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A Parallel 3D Spatial Spectral Volume Integral Equation Method
for Electromagnetic Scattering from Finite Scatterers

Stefan Eijsvogel*, Roeland J. Dilz, and Martijn C. van Beurden

Abstract—Parallel computing for the three-dimensional spatial spectral volume integral equation
method is presented for the computation of electromagnetic scattering by finite dielectric scatterers in a
layered medium. The first part exploits the Gabor-frame expansion to compute the Gabor coefficients
of scatterers in a parellel manner. The second part concerns the decomposition and restructuring of
the matrix-vector product of this spatial spectral volume integral equation into (partially) independent
components to enable parallel computing. Both capitalize on the hardware to reduce the computation
time by shared-memory parallelism. Numerical experiments in the form of solving electrically large
scattering problems, namely volumes up to 1300 cubic wavelengths, in combination with a large number
of finite scatterers show a significant reduction in wall-clock time owing to parallel computing, while
maintaining accuracy.

1. INTRODUCTION

Scatterometry, a non-destructive inspection technique [1] for assessing the quality of the manufacturing
process of structures on a wafer, uses the electromagnetic reflectivity of metrology targets on a wafer
to obtain shape-deformation details [2]. These details are obtained by comparing the measured
electromagnetic fields scattered from these targets to those obtained from a computational model [3, 4],
e.g., a Maxwell solver providing accurate electromagnetic scattering data. To fit the scatterometry
setting, this Maxwell solver needs to provide an accurate and fast scattering analysis for three-
dimensional (3D) finite dielectric objects in the presence of a planarly layered medium [5].

In [6, 7], a 3D volume integral equation (VIE) method is presented that computes the time-harmonic
electromagnetic scattering from finite dielectric scatterers embedded in a planarly layered medium. This
VIE is formulated in both the spatial and spectral domain simultaneously, to exploit the transverse
translation symmetry present within the layered medium. The employed discretization is key for this
formulation. Piecewise-linear functions in combination with Green-function recursions [8] ensure a
linear scaling of the computational complexity with respect to the number of expansion functions in the
direction perpendicular to the interfaces of the planarly layered medium. A Gabor-frame expansion is
employed in the transverse plane, i.e., the plane parallel to these interfaces, since it enables fast, exact
and aperiodic local Fourier transformations from the spatial to the spectral domain and vice versa. The
combination of piecewise-linear functions and a Gabor-frame expansion ensures an overall computational
complexity of O(N logN) for the matrix-vector product, where N is the number of unknowns in the
scattering problem.

According to [9], the most time-consuming components of this Maxwell solver [6] are the
computation of the Gabor-frame expansion coefficients of the scatterers and iteratively solving the
VIE, which take 146 seconds (12.7%) and 962 seconds (84.1%) for a 3D simulation domain of 60 cubic
wavelengths with 36 scatterers as in [10], respectively. The extension of this solver to scatterometry
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applications is challenging: a simulation domain quickly becomes larger than 1000λ3, with λ the
wavelength, since the illumination areas can range up to several micrometers [11, Ch. 12], and even more
so for Extreme-Ultraviolet (EUV) illumination with a wavelength of tens of nanometers [12]. This is
more than this Maxwell solver can handle within a reasonable time span on a single core. Additionally,
increasing the number of scatterers in such a simulation domain increases the computational burden
on this Maxwell solver. It becomes even more challenging in the case of an inverse scattering problem,
since this requires iterative updates of the scatterers to find fitting shapes and permittivities [13, Ch. 6].
Thus, the Maxwell solver in [6, 7] would fit the scatterometry setting better if we can significantly reduce
the wall-clock computation time for both the iterative solution process of the VIE and the computation
of the Gabor-frame expansion of the scatterers by means of parallel-computing methods.

Exploiting the increasing capabilities of modern computational hardware in combination
with computationally efficient algorithms has resulted in the possibility of simulating large-scale
electromagnetic problems faster in terms of wall-clock time, e.g., [14–20]. Inspired by these techniques,
we investigate converting the Maxwell solver of [6, 7] from a single-core algorithm to a multi-core
algorithm, to achieve a significant reduction in wall-clock time. First, we exploit the localized property
of the Gabor-frame formulation to split the simulation domain containing the scatterers into smaller
subdomains. Hence, we can compute the Gabor-frame expansion coefficients of the scatterers in parallel.
Second, we decompose and restructure parts of the matrix-vector product of the spatial spectral VIE
method into independent components suitable for parallel computing. We test the parallelization of
these two components of the spatial spectral VIE method with two simulation cases that involve
computing the electromagnetic scattering from two gratings, i.e., a grating with 36 scatterers in a volume
of 60λ3 for λ = 425 nm and a grating with 529 scatterers in a volume of 1300λ3 with λ = 13.5 nm. We
evaluate the performance of the parallelization methods as a function of the number of CPU cores,
ranging from 1 up to 20, to measure the scaling in computation time and the corresponding parallel
efficiency. Overall, we show, in case of the largest grating, that the wall-clock time is reduced by more
than a factor of 9, which improves the suitability of the spatial spectral VIE method for analyzing the
electric response of large-scale scattering problems filled with a large number of finite scatterers.

This paper is organized as follows. We introduce the key concepts and definitions of the 3D
spatial spectral Maxwell solver in Section 2. In Section 3, we describe an algorithm for computing the
Gabor-frame expansion coefficients for multiple scatterers in a parallel fashion. Section 4 describes a
parallelization algorithm for the matrix-vector product of the 3D spatial spectral VIE. In Section 5, we
give two simulation examples to evaluate the gain in performance owing to parallelization. Section 6
contains the conclusions.

2. PRELIMINARIES

2.1. Geometrical Description

The geometrical description for a forward scattering problem in this work is as follows. We consider a
layered background medium, consisting of homogeneous isotropic dielectric layers, placed between two
half-spaces. The layer interfaces are located at zn and the relative permittivities are set as εrb,n with
n = 0, . . . , NL. We explicitly use index n = 0 and n = NL for the top and bottom half-space, respectively.
Fig. 1 illustrates an example of such a layered medium with embedded scatterers. This example matches
the geometrical description of the 3D spatial spectral Maxwell solver as in [7, p.27] for forward scattering
problems. In Fig. 1, two scatterers are embedded in a single layer of the layered background medium,
where the transparent box with black edges with dimensions [−Wx,Wx] × [−Wy,Wy] × [zmin, zmax] is
the complete simulation domain D.

2.2. Spatial Spectral VIE

The total electric field E(x) within the simulation domain D is defined as

E(x) = Ei(x) +Es(x), (1)

where x = (x, y, z) denotes the Cartesian coordinates. The incident electric field Ei(x) originates
from the upper half-space, e.g., a plane wave with an arbitrary angle of incidence and polarization.
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Figure 1. An example of a geometrical setup for evaluating the electromagnetic scattering from finite
scatterers.

The scattered electric field is evaluated in the spatial and the spectral domain simultaneously, to
incorporate the reflections and transmissions across the layer interfaces efficiently without computing
tedious Sommerfeld integrals [6, 21]. Therefore, we describe the coordinate system as a spatial transverse
plane xt = (x, y) with the z-axis acting as a longitudinal axis. The Fourier transform f(kt) of f(xt) in
the transverse plane is defined as

f(kt) = Fxt [f(xt)](kt) =

∫∫
R2

f(xt) exp(−jkt · xt)dxt, (2)

where kt = (kx, ky) is used as the argument for functions in the spectral domain, whereas xt is used for
functions defined in the spatial domain. For scattering objects confined to a single layer, we compute
the scattered field as

Es(kt, z) =

∫ zmax

zmin

G(kt, z|z′) · J(kt, z
′)dz′, (3)

with a Green function G(kt, z|z′) [6] that contains the 3D effective reflection coefficients [22, 23] at the
layer interfaces of the layered background medium, to incorporate its response. This integral is efficiently
evaluated in the z-direction in a recursive manner via the algorithm in [8], for piecewise-linear functions.
In addition, a complex-plane deformation is applied to the integration manifold of the two-dimensional
(2D) transverse Fourier transformations [6]. This deformation circumvents the poles and branch cuts
present in the spectral Green function. This deformation results in nine distinct regions in the spectral
domain, see Fig. 2(a). We classify the workload of these regions into three types, due to differences in
the number of function samples, namely type 1, with the largest computational workload, up to type
3, with the smallest workload. Further, the contrast current density J(kt, z) is defined as

J(kt, z) = jωε0εrb,nFxt [χ(xt, z)E(xt, z)](kt, z), (4)

with a contrast function χ(x) representing all scatterers in layer n of the layered background medium.
In [6], each scatterer is assumed to be a compact, finite-sized, and locally homogeneous permittivity
distribution with respect to its background medium per z-sample, owing to the integral formulation in
Eq. (3). Therefore, we identify a scatterer, embedded in layer n, per z-sample by its contrast function
χ defined as

χs(xt, z) =


εsr

εrb,n
− 1 (xt, z) ∈ Ds

0 (xt, z) ∈ R3 \ Ds.
(5)

Domain Ds is a subdomain of D, which is characterized by its relative permittivity εsr and the shape
of its cross-section for a fixed value of z, in the form of an arbitrary simple 2D polygon. Accordingly,
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domain D is filled with scatterers represented by χs(xt, z) ̸= 0 with corresponding subdomains Ds with
the index s = 1, 2, . . . , S, where S represents the total number of scatterers. The shape of a cross-
section is completely defined by the sequence of the coordinates of its vertices, namely xs

i = (xsi , y
s
i )

given i = 1, 2, . . . , Ls in a counter-clockwise direction. The contrast function in Eq. (5) is assumed to
be deterministic. For completeness, we refer to [24] for an approach to include stochastic effects in the
permittivity.

We also apply a local normal-vector field (NVF) formulation in the xt-plane [6, 25] to ensure
an accurate field-material interaction in a spectral basis, since the form in Eq. (4) violates the Li
factorization rules [26, 27]. Moreover, the NVF formulation also leads to an improved rate of convergence
in spectral formulations for a continuous spectral expansion, such as a Gabor-frame expansion [6, 23].
We use a normal-vector field on the material interfaces of χ(x), to construct a normalized vector field
over all the scatterers per z-sample. This is used to combine the continuous components of the electric
flux density D and electric field E into a continuous auxiliary vector field F. The contrast current
density then becomes

J(xt, z) = jωε0εrb,n
[
χCε

]
(xt, z)F(xt, z), (6)

while the total electric field is obtained as

E(xt, z) =
[
Cε

]
(xt, z)F(xt, z). (7)

The linear operators [Cε] and [χCε] are defined per Cartesian component, i.e., [Cε]i,j(x) where
i, j ∈ {x, y, z}, and their definitions can be found in [6]. Note that the operator [χCε] is spatially the
product of the contrast function χ(x) and the operator [Cε]. An effect of this local NVF formulation
is that we treat a single scatterer as a collection of scatterers as shown in Fig. 2(b), where a triangle
is subdivided into three smaller triangles to obtain only a single straight material interface per smaller
triangle, which facilitates the definition of the normal-vector field.

(a) (b)

Figure 2. (a) The nine regions in the spectral domain owing to the complex-plane deformation of
the integration manifold. The regions resemble the cardinal and ordinal directions of a compass, as
indicated by the capital letters per region. The region types, indicated by the shading, relate to the
associated workload per domain. (b) A local NVF formulation on the xt-plane definition for a triangular
scatterer. The arrows denote the normal-vector directions of the outer boundary of the initial scatterer.

The combination of all mentioned aspects forms the spatial spectral VIE as[
Cε
]
(xt, z)F(xt, z)−F−1

kt

[ ∫ zmax

zmin

G(kt, z|z′)Fxt

[
[χCε](x′

t, z
′)F(x′

t, z
′)
]
(kt, z

′)dz′
]
(xt, z

′) = Ei(x), (8)

which we rewrite to the following decomposition of linear operators for the overall linear system

(C − F−1GFM)F = Ei. (9)

The matrices M and C represent [χCε](xt, z
′) and [Cε](xt, z

′), respectively. We use F for the forward
transverse Fourier transformation, while F−1 represents the inverse transverse Fourier transformation.
The matrix G contains the point-wise multiplications of the Green function in the kt-plane in
combination with the upward and downward recursions in the z-direction.
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3. COMPUTING THE GABOR COEFFICIENTS OF SCATTERERS

3.1. Preprocessing

The spatial spectral VIE method starts with preprocessing. This concerns setting up the discretization,
e.g., the piecewise-linear functions in the z-direction. It also concerns the computation of components
such as the Green function G(kt, z|z′) with its effective reflection coefficients, the incident field Ei(x), the
contrast function pertaining to the scatterers χ(x), and the linear operators [Cε](xt, z) and [χCε](xt, z

′).
These specific components only have to be computed once and they are characterized by the geometrical
description of the scattering problem. The required computation time for preprocessing is dominated
by the computation of Gabor coefficients of the contrast functions χ(x) that represent the scatterers,
e.g., more than 80% of the total preprocessing time in [9, Sec. 6]. This computationally expensive
procedure directly relates to the construction of the linear operators [Cε](xt, z) and [χCε](xt, z

′), since
their definitions depend on the spectral expansion of the scatterers [6, 25], i.e., the Gabor expansion
coefficients. Consequently, we focus on computing these Gabor coefficients of the scatterers by means
of parallel computing.

3.2. Gabor-Frame Expansion

We use a Gabor-frame expansion in the xt-plane, since it facilitates efficient and analytic transverse
Fourier transformations from the spatial domain to the spectral domain and vice versa [6]. For the
Gabor frames, we use a Gaussian window function [28] of the following form

g(xt) =
√
2 exp

[
− π

(
x2

X2
+

y2

Y 2

)]
. (10)

The parameters X and Y are used to control the widths of the window function and these are linked
to the quantities Kx = 2π

X and Ky = 2π
Y . This sets the spatial Gabor frames as

gmn(xt) = g(x−mxαxX, y −myαyY ) exp

(
jβxnxKxx+ jβynyKyy

)
, (11)

in combination with the oversampling parameters αxβx < 1 and αyβy < 1. We use a rational
oversampling of αxβx = αyβy = q/p = 2/3 in this work. The indices m = (mx,my) describe the
shifts, while indices n = (nx, ny) express the modulations. The so-called spatial dual window η(x),
which is currently synthesized from the Gaussian window function via the Moore-Penrose inverse [28],
forms a dual Gabor frame that exhibits exponential decay and it is denoted as

ηmn(xt) = η(x−mxαxX, y −myαyY ) exp

(
jβxnxKxx+ jβynyKyy

)
, (12)

such that a square-integrable function f(xt) can be represented as

f(xt) =
∑
m

∑
n

cmngmn(xt), (13)

where the Gabor coefficients cmn are computed as

cmn =

∫
R2

f(xt)η
∗
mn(xt)dxt. (14)

The integral in Eq. (14) is finite, since the function f(xt) is square-integrable by assumption and the dual
window η(xt) is also square-integrable and exhibits exponential decay towards infinity [29]. It is possible
to use other window functions within a Gabor frame and this impacts the shape and decay behavior of
the dual window [29–31]. We use the Fourier transform of Eq. (10) to form the spectral Gabor frames
with exponentially decaying dual frames. Additionally, it links the spatial Gabor coefficients cmn and
the spectral Gabor coefficients ĉmn by

cmn = ĉnm exp
[
j2π(αxβxmxnx + αyβymyny)

]
. (15)
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3.3. Sequential Algorithm

We compute the spatial Gabor coefficients of the scatterers via the spectral transformation method
as described in [9]. This method starts by computing the spectral Gabor coefficients of an analytical
and continuous description of Eq. (5) in the spectral domain via a spectral version of a Discrete Gabor
Transform (DGT), i.e., an integration scheme based on the use of several Fast Fourier Transforms
(FFT) [28]. This leads to an error that decays exponentially with the number of sample points N [9].
The spatial Gabor coefficients are obtained via the analytic Fourier transformation of the spectral Gabor
coefficients in Eq. (15). The spectral description of a (non-self-intersecting) cross-section χs(xt, z) ̸= 0
is equal to

χ̂s(kt, z) = −
(

εsr
εrb,n

− 1

) Ls∑
i=1

j(kt · νi+1,s
i )|xs

i+1 − xs
i | exp

(
jkt · xs

i

)exp [jkt · (xs
i+1 − xs

i )
]
− 1

j(kt · kt)
[
kt · (xs

i+1 − xs
i )
] , (16)

where the vertices xs
i+1 and xs

i are connected by a line segment with an outward-pointing unit normal

vector νi+1,s
i . The variable xs

i+1 for i = Ls is set as xs
1, to close the boundary of the cross-section. We

note the following two additional details. First, we assume that each scatterer has a cross-section that is
uniform along its height. This means that a scatterer with a non-uniform cross-section along its height
is decomposed into a collection of scatterers, where each scatterer has an uniform cross-section along its
height. Consequently, S represents the number of scatterers in simulation domain D with an uniform
cross-section along its height in this work. As a result, a scatterer in the form of a sphere is decomposed
into an unique scatterer per z-sample, since the cross-section changes per z-sample. Further, we highlight
that an extension to an inhomogeneous permittivity distribution per z-sample is achieved by describing
the permittivity distribution as the multiplication of the support function, namely Eq. (16) without the
scaling by εsr/εrb,n − 1, and a smooth but more rapidly varying permittivity function, while expanded
in Gabor frames.

This method can also be used for computing the Gabor coefficients of multiple scatterers by
performing a superposition of Eq. (16), i.e., a summation of the spectral equivalent of the cross-sections
representing all scatterers at each z-sample. Unfortunately, this is computationally inefficient, as we will
now explain. Consider a support function of a cross-section, f(xt), centered at the origin and the same
support function of a cross-section shifted away from the origin, fs(xt), such that the Fourier transforms

of these support functions are linked as f̂s(kt) = f̂(kt) exp(−j2πkt · x0) [32]. Thus, the minimum
Nyquist sample rate is dictated by the cross-section placed furthest away from the origin of the xt-
plane. Consequently, cross-sections closer to the origin are unnecessarily over-sampled. Additionally, it
ignores the possibility to exploit the locality of the window functions within the Gabor-frame expansion
to compute expansion coefficients of cross-sections with a reduced number of Gabor coefficients to reduce
the workload.

3.4. Parallel Algorithm

We want to compute the Gabor coefficients for all scatterers individually on a smaller subset of Gabor
coefficients, to improve efficiency and to enable parallel computation. Therefore, we exploit several
Gabor-frame expansion properties [33] to make this possible. Gabor coefficients are effectively local,
owing to the exponentially decaying dual window functions, see Eq. (14). So, only a limited number
of coefficients are relevant for accurately representing a scatterer [9, Eq. (A9)]. Additionally, a Gabor
frame is discretely translation invariant on its underlying discrete lattice defined by the shift indices m
and modulation indices n. The combination of these two properties allows us to change the position
of a scatterer, while expanded in Gabor coefficients, by an integer number of discrete shifts of size
(∆x,∆y) = (αxX,αyY ). As an example, we can change the transverse position of scatterer with its
cross-section centered at xt = (αxmsxX,αymsyY ) to xt = (0, 0) with the following phase factor and
change of the mx and my indices per Gabor coefficient, i.e.,

cmx−msx,my−msy ,n = cmn exp

(
j2π(αxβxnxmsx + αyβxnymsy)

)
, (17)

with the integers msx and msy. Another key Gabor-frame property is that the superposition principle
holds. Hence, we can compute the Gabor coefficients of each cross-section individually, while minimizing
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the oscillations in the spectral domain by translating cross-sections as close as possible to the origin of
the xt-plane with the discrete shifts as in Eq. (17).

Algorithm 1 shows a pseudocode for computing the Gabor-frame expansion of the scatterers in
a concurrent manner; it makes use of the discrete shifts in Eq. (17). Its inputs are a list with the
vertex coordinates of all cross-sections within the entire simulation domain and the number of CPU
cores for parallel computing Ncores. The output is a five-dimensional (5D) array χdomain

mn containing the
Gabor coefficients of the cross-sections for each z-sample. The algorithm consists of three parts: the
initialization of a 5D array per CPU core χcore

mn for storing the Gabor coefficients of cross-sections at
all z-samples and two parallel do-loops. Note that the arrays χdomain

mn and χcore
mn have the same size.

Additionally, each version of χcore
mn is assigned to only a single CPU core in the first parallel do-loop to

prevent problematic read/write interactions, i.e., race-conditions [34].

Algorithm 1: Pseudocode parallel Gabor-frame expansion of S scatterers for all Nz samples in
the z-direction

Input: The vertex coordinates from all cross-sections and Ncores

Output: χdomain
mn

1 Initialize Ncores versions of χcore
mn

2 do parallel k = 1, Nz

3 Task 1: analyze cross-section
4 Compute surface area A by Eq. (18)
5 Compute centroid coordinates (cx, cy) by Eq. (19)
6 Task 2: translate cross-section
7 Update vertices of a cross-section, i.e., xs

i with i = 1, 2, . . . , Ls, by Eqs. (20)–(21)
8 Task 3: compute Gabor coefficients

9 Compute Gabor coefficients cshiftmn by the spectral transformation method
10 Task 4: translate cross-section to original position

11 Shift Gabor coefficients of cross-section to its original position by Eq. (17): cmn ← cshiftmn

12 Task 5: load Gabor coefficients in array
13 χcore

mn ← χcore
mn + cmn

14 do parallel k = 1, Nz

15 Task 6: combine all χcore
mn arrays into one domain array

16 do i = 1, Ncores

17 χdomain
mn ← χdomain

mn + χcore
mn

The first parallel do-loop in Algorithm 1 divides the cross-sections within the entire simulation
domain over all Ncores cores. The workload per parallel do-loop iteration for each CPU core consists
of five tasks. The first task is analyzing a provided cross-section by computing its area A and centroid
coordinates (cx, cy) [35] as

A = 0.5

Ls∑
i=1

(xsiy
s
i+1 − xsi+1y

s
i ), (18)

(
cx, cy

)
=

1

6A

(
Ls∑
i=1

(xsi + xsi+1)(x
s
iy

s
i+1 − xsi+1y

s
i ),

Ls∑
i=1

(ysi + ysi+1)(x
s
iy

s
i+1 − xsi+1y

s
i )

)
, (19)

with xsi+1 = xs1 and ysi+1 = ys1 for i = Ls. The second task is to translate the cross-section as close as
possible to the origin of the spatial coordinate system given its centroid coordinates (cx, cy) and the
Gabor-frame window widths X and Y . This shift per vertex of a cross-section is achieved by(

xsi , x
s
i

)
=
(
xsi − αxXmsx, y

s
i − αyY msy

)
(20)

given i = 1, 2, . . . , Ls and defining the integers (msx,msy) as(
msx,msy

)
=
(
round

[
cx/(αxX)

]
, round

[
cy/(αyY )

])
, (21)
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where we round to the nearest integer. The Gabor coefficients of the shifted cross-section cshiftmn are
computed via the spectral transformation method, which is the third and most time-consuming task.
Note that cross-sections require different numbers of coefficients depending on size and position with
respect to the Gabor-frame expansion. The fourth task is to shift the cross-section, expanded in Gabor
coefficients, back to its original position by Eq. (17) applied to its Gabor coefficients. The final task
within this parallel do-loop is the transfer of the Gabor coefficient of a cross-section to the array
χcore
mn . The fourth and fifth task exploit the locality of Gabor-frame expansion by only performing the

operations on the Gabor coefficients of a cross-section instead of the Gabor coefficients for the entire
simulation domain. The last task is combining all χcore

mn arrays into χdomain
mn such that it holds the Gabor

coefficients of all cross-sections for each z-sample. This task can also be executed in a parallel manner if
one makes use of a parallel do-loop focused on the z-samples. This prevents problematic read-and-write
interactions, since the cross-sections are independent from each other in the z-direction.

We note that the computational workload in the first parallel do-loop is heavily reduced if the
cross-section of a scatterer does not change in the z-direction, namely its cross-section is uniform along
its height. In that case, only a single cross-section of a scatterer needs to be computed. We also remark
that a key part of a parallel algorithm is proper load balancing. Computing the Gabor coefficients
comprises the majority of the computational workload in the first parallel do-loop. This workload is
defined by the number of (relevant) Gabor coefficients. For instance, a larger cross-section results in a
larger workload. It is possible to sort all cross-sections in terms of their area to ensure a relatively even
distribution of the total workload per CPU core. However, this bookkeeping is cumbersome. Therefore,
a subtle way to deal with the load balancing is to make use of the dynamic scheduling capabilities of
OpenMP [36].

4. THE SPATIAL SPECTRAL VIE AND ITS MATRIX-VECTOR PRODUCT

We continue by focusing on the operations applied to the auxiliary vector field F(x), see the left-hand
side of Eq. (9). These operations can be viewed as a matrix-vector product in every iteration of a
Krylov subspace method, e.g., BiCGstab(ℓ) [37], for solving the linear system in Eq. (9). Hereafter, a
superscript r expresses the rth BiCGstab(ℓ) iteration for each field or current quantity, such that we
write the sequential order of these operations acting on Fr as follows:

(i) Fr is multiplied by matrix M to obtain Jr(xt, z
′) given the local NVF formulation, see Eq. (6).

(ii) The forward transverse Fourier transformation F is applied to Jr(xt, z
′) to provide Jr(kt, z

′).

(iii) Matrix G applies the spectral Green function operations on Jr(kt, z
′) to obtain Es,r(kt, z), see

Eq. (3).

(iv) The inverse transverse Fourier transformation F−1 is applied to Es,r(kt, z) to retrieve Es,r(xt, z).

(v) Matrix C is applied on Fr to get Er(xt, z
′) given the local NVF formulation, see Eq. (7).

(vi) Es,r(x) is subtracted from Er(x) to obtain Ei,r(x).

The iterative Krylov subspace method stops if ||(C −FHGFM)Fr −Ei|| < ϵc, where ϵc is a pre-chosen
threshold value, i.e., the solver tolerance. Note that step (v) can be also be executed before step (i),
but the sequential flow through steps (ii) up to (iv) is fixed. More details can be found in [6].

Figure 3 and Algorithm 2 display the parallelized spatial spectral VIE algorithm, which both depict
it as the matrix-vector product of a linear system of the following form

(C − F−1P TGPFM)F = Ei. (22)

For exploiting the independence of χ(xt, z) along the z-direction and of G in the kt-plane, we introduce
permutation operations in form of the matrices P and P T , where T represents the transpose. These
permutation operations are essentially reshapes of the data, such that C, M , and G become block-
diagonal matrices. The algorithm starts by performing the local NVF formulation operations coupled
to matrices C and M in parallel, owing to their independence with respect to each other. In addition,
the local NVF formulation is only independent in the z-direction, since it is an operation applied to all
cross-sections per z-sample. Therefore, we execute these operations only in parallel over the z-direction
by dividing the z-samples over the CPU cores. The workload per z-sample is identical, since the
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Figure 3. An overview of the parallel spatial spectral VIE operations given the rth step of a Krylov
subspace method. The Roman numerals refer to the original and sequential flow of the spatial spectral
VIE operations.

number of Gabor coefficients per z-sample and per Cartesian coordinate in Fr is the same. Therefore,
we expect improved load balancing if the number of z-samples is a multiple of the number of CPU
cores. The next operation concerns data synchronization, which can be a time-consuming operation
within an algorithm [38]. The array Jr(xt, z

′) is passed from this data synchronization point to the
forward transverse Fourier transformation F . These transformations, each with an identical workload,
are performed independently per Cartesian component and z-sample. Ideally, the number of CPU cores
is a multiple of three times the number of z-samples, to ensure load balance. The next part concerns
the spectral Green-function operations, which requires the knowledge of all z-samples of Jr(kt, z

′) per
independent complex-plane region shown in Fig. 2(a). As mentioned in Section 2, the workload per
region differs, which results in load-balance issues if we compute the spectral Green-operations G of all
regions in parallel. Consequently, we focus on the parallel execution of the Green-function operations
per region. The structure of Eq. (3) makes it possible to compute the recursions in the z-direction per kt-
sample of G(kt, z|z′) · Jr(kt, z

′) independently. However, it changes the order of accessing the elements
of Jr(kt, z

′) from row-major to column-major or vice versa, depending on the chosen programming
language. This typically increases the overall memory-access time. Therefore, we use the second and
third synchronization point to pass Jr(kt, z

′) per complex-plane region to the array permutations P and
P T to facilitate memory-contiguous alignment during the spectral Green-function operations G, in view
of the parallel evaluation over kt. The inverse Fourier transformation F−1 follows the same strategy
of the first Fourier transformation, namely a parallelization over the three Cartesian components and
over the samples in the z-direction. The last data synchronization point is used to gather Es,r(xt, z)
such that we continue by combining Er(xt, z) and Es,k(xt, z) element-wise in a parallel manner. In the
Krylov subspace method, we check if ||(C−F−1P TGPFM)Fr−Ei|| < ϵc. Overall, the spatial spectral
VIE operations do provide opportunities for parallel computing, but it follows from the above that
most operations are either limited to a parallel execution in the longitudinal direction or the transverse
direction.

5. GRATING SIMULATIONS

5.1. Implementation and Computation Details

The computations were performed on an Intel Xeon Gold 6148 processor, which has 20 CPU cores.
The computer is also equipped with 755GiB DDR4-2666MHz RAM. The entire 3D spatial spectral
VIE method is developed in FORTRAN95 and it is compiled with the Intel FORTRAN compiler. We
make use of the OpenMP API for parallel computing and for measuring the wall-clock via the routine
omp get wtime().

5.2. Description of the Two Grating Cases

We evaluate the performance of the parallel Gabor-frame expansion of scatterers and the parallel
spatial spectral VIE with two different demonstrations. The first demonstration concerns a grating
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Algorithm 2: Pseudocode parallel spatial spectral VIE operations given the rth step of a Krylov
subspace method.

Input: The rth iteration of auxiliary vector field Fr, the number of samples in the x-, y-, and z-direction as Nx, Ny , Nz

Output: The rth iteration of Er

1 do parallel z = 1, Nz

2 do y = 1, Ny

3 do x = 1, Nx

4 Task 1: apply normal vector field operator
5 Compute Er by the element-wise evaluation Er(x, y, z) = C · Fr(x, y, z)
6 Compute Jr by the element-wise evaluation Jr(x, y, z) = M · Fr(x, y, z)

7 —————————
8 Data sync
9 —————————

10 do parallel z = 1, Nz

11 Task 2: apply transverse Fourier operator
12 Compute Jr by the transverse Fourier transformation Jr(kx, ky , z) = F · Jr(x, y, z)

13 —————————
14 Data sync
15 —————————
16 do z = 1, Nz

17 do kx = 1, Nx

18 do ky = 1, Ny

19 Task 3: apply permutation operator
20 Restructure Jr by permutation Jr(z, kx, ky) = P · Jr(kx, ky, z)

21 do parallel kt = 1, NxNy

22 do z = 1, Nz

23 Task 4: apply Green operator
24 Compute Es,r by Es,r(z, kx, ky) = G · Jr(z, kx, ky)

25 do z = 1, Nz

26 do kx = 1, Nx

27 do ky = 1, Ny

28 Task 5: apply inverse permutation operator

29 Restructure Es,r by inverse permutation Es,r(kx, ky , z) = P−1 ·Es,r(z, kx, ky)

30 do parallel z = 1, Nz

31 Task 6: apply inverse transverse Fourier operator

32 Compute Es,r by the inverse Fourier transformation Es,r(x, y, z) = F−1 ·Es,r(kx, ky, z)

33 —————————
34 Data sync
35 —————————
36 do parallel x = 1, NxNyNz

37 Task 7: Substract scattered electric field from total electric field

38 Compute Ei,r by the inverse Fourier transformation Ei,r(x, y, z) = Er(x, y, z)−Es,r(x, y, z)

39 —————————
40 Data sync
41 —————————

consisting of 36 repeating dielectric scatterers, as partly shown in Fig. 4(a). This case is also treated
in [6] and [9]. All scatterers are placed on top of a dielectric half-space with a relative permittivity of
εr = 20.21−1.8j, while the other (top) half-space is free space with εr = 1. Each scatterer has a relative
permittivity εr = 2.25. The incident field is a plane wave, polarized in the x-direction, originating from
the top half-space with a wavelength of 425 nm in free space. Its propagation direction is along the
z-axis. The volume of the simulation domain is 60λ× 6λ× 1/6λ. The discretization in the z-direction
consists of 21 piecewise-linear functions with a stepsize of 5 nm. The Gabor frames in the xt-plane
are characterized by X = Y = 500 nm, in combination with all oversampling parameters set to

√
2/3.

We only consider Gabor coefficients mx ∈ {−40, . . . , 40}, my ∈ {−4, . . . , 4}, and nx, ny ∈ {−7, . . . , 7}
within the simulation domain. This provides a resolution of approximately λ/10.4 in both the x- and y-
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(a) (b)

Figure 4. (a) A part of the total simulation domain of the 60λ3 grating. (b) A part of the total
simulation domain of the 1300λ3 grating.

direction. A local NVF formulation is applied in combination with the Gabor-frame discretization, which
means that each rectangular scatterer cross-section is a combination of four triangular cross-sections
pieced together [25]. So, we compute the Gabor coefficients for 144 triangular cross-sections, instead
of the 36 rectangular cross-sections. Overall, we solve an electromagnetic scattering problem with a
volume of 60λ3 consisting of 36 scattering objects placed on top of a dielectric half-space represented
by 10.3 million unknowns with a peak memory usage of 16GiB of RAM.

Figure 4(b) shows a part of the second demonstration setup, which is a grating consisting of
23 × 23 = 529 dielectric scatterers. The scatterers are placed on top of a dielectric half-space with a
relative permittivity of εr = 3. Each scattering object has a volume of 18× 18× 10 nm3. The spacing
between each scattering object is 6 nm in both the x- and y-direction. Every scatterer has a relative
permittivity εr = 1.2. The top half-space is free space. The incident field is a plane wave characterized
by its wavelength of λ = 13.5 nm, propagation direction along the z-axis, and polarization in the x-
direction. The volume of this simulation domain is 42λ × 42λ × 0.74λ. We use 21 piecewise-linear
functions in the z-direction with ∆z = 0.5 nm. The Gabor frames are set with X = Y = 16nm for the
window functions and an oversampling of

√
2/3. The xt-planes of the simulation domain are spanned

by the Gabor coefficients mx ∈ {−25, . . . , 25}, my ∈ {−25, . . . , 25}, and nx, ny ∈ {−13, . . . , 13}. This
provides a resolution of λ/18.6 in each direction of the xt-plane. The application of a local NVF
formulation means that we actually work with the Gabor coefficients of 2116 triangular cross sections
instead of 529 rectangular ones. So, we solve an electromagnetic scattering problem with 119.5 million
unknowns consisting of 529 scatterers in a volume of 1300λ3, while having a peak memory usage of
90GiB of RAM. We identify the two grating cases by the volumes of their respective computational
domains, i.e., 60λ3 and 1300λ3.

5.3. Accuracy

Figure 5 contains the magnitude of the computed spectral-domain electric field, i.e., |E(kx, ky)|, for
both the 60λ3 grating and the 1300λ3 grating. These two fields are located in the xy-plane right on top
of the scatterers. The spectral-domain electric fields depict a planar plane-wave decomposition of the
far-field response, where each plane wave is defined by the combination of kx and ky coordinates. We
only show the part of the propagating plane waves within the Ewald circle for an NA smaller than 1,
i.e., 0.95 in Fig. 5(a) and 0.99 in Fig. 5(b).

The spectral-domain electric field of the 60λ3 grating is compared to a simulation by the sequential
version of the spatial spectral VIE discussed in [9]. The spectral-domain electric fields for the sequential
and the parallel version are obtained after 32 iterations of BiCGstab(ℓ) with the pre-chosen threshold
value ϵc = 10−5. A difference by a relative ℓ2 norm of approximately 10−15 was observed between the
spectral-domain electric field obtained via sequential and parallel spatial spectral VIE method.

We obtained the spectral-domain electric field of the 1300λ3 grating after 16 iterations of
BiCGstab(ℓ). We have used the RETICOLO software [39] for periodic-grating analysis based on the
rigorous coupled wave analysis (RCWA) to evaluate the precision obtained with the spatial spectral
solver. Table 1 displays the amplitude of the spectral-domain electric fields of RETICOLO and the
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Figure 5. The spectral far-field magnitude |E(kx, ky)| in log10 scale in case of (a) 60 λ3 grating
(b) 1300λ3 grating.

Table 1. The propagating mode amplitudes within the planar plane-wave decomposition given the
1300λ3 grating and the RCWA framework. The term error refers to a relative error as defined in (24).

kx/k0[−] ±0.54 ±0.54 0 0

ky/k0[−] ±0.54 0 ±0.54 0

Ereticolo [V/m] 0.0008 + 0.0091i 0.0087− 0.0343i 0.0023− 0.0436i 0.0715− 0.1120i

Espatspec [V/m] 0.0007 + 0.0090i 0.0087− 0.0340i 0.0023− 0.0433i 0.0713− 0.1117i

error[−] 0.0010 0.0018 0.0021 0.0028

spatial spectral solver as

|E(kx, ky)| =
√

E2
x(kx, ky) + E2

y(kx, ky) + E2
z (kx, ky), (23)

at (kx, ky)-locations of the propagating modes within the RCWA framework. Note that the amplitudes
originating from the spatial spectral VIE as in Fig. 5(b) are re-normalized in accordance with
the RETICOLO approach, to accurately evaluate the differences between the two solvers. This
normalization concerns the scaling by the flux of the incident Poynting vector within a 2D unit cell [39].
We evaluate the precision per kt sample in Table 1 by means of the definition

error =
|Espatspec(kx, ky)−Ereticolo(kx, ky)|

|Ereticolo(0, 0)|
, (24)

since the peak at kt = 0 concerns the clear majority of the far-field energy. Overall, results produced
by the Reticolo software and the spatial spectral VIE are quite similar.

As a side note, we mention that the results in Fig. 5 are displayed in Volt per meter.
Real experimental measurements of the far-field response have to cope with quantization effects of
photons [40]. The application of far-field measurement improvements, such as [41, 42], may then yield
improved accuracy between experimental data and simulations.

5.4. Performance

The computation times and parallel efficiencies of the parallel Gabor-frame expansion of the scatterers
and the parallel spatial spectral VIE for both grating cases are displayed in Fig. 6(a) and Fig. 6(b), as
functions of the number of used CPU cores Ncore. The computation time TNcore is measured by the
OpenMP routine omp get wtime(), which uses the elapsed wall-clock time. We measure the parallel
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efficiency as T1/(TNcore × Ncore). Note that T1 is the computation time via the parallel computing
extensions of both algorithms with only a single CPU core. This provides a more objective insight into
the scalability of the parallel algorithms, since the sequential versions of both algorithms are different
in structure. We do not provide the complete preprocessing time of the spatial spectral VIE method,
since the computation of the Gabor expansion coefficients of the scatterers is by far the most dominant
component, as mentioned in Section 3.1.

The results displayed in Fig. 6(a) show that the combined computation time decreases from
783 seconds to 128 seconds when we increase the number of CPU cores from 1 to 10, for the 60λ3 case.
The parallel spatial spectral VIE is the main contributor to the decrease of the combined computation
time in the absolute sense. The parallel spatial spectral VIE outperforms the parallel Gabor-frame
expansion of scatterers in terms of parallel efficiency. We do note that the decrease in computation
time stagnates, which means that both parallel algorithms exhibit sub-linear scaling, as shown by the
parallel efficiency. There are two main contributors to this stagnation for the parallel spatial spectral
VIE: the Fourier transformations F and F−1 and the spatial spectral Green-function operations P TGP
in memory-contiguous order. The Fourier transformations initially take up to 302 seconds with a single
core, while its 10-core version requires 44 seconds. This is approximately only 6.9 times faster while
using 10 cores. The memory requirement for each Fourier transformation surpasses 24MB, since the
involved number of double-precision complex numbers is equal to the number of Gabor coefficients
multiplied by the oversampling parameter p2 = 9, owing to αxβx = q/p = 2/3. Since the L3 cache of
the CPU is fitted with 27.5MB, we expect that the Fourier transformations require high data movement
and, therefore, it is a possible bottleneck. It is not uncommon that the memory size of (large) FFTs is
challenging for effective parallel computing [43]. The spatial spectral Green-function operations scale
from 280 seconds to 44 seconds when going from a single core to 10 cores, which is only approximately
6.4 times faster. The most time-consuming component of the spatial spectral Green-function operations
are the permutations P and P T , to work in a column-major manner to reduce the cache misses during
the operations coupled to the operator G. It requires 32 seconds for the 10 cores. This subpar parallel
efficiency for the permutation operations are expected, since these operations are typically slower due
to the large number of data element accesses [44]. A part of the stagnation in the parallel Gabor-frame
expansion of scatterers originates from not being able to properly divide the 144 scatterers over the
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Figure 6. The computation time and efficiency of the parallel Gabor-frame expansion of scatterers
and the parallel spatial spectral VIE as a function of the number of used CPU cores in case of (a) 60λ3

grating, (b) 1300λ3 grating.
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CPU cores equally. Another reason is that the number of Gabor coefficients that we need to compute
for the cross-sections is not always the same for each cross-section, because the spacing between the
scatterers is not aligned with the Gabor-frame discretization, see Eq. (21). We observed that the
difference between the fastest and slowest computation of the Gabor coefficients for a cross-section was
more than 0.5 seconds, which is severe given that we require approximately 26 seconds for 144 scatterers
while using 10 cores. Overall, we obtain the scattered electric fields in a simulation domain of 60λ3

more than six times faster when using 10 CPU cores versus a single CPU core, but both algorithms
clearly show sub-linear parallel scaling.

Figure 6(b) provides the insight that the combined computation time for the 1300λ3 grating
decreases from 8472 seconds with a single core to 939 seconds with 20 cores, which is more than 9
times faster. Interestingly, these results show that the parallel Gabor-frame expansion of scatterers is
the main contributor to this time reduction. It outperforms the parallel spatial spectral VIE in terms of
parallel efficiency for all numbers of used CPU cores. This does not align with the timing and parallel
efficiency results of the 60λ3 grating. We expect that the 60λ3 grating did not provide enough scatterers
to properly evaluate the parallel scaling capabilities of the parallel Gabor-frame expansion of scatterers
in comparison to the 1300λ3 grating. To gain more insight into the robustness of the parallel efficiency,
we created another additional synthetic test case, which reuses the description of the 60λ3 grating.
Now, we copied each of the 36 scatterers three times and placed these three copies per scatterer on the
exact positions of the original scatterer such that we obtain a (synthetic) grating with 144 rectangular
scatterers. The use of the local NVF formulation leads then to a total of 576 triangular scatterers.
This specific procedure makes it possible to maintain the exact same discretization as originally for the
60λ3 grating, while testing whether the parallel Gabor-frame expansion of scatterers has an improved
parallel efficiency in case of a larger number of scatterers. The parallel Gabor-frame expansion of the
576 scatterers with 1 core and 10 cores required 543 seconds and 83 seconds, respectively. Thus, we note
an increase in computation time, while fixing the discretization and increasing the number of scatterers.
Further, we observe a parallel efficiency of 0.65, which is higher than the parallel efficiency for the 60λ3

grating with the original 36 rectangular scatterers and it is also more similar to the parallel efficiency
for the 1300λ3 grating with 10 cores. Nevertheless, the parallelization algorithms still exhibit sub-linear
scaling for the 1300λ3 grating. The Fourier transformations are the key contributors to the stagnation
for the parallel spatial spectral VIE. The computation time for these transformations decreases from
2785 seconds to 348 seconds when the number of CPU cores increases from 1 to 20. This time, the
permutations P and P T decreased from 652 seconds to 57 seconds, while the time related to G decreased
from 288 seconds to 17 seconds. Overall, we obtain accurate electric fields scattered by 2116 scattering
objects in a simulation domain larger than 1300λ3 within 939 seconds when using 20 CPU cores.

6. CONCLUSION

We presented parallel computing solutions for the three-dimensional spatial spectral volume integral
equation method for the computation of electromagnetic scattering from finite dielectric scatterers. The
first part focused on exploiting the locality of the window functions within the Gabor-frame expansion to
compute Gabor coefficients of cross-sections with a polygonal shape simultaneously in combination with
the efficient spectral transformation method of [9]. The second part concerned the decomposition and
restructuring of the spatial spectral volume integral equation into (partially) independent components
to enable parallel computing for its matrix-vector product. Two grating cases were used as numerical
demonstrations to evaluate the computation time and parallel efficiency of the spatial spectral volume
integral equation with both parallel extensions, as a function of the number of employed CPU cores.
We reduced the computation time by more than a factor of 6, while using 10 CPU cores for the grating
with a volume of 60λ3 for λ = 425 nm. The reduction in computation time was more than a factor of 9,
while using 20 CPU cores, for the second grating with a volume of 1300λ3 with λ = 13.5 nm. Overall, we
reduced the wall-clock computation time for computing the electromagnetic scattering behavior of the
gratings significantly by means of parallel computing. Nonetheless, the numerical experiments showed
stagnation in the parallel efficiency due to the Fourier transformations, the permutation operations, and
the load imbalance of the size-dependent Gabor-frame expansion per cross-section.
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