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Employing Machine Learning Models to Predict Return Loss
Precisely in 5G Antenna
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Abstract—To meet 5G requirements, designing an optimal antenna is challenging due to numerous
design factors. Conventional electromagnetic modeling simulators require excessive time and processing
power during the antenna design process. Machine learning (ML), an innovative technology, can be
used in the domain of antenna design with favorable performance and can resolve problems that the
previous conventional methods cannot. The main goal of this work is to create an antenna that operates
at 28GHz, which is a significant 5G band for the 5G futuristic infrastructure revolution, and to predict
the return loss of an antenna using some machine learning models like K-Nearest Neighbor (KNN),
Extreme Gradient Boosting (XG-Boost), Decision Tree (DT), and Random Forest (RF). On comparing
results, all models perform well with over 83% accuracy. However, the Random Forest model predicts
return loss with higher accuracy at 90% and lower MSE and MAE values of 1.99 and 0.827, respectively.
Moreover, this antenna holds potential for 5G applications and can be efficiently optimized using a
machine learning approach, saving valuable time.

1. INTRODUCTION

Antenna design serves as a vital component of any communication system as it is accountable for
transmitting as well as accepting signals among two or maybe more parts of the system. Fig. 1 depicts
some antenna applications [1]. With the increasing influence of wireless connections, traffic volume has
experienced explosive growth [2], often referred to as data traffic explosion. A significant variety of
applications are currently migrating from wired to wireless gadgets like cell phones, which seem simpler
to handle and use throughout instantaneously; however, this scenario inevitably results in a significant
growth in data congestion and a shortage of available bandwidth. As per estimates, the market data
rate is anticipated to exceed Gbps or possibly Tbps within the subsequent 10 to 15 years [3, 4]. As a
result, we must devise a method that allows antennas to be developed and optimized in less time than
needed. Machine learning procedures act as machine’s minds, enabling them to gain knowledge and
get faster. With more data, more processes are activated, causing the machine to develop and enhance
its performance. Unless the predictions somehow do not eventuate, the algorithm is retrained till the
desired outcome is reached. It allows the machine learning system to train constantly by itself and
provide the best response achievable, which will enhance its accuracy with time. In this case, machine
learning may be utilized to optimize or anticipate results in less time than traditional methods. Fig. 2
depicts the various types of machine learning [5].

In paper [6], the authors utilize algorithms based on machine learning for a Yagi antenna that
operated on a millimeter wave, where a two-section optimization on the Yagi-Uda antenna is used to
produce high gain and wide bandwidth (BW). The Kriging approach is employed as an application
framework, and the LOLA-VORONOI specimen maker and error sample selection are used to achieve
the best design.
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Figure 1. Various fields of antenna.

Figure 2. Types of machine learning.

Article [7] employs the scenario of designing a metamaterial antenna to demonstrate how
machine learning for antenna optimization offers excellent precision and exceptionally high computing
performance compared with conventional electromagnetic simulation optimization. When applying
machine learning to create an appropriate model for a specific type of antenna, this machine learning
model has unrivaled benefits for antenna improvement. The research in this paper reveals that machine
learning technology enables autonomous antenna optimization, which is extremely beneficial to the
quickly growing 5G and 6G technologies.

Report [8] gives a detailed comprehensive investigation of the performance of a machine learning
technique K-Nearest Neighbor (KNN) in predicting the antenna output response of three distinct
antenna designs. The different chosen designs have a unique set of design parameters. It has been
determined that the number of design variables employed in the training input data has a significant
impact on the performance of the machine learning (ML) model. Additionally, it is critical to choose
design variables that are identically and equally dispersed.

The authors in [9] present one or more of the primary applications of artificial intelligence (AI)
toward antenna design in this paper. The authors examine prior research and implementations
for various AI approaches including evolutionary computation, machine learning, & knowledge
representation models. Based on the review, popular methods and developing methods have been
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applied to less complex antenna designs. A wide range of applications from antenna design to
antenna optimization is a rapidly expanding research field. Furthermore, potential research paths will
concentrate on additional algorithms and machine-learning methods that can be used in antenna design.

A dual-port multiple-input multiple-output (MIMO) antenna with metasurface is constructed in
work [10], and several machine learning techniques are employed for optimization. The proposed
antenna operates between 26.24 and 27.94GHz, making it appropriate for 5G communication systems.
Specifically, the deep neural network (DNN) and RF algorithms offer good optimization results.

The authors in [11] propose a smart antenna synthesis approach that automatically chooses the
appropriate antenna type and provides the best geometric attributes under antenna specifications.
It estimates the optimum antenna size attributes by employing a decision tree classifier and a
fuzzy inference approach, and it illustrates excellent abilities in parameter prediction with antenna
categorization.

The rest of this article is organized in the following manner: Section 2 describes the design evolution
of the antenna & its analysis. Section 3 shows how to predict return loss using machine learning models.
Section 4 analyses performance using results. Lastly, Section 5 summarizes and concludes the paper.

2. ANTENNA STRUCTURE DESIGN & ANALYSIS

The antenna design evolution is derived in six iterations. The element’s intermediate steps are shown
in Figs. 3 & 4, and its geometric parameters are listed in Table 1. It is composed of an FR-4 (Flame
Retardant and Type 4) substrate, and the dimension is 20mm × 22.5mm × 1.6mm. The thickness of
the substrate is 1.6mm; the dielectric constant is εr = 4.4; and the loss tangent is tan δ = 0.02 for all
specified antenna design iterations. The first stage as illustrated in Fig. 3, Ant 1, is a standard square
patch antenna. Ant 2 has a tapered bottom portion of the square patch antenna with 3mm width and
7mm length on both lower edges to facilitate a seamless transition of current from the transmission line
to the radiating patch. Ant 3 is formed with a slot that is 1.5mm long and 12mm wide to increase the
width of the radiating patch, followed by Ant 4 having multiple slots of 2mm length by 8mm width,
1mm length by 5mm width, and 3mm length by 2mm width which were inserted for better impedance
matching, Ant 5 with a 1.5mm long by 1.5mm wide strip inserted in the main radiator, and Ant 6
(proposed antenna) with two parasitic strips inserted in the ground plane to tune the antenna and
achieve a wider bandwidth.

While comparing the return loss for Ant 1 to Ant 6, as shown in Fig. 5(a), Ant 1 offers wide band
characteristics from 25.7GHz to 30GHz with a minimum S11 of −19 dB at 26.4GHz and one small

(a) Ant 1 (b) Ant 2 (c) Ant 3 (d) Ant 4 (e) Ant 5

Figure 3. Antenna design steps.
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(a) (b)

Figure 4. (a) Front & (b) back view of proposed antenna (Ant 6).

Table 1. Antenna parameters.

Parameter Value Parameter Value Parameter Value

W1 = L5 1.5mm W7 4mm L10 10.5mm

W2 = L4 = L7 2mm W8 = L8 10mm L11 12.5mm

W3 5mm L1 0.5 to 7.5mm FL 7.5mm

W4 = GL 8mm L2 0.5 to 5mm FW 2mm

W5 12mm L3 = L9 1mm SL 22.5mm

W6 = W9 14mm L6 3mm SW 20mm

(a) (b)

Figure 5. (a) Comparison of S11 for Ant 1, Ant 2, Ant 3, Ant 4, Ant 5 & proposed antenna, (b)
radiation pattern of proposed antenna at 28GHz.
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band resonating at 37GHz with S11 of −21 dB; Ant 2 provides band from 26GHz to 31GHz with S11 of
−21 dB resonating at 27.4GHz; Ant 3 leads to the loss of wideband characteristics, offering dual-band
characteristics at 27.28GHz & 30.2GHz with S11 of −33 dB & −23 dB; Ant 4 gives S11 of −25 dB &
−30 dB at 27.5GHz & 30.26GHz respectively; Ant 5 has return loss of −30 dB at 27.6GHz & −32 dB
at 30.22GHz. Ant 6 (Proposed antenna with L1& L2 at 3mm & 3mm respectively) has wideband
characteristics from 27GHz to 30.8GHz resonating at 28GHz with S11 of −30 dB, 30GHz with S11 of
−24 dB, also a small band from 35GHz to 38GHz resonating at 36GHz with S11 of −25 dB. Fig. 5(b)
presents the radiation pattern for the proposed antenna at 28GHz.

3. PREDICTION OF RETURN LOSS THROUGH MACHINE LEARNING MODELS

The term “return” refers to the bounce-back reflection. Return loss will be the measure of how little
the “return” or “reflection” is. Although a minimal amount of signal reflection is required, a major
loss on the “reflection” is appropriate. Lower return loss is undesirable and indicates that less energy
enters our antenna, and it is measured in dB as indicated in Equation (1) [12] and its signification of
values represented in Fig. 6. Evaluating return loss through antenna design is an essential performance
measure. Not having higher return loss, an antenna neither accepts radio waves properly nor radiates
them. Machine learning approaches are used in this work to predict the return loss of the proposed
antenna.

S11 = 10 log10

(
Pin

Pref

)
dB (1)

where Pin — Incident Power, Pref — Reflected Power.

Figure 6. Return loss & its significance.

The Machine Learning models employed in this work are addressed below:
A Decision Tree [13] is a machine-learning model that represents decisions and their possible

consequences in a tree-like structure. It is a predictive modeling tool widely used for classification
and regression tasks. The entire data set is divided into subsets in a decision tree, and the output will
belong to such subset where the input features fall. A split criterion in a decision tree is selected to
minimize the difference subset variance as we descend across each branch, and the expected attribute is
utilized as the root node, which tends to result in error minimization. Decision Trees are powerful due
to their ability to handle non-linearity, feature interactions, and handling missing values.

The random forest algorithm [14] is based on a decision tree algorithm. The decision tree algorithm
uses only one tree, whereas the random forest technique uses numerous trees to form a forest. The final
prediction is made by pooling predictions from all trees; the mode of the classes for classification or the
mean prediction for regression. Also random forest algorithm is referred to as an ensemble technique
as it combines results to reach a final result.

XGBoost (Extreme Gradient Boosting) [15] is a powerful machine learning algorithm that belongs
to the gradient boosting family. It is designed to optimize predictive performance by sequentially adding
weak learners (usually decision trees) to the model while minimizing errors. XGBoost is known for its
efficiency, flexibility, and high predictive accuracy.

K-Nearest Neighbors (KNN) [16] is a simple and intuitive machine-learning algorithm used for both
classification and regression tasks. It is a non-parametric learning method that makes predictions that
depend on the resemblance across the new data point and its neighboring data points in the training
dataset.
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To predict return loss using machine learning, a data set is created by varying L1 and L2 lengths
and frequency. L1 ranges from 0.5mm to 7.5mm with a step size of 1mm; L2 ranges from 0.5mm to
5mm with a step size of 0.5mm; and frequency ranges from 11GHz to 40GHz with 451 points. With
all these design parameters variation in the design and simulation of each antenna is done in HFSS
through which return values are generated, and these return loss values created a data set of 36080
values. Further, these are used to apply machine learning models in which the first 80% is used for
training the model, and the remaining 20% is used for testing the model. Python is chosen to execute
these models due to its versatility, rich libraries, ease of use, and user-friendly nature. It also offers an
extensive library that supports machine learning algorithms and their visualization. The flowchart of
return loss prediction using machine learning models is shown in Fig. 7.

Figure 7. Flowchart of S11 prediction using machine learning models.

4. RESULT AND DISCUSSION

Although Decision Tree, Random Forest, XG Boost, and KNN can execute effective regression analysis,
handle complex relationships in data, and make accurate predictions, these have been selected for use
on the dataset to discover relations and predict antenna return loss. The mean absolute error (MAE),
mean squared error (MSE), and R-square score will serve as tools to evaluate the various machine
learning models [17, 18] implemented in this work.

The MSE, as represented in Equation (2), serves to determine the accuracy of the model based on
predictions made across the full training data set. Equation (3) represents R-square which is an excellent
way to determine the effectiveness of a machine learning model in predicting observed outcomes. As
indicated in Equation (4), the MAE is the mean of the absolute difference between the model prediction
and the desired/true value.

MSE =
[
Σ(True values – Predicted values)2

]
/n (2)

R-square = 1− (SSR/TSS) (3)

MAE = 1/n ∗ Σ(True values – Predicted values) (4)
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where Σ is the summation; n is the total number of data points; true values are the actual values of data
points; predicted values are the predicted or forecasted values; SSR is the Sum of Squares of Residuals;
TSS is the Total Sum of Squares.

Table 2 shows the MSE, R-square score, and MAE values predicted by several Machine Learning
algorithms. In contrast, all models have an accuracy of more than 83%, making them extremely useful,
and the error is quite low. The high R-squared value signifies that the Random Forest model captures a
substantial portion of the variability in the target variable, resulting in predictions that closely match the
actual values. Furthermore, the Random Forest model exhibits the lowest MSE and MAE values among
the compared models. The lower MSE value underscores the model’s ability to minimize prediction
errors, while the lower MAE value confirms that the absolute differences between predicted and actual
values are smaller than other models. The Random Forest model demonstrates remarkable predictive
capabilities, characterized by its high R-squared value, lower MSE, and lower MAE values. These
findings indicate that the Random Forest model is well-suited for accurate predictions and could be a
viable alternative for a variety of applications that require precise predictions.

Table 2. Comparison of MSE. R-square & MAE for different machine learning models.

Model MSE R-Square MAE

Decision Tree 3.42 0.831 1.029

Random Forest 1.99 0.901 0.827

XG Boost Regression 2.10 0.892 0.900

KNN 2.696 0.866 1.032

4.1. Predicted and Actual Values of Return Loss

Figure 8 correlates the predicted and actual return loss values for Decision Tree, Random Forest, XG
Boost, and KNN between 11 and 40GHz, respectively, which indicates that the model has been properly
trained and that the actual values are very close to the predicted ones.

4.2. Predicted and Simulated Values of Return Loss for Random New Variation in
Antenna Design

Table 3 compares the return loss predicted by various machine learning models for the new variation
in the antenna design, creating 4 new designs randomly, which is also simulated on HFSS whose return
loss graph is shown in Fig. 9(b), and further making comparisons randomly at 28GHz, 30GHz, 32GHz,
and 38GHz for all new variations. Its graphical view is shown in Fig. 9(a), and this represents that the
model is well-trained and predicts values precisely.

(a) (b)
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(c) (d)

Figure 8. Actual values versus predictions by (a) decision tree, (b) random forest, (c) XG boost & (d)
KNN.

(a) (b)

Figure 9. (a) Comparison of predicted return loss: Machine learning models versus HFSS, (b) return
loss values for design 1, 2, 3 & 4.

Table 3. Comparison of S11 predicted by machine learning models and simulated on HFSS.

Source

Design-1 Design-2 Design-3 Design-4

L1 = 3mm,

L2 = 2mm

L1 = 2.5mm,

L2 = 3mm

L1 = 4.5mm,

L2 = 4mm

L1 = 5mm,

L2 = 1mm

S11 at Frequency

28GHz

S11 at Frequency

30GHz

S11 at Frequency

32GHz

S11 at Frequency

38GHz

Decision Tree −20.62 −25.23 −6.42 −7.65

Random Forest −21.56 −20.36 −6.20 −9.22

XG Boost −23.37 −19.56 −6.49 −10.55

KNN −21.09 −20.67 −6.62 −10.12

HFSS −25.79 −20.10 −6.43 −8.96
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4.3. Summary of Research Papers Using Machine Learning in Antenna Design

Table 4 summarises several research papers that address the use of machine learning in antenna design.

Table 4. Comparison of the various ML approaches employed in the papers.

Paper Year ML Algorithm Antenna Type Frequency Range Key Findings

[6] 2021 Kriging Model
Microstrip Yagi-uda

Antenna
24–30GHz

Utilizing machine learning (ML)

approaches to find the optimum

design as a suitable solution.

[7] 2021
Fully connected

multilayer perceptron

Dual T-shaped

antenna

7–8GHz,

12–13.5GHz

ML for antenna optimization

showcases good accuracy

and remarkably high

computational efficiency.

[13] 2021 DT & RF MSA 2–10GHz

The prepared model facilitates

the design and optimization

of structures for the desired

frequency, resulting in reduced

time and enhanced

ease of implementation

[20] 2021 GPR
Square Patch

Antenna
0.48–7.84GHz

Reliable resonant frequency

prediction for square

patch MSA using GPR.

[19] 2022
DT, RF, XGBoost,

KNN & ANN
UWB Antenna 2.9 to 21.6GHz

Accurate return loss

prediction using KNN

[10] 2022
DT, KNN, RF,

XGBoost & DNN
DRA 26.24–27.94GHz

Accurate S11 predictions

were attained using

DT, KNN, RF, and XGBoost,

with DNN displaying

superior performance.

[11] 2023
Fuzzy inference system

& DT classifier

MSA, Horn,

Helical antenna

2.4–5

3–27GHz

1–6GHz

Demonstrates excellent

parameter prediction

capability alongside

antenna categorization.

Proposed

Work

DT, RF,

XGBoost & KNN
5G Antenna

27–30 GHz,

35–38GHz

Return loss acquired by various

machine learning algorithms

is quite accurate and precise

with high R-squared and

low errors for 5G antenna.

5. CONCLUSION

In this work, the performance analysis of a 5G patch antenna & the prediction of return loss using
Machine Learning models are investigated. The proposed antenna exhibits wideband characteristics
from 27GHz to 30.8GHz resonating at 28GHz with a return loss of −30 dB, at 30GHz with a return
loss of −24 dB, also a small band from 35GHz to 38GHz resonating at 36GHz with a return loss of
−25 dB. HFSS is used to model the proposed antenna design, to create a data set & to obtain results.
The results show that the predictions of return loss acquired by various machine learning algorithms are
quite accurate and deliver results in a short time frame. This would assist in correctly determining the
return loss for a certain resonant frequency without the need for complex simulations saving significant
time and expense. When comparing Machine Learning models, Random Forest produces better accurate
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results with an R-square value of 0.901 and smaller MSE and MAE values of 1.99 and 0.827, respectively.
Furthermore, this antenna may be employed for 5G applications and optimized in less time using a
machine learning approach, because its return loss can be anticipated easily based on which variation
is needed.
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