted values of the ith sample, respectively,
andm is the number of samples.
Step 6: Train the model and judge whether the output results

meet expectations. Verify whether the error meets the expecta-
tion through the test set, and if it does, end the training. Save
the training model and the data and results generated during the
model’s training. If the test result does not meet expectations,
it returns to step 5 while the number of iterations increases by
one, and if the maximum number of iterations is reached, the
training ends. In addition, the desired goal can be reached by
appropriately adjusting the hyperparameters in step 5.
Data normalization will restore the data recovery formula to

achieve the fit of the predicted data and accurate data visual-
ization. Figure 7 depicts this antenna modelling optimization
procedure.

x = xnew(max x−min x) +min x (12)

4. EXPERIMENTAL RESULTS AND ANALYSIS
After network learning, the optimal parameter setting of the
PSOCF-DMLP neural network model based on Attn is 6-763-

296-627-314-395-121, and p is 0.167. In order to verify the
superiority of applying the improved particle swarm algorithm
and the attention mechanism in deep multilayer perceptual ma-
chines, the traditional MLP model, DMLP model, PSO-DMLP
model, PSOCF-DMLP model, and Attn-PSOCF-DMLP model
were constructed in Pytorch version 1.11 (CPU), respectively.
The same dataset was used to perform the five methods of train-
ing, and the maximum number of iterations for training is 2000
for all of them. The maximum training times were all 2000
times. Figure 8 shows the loss comparison between the stan-
dard particle swarm optimization algorithm and the improved
particle swarm optimization algorithm in the process of DMLP.
It can be seen from Figure 8 that the loss of PSOCF-DMLP

stabilizes after the 10th iteration, while the loss of PSO-DMLP
stabilizes after the 70th iteration, which verifies that the PSOCF
algorithm converges faster than the PSO algorithm.
A sample was selected randomly from the test set for the ex-

periments. Figure 9 compares the prediction fit of the DMLP
network model with and without applying the attention mech-
anism to the HFSS simulation values. Figure 9 shows a visual
application of the attention mechanism to improve the predic-
tion precision of themodel, which is more fitting with the HFSS
simulation results.
In addition, Figure 10 compares the output fitting results of

all network models and more intuitively proves that deepening
the number of network layers, optimizing the network structure
with an improved particle swarm optimization algorithm, and
adding an attention layer can improve the model’s prediction
accuracy.
Table 3 shows the performance comparison results of the

five network models mentioned above. The evaluation metrics
for the experiments are mean absolute error MAE, root mean
square error RMSE, mean absolute percentage error MAPE,
and coefficient of determination R2. Table 3 shows that the
Attn-PSOCF-DMLP model has the five models’ lowest MAE,
RMSE, and MAPE. The root mean square prediction error
for S11 is also reduced, which is 73.01% better than the con-
ventional perceptron and 64.14% less than the unimproved
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(a) (b)

FIGURE 11. Physical diagram of the antenna (a) front view and (b) back
view.

FIGURE 12. S11 measurement and simulation and Attn-PSOCF-DMLP
prediction.

TABLE 3. Performance comparison of five network models.

Neural network model MAE RMSE MAPE R2 CPU/s
MLP 4.28957 5.13348 66.52552 0.57254 0.03500
DMLP 2.62315 3.86433 21.61201 0.77296 0.05100

PSO-DMLP 1.09547 1.57689 9.37252 0.95967 0.17000
PSOCF-DMLP 1.07625 1.54214 9.86193 0.96885 0.04900

Attn-PSOCF-DMLP 0.94870 1.38580 8.63200 0.96954 0.10800

depth multilayer perceptron. The coefficient of determination
is 0.96954, which is 69.34% better than the conventional per-
ceptron and 25.43% better than the unimproved DMLP, which
indicates that the network model has an excellent parallel data
processing function and can be more effective in researching
complex non-linear interactions between antenna parameters.
In addition, Table 3 lists the CPU runtime of different models
in predicting S11, and it can be seen that the process is speedy.
The double-notch UWE antenna is physically tested using

a vector network analyzer, and the physical antenna is shown
in Figure 11. Figure 12 shows the results of the measured S11

comparedwith the HFSS simulatedS11 and the neural network-
predicted S11, from which it can be seen that the antenna pro-
duces better trapping characteristics at 3.1–3.9GHz and 7.0–
8.2GHz. The error in this experimental result may be due to
the accuracy of the processing and the loss of the dielectric sub-
strate and the measured environment.

5. CONCLUSION
The improved DMLP network model proposed in this paper
uses the leaky ReLU activation function, dropout operation,
and Adam optimizer. In the comparison experiments with the
traditional perceptron and the unimproved multilayer percep-
tron model, it is demonstrated that in the optimization of the
method for modelling double-notch UWB antennas, the opera-
tions of deepening the number of network layers, optimizing the
structure of the deep multilayer perceptron model by using the

particle swarm algorithm with compression factor, and adding
the attention layer all help to improve the prediction accuracy
of the model. Among them, improving the particle swarm algo-
rithm accelerates the convergence speed of the algorithm, and
the introduction of attention improves themodel’s interpretabil-
ity, prediction accuracy, and stability. In conclusion, the model
has better fitting accuracy for the S11 parameters of the target
antenna, which confirms the method’s feasibility and provides
a fast and effective tool for designing notched UWB antennas.
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