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Abstract—The research on landslide displacement prediction can help the early warning and prevention
of landslide disasters in mining areas. In view of the problem that BP neural network is prone to local
convergence and considering that the network trained based on time-series cumulative displacement may
produce large errors in prediction, this paper proposes a method combining displacement increment and
CS-BP (Cuckoo Search-Back Propagation) neural network to predict landslide displacement. Compared
with the conventional landslide displacement prediction methods, this method uses displacement
increment instead of the commonly used cumulative displacement as the network input data, selects the
CS algorithm with fewer parameters and easy to implement to optimize the BP network to construct
the prediction model, and predicts the corresponding amount of displacement change at the next
moment by the historical landslide displacement increment. Combined with the measured data of
three feature points of a mine in Xinjiang, China, obtained by the micro-deformation monitoring
radar, the displacement prediction accuracy of the proposed model on the three measured data
sets is compared with the prediction accuracy of the BP, GA-BP (Genetic Algorithm, GA), and
FA-BP (Firefly Algorithm, FA) network prediction models based on cumulative displacement and
incremental displacement, respectively. The experimental results show that this method achieves
superior performance with an average root mean square error of 0.3261 and an average mean absolute
error of 0.2785 across the three feature points, outperforming the other models, and holds promising
applications in disaster prevention and control work.

1. INTRODUCTION

Landslide is one of the major geological hazards in China, and it is of great practical significance
to carry out the prevention and control of landslide hazards. Out of the national consideration for
safety production, landslide monitoring in mining areas has been constantly receiving attention and
focus from all sides in recent years. The terrain of mining areas is steep and dangerous, which is
inconvenient for field observation. The use of traditional monitoring means (GPS, level measurement,
etc.) cannot achieve real-time and continuous monitoring of large areas. With its advantages of all-day,
all-weather, high accuracy, and no need to contact the monitoring area, micro-deformation monitoring
radar has become a potential technology in the field of landslide monitoring [1]. The antenna system
is an indispensable and crucial component of the entire radar system, and the choice of radar antenna
directly affects the accuracy of micro-deformation monitoring radar in range and angle measurements.
Relevant scholars have proposed many excellent antennas, such as super-wide impedance bandwidth
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planar antenna for microwave and millimeter-wave applications [2], novel compact printed leaky-wave
antenna with beam steering capability [3], and hexa-band planar antenna with asymmetric fork-shaped
radiators [4]. Advanced antenna systems contribute to the radar’s ability to acquire more precise
deformation data. However, it is worth discussing and researching how to use the measured data
obtained by micro-deformation monitoring radar to predict the deformation displacement of landslide
potential areas, and then assist in the early warning and prevention of landslides in mining areas.

In recent years, with the rapid development of modern computer technology and data storage
technology, machine learning technology has been revived again and is widely used in various fields.
Regarding the research on landslide displacement prediction, machine learning methods have become
the choice of more and more researchers [5–7]. BP neural network is one of the classical machine learning
algorithms, which has been widely used in landslide displacement prediction. For example, Zhang and
Men used BP neural network to establish a landslide deformation prediction model for short-term
landslide prediction [8]; Yue et al. also used BP neural network to predict landslide displacement
data [9]. However, BP neural network has a series of problems, such as being easy to fall into
local convergence and sensitive to the initial weights of the network. Therefore, the introduction of
intelligent optimization algorithms to improve the network based on the original BP neural network has
become a new technical route for landslide displacement prediction research. For example, Cheng et al.
proposed the CPSO-BP model for landslide prediction [10], while utilizing the global search capability
of the CPSO algorithm to some extent to avoid BP getting trapped in local optima. This model
has limited adaptability and requires manual adjustment of certain CPSO algorithm parameters to fit
different landslide displacement prediction scenarios; Qiao and Wang proposed a landslide displacement
prediction method based on GSA-BP model [11], and GSA algorithm also possesses some global
search capability, but its performance highly depends on parameter settings, including gravitational
constant and iteration count, and parameter configuration significantly impacts algorithm performance,
necessitating continuous parameter tuning and optimization; Qu et al. combined the improved Harris
Eagle optimization algorithm with BP neural network to achieve high accuracy prediction of landslide
displacement [12], and this model exhibits good generalization ability and effectively enhances landslide
displacement prediction accuracy; however, it has a relatively slow convergence rate, resulting in
substantial computational overhead as problem complexity increases. Cuckoo Search (CS) algorithm is
a new bionic intelligent optimization algorithm proposed by Yang and Deb in 2009 based on the hatching
parasitic behavior of cuckoo [13], which requires fewer parameters, has strong search capability and good
generality, and has been successfully used in a variety of scenarios, such as structural optimization [14],
photovoltaic systems [15], support vector machine [16], neural network training [17], and multi-objective
optimization [18].

Based on the above background, this paper proposes a method combining CS algorithm and BP
neural network to achieve landslide displacement prediction in mining areas. In addition, the cumulative
landslide displacement is usually a monotonically increasing sequence, and the network obtained by using
the previous cumulative displacement data as training data will produce a prediction range beyond the
training data range when predicting the subsequent data, which will affect the prediction accuracy. The
landslide displacement increment is a non-monotonically increasing sequence, and using it as training
data can effectively avoid this situation. Therefore, in this paper, we use BP, GA-BP, FA-BP, and CS-BP
neural networks to predict landslide displacement based on cumulative displacement and incremental
displacement, respectively, and evaluate the prediction accuracy by using root mean square error and
mean absolute error. Finally, the feasibility of the method proposed in the prediction of landslide
displacement in mining areas is compared and analyzed.

2. LANDSLIDE DISPLACEMENT PREDICTION MODEL CONSTRUCTION

2.1. BP Neural Network

BP neural network is a typical multi-layer feed-forward network. The network consists of input layer,
output layer, and hidden layer. The input layer receives external input signals; the output layer outputs
the results of the network; and the middle hidden layer is responsible for processing the signals of the
input layer. The learning process of BP neural network is accomplished by forward transmission of
signals and backward propagation of errors [19]. First, the training data is input to the network to get
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the output result of the network. Then, the error term is calculated by comparing the error between
the output result and the actual result. Next, the error term is propagated layer by layer from the
output layer to the input layer, and the weights of each neuron are adjusted according to the error size
in order to make the output result of the network gradually close to the actual result. This process
is repeated until the output of the network meets the predetermined accuracy requirements, or the
proposed learning times are reached.

The signal forward transmission process is calculated as:

yl = f

(
N∑

n=1

wnlxn + bl

)
(1)

where xn is the input of the network, n = 1, 2, . . . N ; N represents the number of neurons in the input
layer of the network; wnl represents the connection weight between node n and node l; bl represents
the threshold of node l, l = 1, 2, . . . , L; L represents the number of neurons in the hidden layer of
the network; yl represents the output of the network; f represents the activation function used by the
network.

The expression for the error calculation is:

∆E =
1

2

T∑
t=1

(Yt − ŷt)
2 (2)

where t = 1, 2, . . . , T ; T represents the number of neurons in the output layer of the network; ∆E
represents the computational error; Yt is the predicted output value of the network; and y′′ is the true
value.

2.2. Cuckoo Search Optimization Algorithm

The cuckoo search algorithm is inspired by the cuckoo’s egg-laying strategy. The cuckoo uses a special
parasitic host nesting method to breed, in which it places incubated eggs into the nest of a parasitic host
and allows the host to incubate the cuckoo eggs [20]. When the parasitic host finds an unfamiliar egg
in the nest, it abandons the nest and re-nests to reproduce. Yang and Deb proposed the CS algorithm
based on the observation of the above phenomenon. The CS algorithm follows the following three basic
assumptions [13].

1) Each cuckoo lays one egg at a time and randomly selects a host nest for storage.

2) In the process of random nest selection, the best nest will be kept to the next generation.

3) The number of parasitic host nests available is fixed, and the probability of exotic cuckoo eggs
being found by the host is Pa.

Based on the above three assumptions, it can be considered that the host nest is used to refer to the
solution of the problem to be solved; the process of cuckoo searching for the host nest to lay eggs is the
process of searching for a solution in n-dimensional space; and the quality of the host nest symbolizes
the quality of the solution.

In the CS algorithm, the nest location is updated according to the Lévy flight, and the update
expression is as follows:

xi(t+ 1) = xi(t) + α⊗ Levy(β) (3)

where xi(t) and xi(t + 1) represent the location of the ith nest at the tth and t + 1th iterations,
respectively; ⊗ represents the point-to-point multiplication; Levy(β) represents the random flight path,
which obeys the Lévy probability distribution; α represents the step size information, which is used to
control the cuckoo’s search range, and α is calculated by the following expression:

α = α0(xi(t)− xbest) (4)

where α0 is a constant, and xbest represents the optimal location in the current iteration.
During the update iteration, when the partial nest location is updated according to the discovery

probability, the update is achieved by means of a random preference wandering, and the expression for
generating the new location is as follows:

xi(t+1)=xi(t)+r ⊗Heaviside(Pa−ε)⊗ (xk(t)−xj(t)) (5)
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where r and ε are random numbers that follow the normal distribution in the interval [0, 1]; Heaviside(µ)
is the step function; Pa represents the probability that the host finds an exotic cuckoo egg; and xk(t)
and xj(t) represent two random positions at the tth iteration.

2.3. Displacement Prediction Method Based on Displacement Increment and CS-BP
Neural Network

2.3.1. Feasibility of Predicting Landslide Displacement by Displacement Increment

The factors affecting landslides in mining areas are numerous and complex, and it is very difficult to
construct a definite physical model to describe its change process. One of the advantages of using
neural networks for landslide displacement prediction is that it is not necessary to investigate the
intrinsic causes of change, but to analyze the results of change to achieve prediction of its time series.
The change of landslide displacement increment sequence is usually consistent with the change process
of landslide. When the landslide is in the accelerated change phase, the displacement increment will
show an increasing trend, and when the landslide is in the smooth change phase, the displacement
increment will also show a smooth change trend. Therefore, it is theoretically feasible to use the
landslide displacement increment to predict the landslide displacement in the mining area aiming to
improve the prediction accuracy.

2.3.2. CS-BP Neural Network Prediction Method

The CS algorithm can achieve global optimization search. Before training the BP neural network,
the CS algorithm is first used to find the optimal parameters of the BP neural network, and then
the optimal initial weights and thresholds are given to the network to improve the performance of the
network through the optimal parameter settings. This method of combining CS algorithm with BP
neural network can effectively avoid the problem that a single BP neural network tends to fall into local
convergence, so that the network has better prediction ability.

The process of predicting landslide displacement by CS-BP neural network based on displacement
increment is shown in Fig. 1, which can be summarized as follows:

1) Obtain time series data of landslide displacement increment and deduce the average deformation
velocity corresponding to each sampling moment based on the displacement data. Preprocess
the acquired data using data mining techniques to provide foundational data support for training
landslide displacement prediction model.

2) Determine the network structure parameters of BP neural network. The number of input layer
neurons is determined by the number of input data in a group, while the number of output layer
neurons is determined by the number of output values. The number of hidden layer neurons needs
to be determined through multiple iterations to find the optimal value, along with the selection of
activation function and learning rate.

3) The optimal parameter solution is searched using the CS algorithm and used as the initial weights
and thresholds of the BP neural network. The search steps are entered as follows:

a. Initialize the number of nests n, the probability of discovery Pa, and set the maximum number
of iterations or the accuracy requirements for terminating iterations.

b. In the specified search range, n initial locations of bird nests are randomly generated

X0 = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
n )T , and each nest location corresponds to a set of weights and

thresholds. The fitness function value is used as the evaluation index of the nest location,
while the reciprocal of the training error of the BP network is used to represent the fitness
function value. The fitness value of the nest is calculated to find the contemporary best nest

location x
(0)
d and record it.

– Retain the best nest position from the previous generation x
(0)
d . Update the nest location by

Lévy flight Xt = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
n )T , and the fitness value of the updated nest is calculated

and compared with the fitness value of the previous generation position. If it is better, the
position is updated; otherwise, the previous generation nest position is retained.
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Figure 1. Technical route of landslide displacement prediction model based on displacement increment
and CS-BP neural network.

c. Generate a random number r to compare with Pa to update the nest position again. If r > Pa,
then the nest position is updated with random preference wandering; otherwise, the original
position remains unchanged. After updating the position, the new fitness value is calculated
and compared with the value of the original position, and if it is better the updated nest is
kept; otherwise, the original nest position is used. At this point, the updated nest position is

Xt+1 = (x
(t+1)
1 , x

(t+1)
2 , . . . , x

(t+1)
n )T .

d. Loop iterates until the iteration termination condition is reached (reaching the maximum
number of iterations or achieving the accuracy requirements for terminating iterations), and

the optimal nest location x
(t+1)
d is used as the optimal weights and thresholds of the BP

network.

4) Construct a BP neural network prediction model with optimal parameters. Use historical
displacement increment and deformation velocity as inputs, with the corresponding displacement
increment at the next time as the output. The model is trained; displacement prediction is
performed; and the prediction accuracy of the model is also evaluated.
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3. APPLICATION OF ACTUAL MEASUREMENT DATA AND ERROR ANALYSIS

3.1. Study Area Overview

In this paper, a mine in Xinjiang, China, is selected as the landslide study area. The mine is an open
pit mine located in the middle and low slope of the Altai Mountains, with an altitude of 1000–1300m.
The terrain is high in the north and low in the east, with a relative height difference of 50–300m. Due
to the mining of the open pit mine, the original topography has been destroyed, and an obvious bedrock
slope has been formed. Fig. 2 shows the panoramic view of the open pit mine obtained by using radar.

The experimental data used in this paper are the measured data obtained by linear scanning
micro-deformation monitoring radar. Based on the analysis of the deformation map of the mine area to
determine the landslide hazard area, three feature points are selected in the landslide hazard area for
landslide displacement prediction study. Fig. 3 shows the locations of landslide potential area Area1
and feature points a1, a2, and a3. The source of the data set is the displacement deformation data
obtained from April 19, 2021 to April 21, 2021 for the three feature points, and the data sampling
frequency is 20min. Landslide displacement time series of 127 groups for each feature point are finally
obtained after collation.

Figure 2. Panoramic view of open pit mine.

Figure 3. Distribution map of landslide potential hazard area and feature points selection.
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3.2. Model Prediction and Comparison

In this paper, a 3-layer CS-BP neural network model is used, and the input information is the
displacement corresponding to the first 4 sampling moments (cumulative displacement/displacement
increment) and the deformation velocity corresponding to the 4th sampling moment, and the output is
the displacement corresponding to the next sampling moment. The last 10 sets of data corresponding
to each of the 3 feature points are used as the test set and the rest as the training set. The number
of iterations is set to 100, and the number of nests is 10 when building the network. Meanwhile, in
order to clearly demonstrate the superiority of the combination of displacement increment and CS-
BP network in predicting landslide displacement, this paper also constructs BP, GA-BP, FA-BP, and
CS-BP networks based on cumulative displacement and BP, GA-BP, and FA-BP networks based on
displacement increment for displacement prediction, and compares and analyzes the prediction results
of different models.

Firstly, the cumulative displacement is used as the input of the network, and the prediction results
of the test samples with 3 feature points using BP, GA-BP, FA-BP, and CS-BP networks respectively
are shown in Fig. 4.

From Fig. 4, it can be observed that for the three feature points a1, a2, and a3, the CS-BP
model provides displacement predictions for the test samples that are overall closer to the actual values.

(a) (b)

(c)

Figure 4. Comparison of displacement prediction by different models based on cumulative
displacement. (a) Feature point a1. (b) Feature point a2. (c) Feature point a3.
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The prediction accuracy of CS-BP is superior to that of the standalone BP network, and the overall
predictive capability of CS-BP is slightly higher than that of the GA-BP and FA-BP models. Based on
the analysis of simulation results, it can be considered that the predictive model obtained by optimizing
the BP network using the CS algorithm exhibits relatively good predictive performance.

Considering that the displacement increment can better reflect the change process of landslide than
the cumulative displacement, it is used as the input data of the network to train the network. At this
time, the network prediction results are as follows.

(a)

(c)

(b)

Figure 5. Comparison of displacement prediction by different models based on displacement increment.
(a) Feature point a1. (b) Feature point a2. (c) Feature point a3.
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In Figs. 5(a), (b), and (c), the left panels show the prediction results of displacement increment
corresponding to each of the three feature points, and then the predicted displacement increment is
converted into cumulative displacement prediction as shown in the right panels. The results shown in
Fig. 5 once again verify the predictive superiority of the CS-BP network model. More importantly,
comparing Fig. 5 with Fig. 4, it is obvious that the use of displacement increment as the input to the
network makes the network prediction more accurate when the landslide displacement prediction is
based on the same network.

To further quantify the comparative analysis, based on the above prediction results, Table 1 shows
the corresponding root mean square error (RMSE) and mean absolute error (MAE) when different
models are used for prediction. From Table 1, it can be observed that under the same input data
conditions, the prediction accuracy of the CS-BP network is higher than that of the single BP network,
GA-BP network, and FA-BP network. Specifically, for feature point a1, when using cumulative
displacement as input, the RMSE of the CS-BP model on the test set is 1.59mm, which represents
an improvement in prediction accuracy of 37.67%, 23.07%, and 14.87% compared to the BP model,
GA-BP model, and FA-BP model, respectively. Similarly, for feature point a2, also based on cumulative
displacement as input, the CS-BP model achieves an RMSE of 1.29mm on the test set, corresponding
to improvements of 40.11%, 34.95%, and 28.28% in prediction accuracy compared to the BP model,
GA-BP model, and FA-BP model, respectively. For feature point a3, using cumulative displacement as
input, the CS-BP model also achieves an RMSE of 1.29mm on the test set, representing improvements in
prediction accuracy of 44.59%, 26.11%, and 24.30% compared to the BP model, GA-BP model, and FA-
BP model, respectively. Furthermore, when using displacement increment as input, the CS-BP model
exhibits varying degrees of improvement in displacement prediction accuracy for all three feature points
compared to the other three models. Specifically, using RMSE as the evaluation criterion, the CS-BP
model achieves prediction accuracy improvements of 84.04%, 77.24%, and 72.28% for a1 compared to
the BP model, GA-BP model, and FA-BP model, respectively. For a2, the CS-BP model’s prediction
accuracy improves by 73.16%, 36.81%, and 51.20% compared to the BP model, GA-BP model, and FA-
BP model, respectively. Finally, for a3, the CS-BP model’s prediction accuracy improves by 83.64%,
64.41%, and 38.82% compared to the aforementioned three models, respectively.

Table 1. Comparison of prediction accuracy of landslide cumulative displacement in mining area.

Monitoring

feature points

Evaluation

Indicators

Based on cumulative displacement Based on displacement increment

BP GA-BP FA-BP CS-BP BP GA-BP FA-BP CS-BP

a1
Root mean square error/mm 2.5452 2.0621 1.8635 1.5864 1.6943 1.1880 0.9756 0.2704

Average absolute error/mm 2.2345 1.6496 1.5083 1.2452 1.2728 1.0330 0.8043 0.2051

a2
Root mean square error/mm 2.1617 1.9903 1.8051 1.2946 1.4843 0.6305 0.8164 0.3984

Average absolute error/mm 1.8656 1.5134 1.6183 1.0371 1.1344 0.5032 0.6091 0.3495

a3
Root mean square error/mm 2.3203 1.7401 1.6984 1.2857 1.8913 0.8696 0.5059 0.3095

Average absolute error/mm 2.0366 1.3367 1.3991 1.1007 1.6533 0.7448 0.4230 0.2808

Also, it can be seen from Table 1 that when the displacement increment is used as the input to
the prediction network, the cumulative displacement prediction resulting from the conversion of the
displacement increment prediction is closer to the true value than the prediction result produced by
using the cumulative displacement as the input directly. For example, in the case that use both CS-BP
model for prediction and root mean square error as the evaluation criterion, for feature point a1, the
prediction accuracy of the network based on incremental displacement is 82.96% higher than that of the
network based on cumulative displacement; for feature point a2, the prediction accuracy of the network
based on incremental displacement is 69.23% higher than that of the network based on cumulative
displacement; for feature point a3, also according to the same comparison, the prediction accuracy of
the former network is improved by 75.93% compared with the latter.

The combined results of the above analysis show that the CS-BP prediction model based on
displacement increment proposed in this paper shows better prediction ability in the displacement
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prediction of all three feature points, and it also shows that the model has better feasibility for landslide
displacement prediction in mining areas.

4. CONCLUSION

In this paper, we propose a landslide displacement prediction method combining displacement increment
and CS-BP neural network to address the limitations in predicting landslide displacement in mining
areas based on cumulative displacement using a single BP neural network, and compare and verify the
reliability and feasibility of the proposed method using a mine in northwest China as an example.

(1) In order to avoid the problem that the prediction range of the network obtained by using
the previous cumulative displacement as the training data will exceed the training range when
predicting the subsequent data, which will affect the prediction accuracy, the displacement
increment is used as the training data, which can effectively avoid the above situation.

(2) The introduction of CS algorithm to optimize the BP neural network solves the problem that
a single BP neural network tends to fall into local convergence, so that the network has higher
prediction accuracy in displacement prediction.

Therefore, the prediction method proposed in this paper has some practical value in the prediction
of landslide displacement in mining areas. However, there are many factors affecting the landslide
instability, and how to combine the parameters of many factors and more advanced prediction algorithms
to establish a comprehensive prediction model will be the next research direction.
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