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Element Thinning Using Discrete Cat Swarm Optimization
for 5G/6G Applications
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Abstract—An efficient method for designing narrow beams having minimum peak side lobe level
(PSLL) and maintaining power efficiency (reducing active elements) for 5G/6G base stations with
large antenna arrays is proposed. To ensure high efficiency in a multi-dimensional complex nonlinear
optimization problem with several constraints, thinning of antenna arrays is considered. For performing
exhaustive search on the large number of feasible solutions a novel algorithm named discrete cat swarm
optimization (DCSO) is used and is a binary adaptation of real-valued cat swarm optimization (CSO).
To testify the efficiency of DCSO a set of standard benchmarked multimodal functions are used.
The proposed algorithms exhibit heuristic nature, so the stability of the proposed method has been
authenticated by using statistical test. Later the algorithm is applied to the optimization of a large
planar antenna array (PAA) of size 10 × 20 (200 elements) to suppress the PSLL. Furthermore, the
results of the synthesis are compared with literature marking low PSLL and convergence speed as
pointers. The comparative results delineate the superiority of the DCSO over the existing discrete
versioned traditional algorithms with respect to solution accuracy and speed of convergence. DCSO
introduces a higher degree of flexibility to the field of binary-valued thinned antenna array synthesis
problems.

1. INTRODUCTION

Large antenna arrays (LAAs) are commonplace entities of all key candidate technologies that are being
researched for sixth generation networks (6G). Succeeding 5G, the 6G must enhance service accuracy,
and base stations must cover large geographical areas using wide aperture antenna arrays. There is
a need to exploit electromagnetic fields efficiently to meet the fast-growing challenges of succeeding
technology. In 5G systems, the presence of sidelobes in the radiation pattern generated by the antenna
array is a major source of problem as they dissipate energy in undesired directions in the transmission
end, and they allow energy into the system from unwanted directions at the receiver end. This creates a
necessity to design an antenna system that can practically control the sidelobe energy while maintaining
a narrow beam pattern. Using antenna array pattern synthesis techniques, a design engineer can choose
either the proportions of the array weights or positions of the antenna elements to achieve the desired
pattern. Each element in the array receives input through a uniform feed network, and it must be
disturbed for controlling the shape of the desired pattern. In practice, where power consumption is
a major factor, the wide apertures with large number of elements are considered a drawback due to
the mechanical complexity of feed and cost. This disadvantage can be mastered by reducing the array
elements and making it energy efficient without losing its radiation properties. Wider apertures can
be realized by generating a periodic antenna array. There are several methods to achieve aperiodicity,
and one such approach is to modify the element positions. Practical change of positions is a complex
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procedure when the number of elements is large, and thinning is one technique for optimizing the
element positions [5–17]. Using thinning the physical positions of the elements are untouched, but
antenna element can represent itself in two states in either ON or OFF state. The ON condition is
represented while feeding the elements with uniform amplitude excitations (energized), and the others
are placed in the OFF (de-energized) state by terminating them at matched loads. Due to the practical
advantages like limiting the cost, weight, consumption of power (energy efficiency), and reduction in
complexity of the feed network, the thinning technique has been exploited for the last five decades to
synthesize aperiodic antenna arrays.

Several deterministic optimization methods [1] have been used for thinning. Numerical methods
like Downhill simplex, Newtons methods, Least squares, Gaussian Newtons, and Powell’s methods [2, 3]
optimize only continuous variables and are probable of being stuck at local minima. A few gradient-
based techniques [4–6] though efficient have complex numerical calculation as most of the antenna
optimizations involve multimodal nonlinear synthesis. Moreover, these procedures require a good initial
guess for the algorithm to take off, and they perform one dimensional search in the search space and
have large functional evaluations. Selecting optimal array aperture from largely possible combinations
becomes difficult as the array gets more populated. This difficulty led the research to mold towards
more natural and metaheuristic algorithms. Designing thinned arrays has seen significant improvement
due to the use of metaheuristic optimization techniques as they perform global search and can handle
large variables in highly nonlinear environment. Nature-inspired techniques come under the category
of meta-heuristic algorithms. A few good features like self-repair, self-guidance, and evolution can
be used in artificial computing for better performance. Thus, having a good number of advantages
nature-inspired optimization is being encouraged in optimization of the antenna arrays.

A brief literature review involving different nature inspired techniques is discussed below. Genetic
algorithm (GA) imitates the process of natural evolution [7–11]. A discrete version GA is used in
1994 [7] for large array synthesis with minimum PSLL requirement to drive the algorithm in finding the
optimized element positions. Chen et al. 2007 [8] developed a modified real GA (MGA) for attaining
5.26 dB lower PSLL for a planar array of 108 elements than traditional methods. Zhang et al. 2011 [9]
used an orthogonal GA for the thinning of a planar array having 20 × 10 dimension to achieve low
PSLL −26.09 dB and −25.09 dB in the 0◦ and 90◦ planes. Oliveri and Massa in 2010 [10] used almost
difference set method (ADS) and genetic algorithms (GA) called the ADSGA method of optimization
for producing narrow band signals, and a PSLL of −20.64 dB was achieved. In 1996, the concept of
simulated annealing (SA) [11–13] was introduced to reduce the PSLL. Meijer in 1998 [12] used discrete
SA in the synthesis of a planar array of size 20 × 10 to achieve a PSLL of −24.4 dB from 8484 array
combinations. Trucco in 1999 [13] used SA for reducing the number of elements to be energized, and a
thinned planar array of 359 elements was simulated to obtain a PSLL of −21.2 dB.

Particle swarm optimization (PSO) [14, 15] which imitates the swarm of fish or particles was used
to exploit the variants of algorithm and solve single and multi-objective problems to achieve low PSLL
by thinning. Donelli et al. in 2009 [14] combined the deterministic method of Hadamard difference sets
and PSO and applied on an array containing 576 elements to attain the PSLL of −18.97 dB. Wang et
al. in 2012 [15] introduced Chaotic Binary PSO (CBPSO) where the inertia weight was obtained by
chaotic mutation that prevented the early convergence. A planar array having 20 × 10 dimension was
simulated, and the PSLL was −26.39 dB and −26.33 dB for 0◦ and 90◦ directions. Another algorithm
called Ant colony optimization (ACO) [16] which imitates the colonies created by ants has seen light.
In 2006 [16] Quevedo-Teruel and Rajo-Iglesias used ACO to synthesize a planar array with 20 × 10
dimension and achieved PSLL of −25.76 dB and −25.67 dB in 0◦ and 90◦, respectively. Another variant
of ACO is touring ant colony optimization. A few antenna optimization techniques were introduced by
using that algorithm. Differential evolution (DE) [17, 18] is another evolutionary algorithm that imitates
the mechanism of natural selection. Zhang et al. in 2010 [17] introduced Boolean DE (BDE) algorithm
for the thinning of a planar of size 20 × 10 to attain PSLL of −26.09 dB and −25.09 dB in 0◦ and 90◦

directions. Rocca et al. in 2011 [18] expanded the application of DE to problems of electromagnetics.
The authors pointed out the novelties of the algorithm. Next in evolutionary computing is Invasive weed
optimization (IWO) which imitates the colonization of weeds [19]. Wu et al. in 2015 [20] introduced the
concept of improved binary IWO (IBIWO) for thinning of array with circular geometry to reduce the
SLL while maintaining specific HPBW. Roy et al. in 2011 [21] presented a mechanism of synthesizing
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planar and circular arrays using IWO.
A few other algorithms whose goal is analogous to the work in paper are summarized as follows.

Singh and Salgotra in 2018 [22] stated that flower pollination algorithm (FPA) was better in reducing
the PSLL and placing NULL in undesired directions.Dahi et al. in 2016 [23] investigated the FPA and
introduced four variants of binary FPA (BFPA) to solve antenna positioning problems. Binary firefly
algorithm (BFA) [24] and Grey wolf optimization (GWO) [25] were used for the synthesis of arrays with
low SLL. Cuckoo search algorithm [26] and binary spider monkey algorithm [27] were quite helpful in
circular and linear array synthesis. In 2018 [28] Darvish and Ebrahimzadeh utilized an improved fruit
fly optimization algorithm to optimize a planar array with 68 elements, and an improvement of 9.36 dB
in SLL was observed. Ravipudi and Neebha in 2018 [29] did comparative research by picking up Jaya
algorithm and its variants with the main objective of achieving low SLL, while preserving antenna vital
parameters.

After having considered the work in literature, a discrete variable optimization method is introduced
hereto performing optimization with increased solution accuracy and great speed of convergence. This
is done by keeping synthesis on large arrays which are prone to have large number of possible solutions
at best interest. In the present work, the thinning of a planar antenna array (PAA) is done by a
novel discrete cat swarm optimization algorithm (DCSO). The DCSO is inspired from the cat swarm
optimization algorithm (CSO) which duplicates the natural behavior of the cat and was introduced by
Chu et al. [30]. CSO has been quite popular for dealing with continuous real valued spaces and 31, 32].

The major contributions of this work are,

1) To propose a novel discrete cat swarm optimization algorithm for single objective binary valued
problems.

2) To evaluate the potentiality of DCSO by applying benchmark functions.

3) To apply the proposed DCSO to thinned antenna array synthesis, to shape the sidelobe power.

4) To perform qualitative analysis on DCSO and other algorithms using statistical test.

2. DISCRETE CAT SWARM OPTIMIZATION

The DCSO is a unique algorithm, that imitates the natural behavior of the cat like continuous version
of the CSO. The major difference being the position vector is constructed using binary digits instead
of real values. All the nature inspired algorithms must be delineated to the behavioral characteristics
of one or the other species in order to represent a solution set. For example, the ants’ path is used in
ACO; PSO solution set is built on the movement of school of fish or flock of birds; in the same way,
CSO is modelled on the behavior of cats. The main objective of DCSO is to explain the notion of the
adaptive nature of the cats to trace their prey and link their behavior to discrete nature.

The feature of the cat is segregated into two modes namely seeking mode (SM) and tracing mode
(TM). Cat invests most of its time in rest and observes the surroundings with high alert. A mathematical
field is set in DCSO to represent the functionality of cat along the two modes in a D-dimensional space
and resolve various discrete optimization problems. The position vector Xi,d = (Xi1, Xi2, ..., XiD) and
velocity vector Vi,d = (Vi1, Vi2, ..., ViD) represent the position and velocity of the ith cat in solution
space which is represented by dimension d, and it extends form 1 to D. In tracing mode, cats quickly
spend a lot of energy to trace the prey with quick movements. A parameter called mixed ratio (MR) is
set to distribute the cats into SM and TM modes.

2.1. Seeking Mode

This mode is portrayed to represent the cat’s resting position, and the cat is alert in observing the
surrounding environment. The movement made here towards the next position is calculated and slow.
The mode is set to flow in the below steps.

1) K copies of the ith cat are created in SM mode based on the value specified by the Seeking
memory pool parameter (SMP). SMP is used to indicate the cat copies being created in SM mode.

2) (K−1) copies among the K copies of the ith cat undergo mutation following the values specified
by Counts of dimension to change (CDC) and Mutation probability (MP). The CDC reflects the count
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of dimensions that are to be mutated. MP is specific to binary synthesis. Following the CDC, the
dimensions (binary value) of the ith cat are mutated. The probability with which each parent cat in
each dimension will be mutated is governed by the equation below and is represented by MP (Xk

i,d)

MP (Xk
i,d) = 1 +

1

2
tanh
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where K = 1, ...,K − 1 and d = 1, ..., D, Xk
i,d represents the position of the Kth copy of the ith cat in

dimension d.
The spread distance generated by the standard gaussian number is indicated byDk

i,d, and parameter
Z is a constant. A Gaussian mutation number initializes the movement of the cat in the positive
and negative directions. This implementation allows the cat to make smaller mutations in the parent
cat neighborhood. This leads to more organized search in the vicinity of the cat, and the searching
capabilities of DCSO are made more promising. The MP is defined in the range [0, 1] by tangent
function and is shown in Fig. 1. The mutation probability of each cat is calculated to generate the
random number ‘rn’ within [0, 1] range. Following the calculation of ‘rn’ the mutation bit is governed
by the equations below. In available K − 1 copies, the kth bit in the ith copy is updated using the
equation below.

Y k
i,d =

{
1, if

(
rn < MP(Xk

i,d)
)

0, else
(2)

Xk+1
i,d = mod

(
xki,d + yki,d, 2

)
(3)

The natural demeanor of the cat is mathematically modeled using the above equations, and the
justification and flow of the mechanism are depicted as follows. In the seeking mode, the cat displacement
in position is very little as it observes the environment around it. The mathematical equation should
create a scope where the position updation is very much little. It can be done when the mutation rate is
less. To facilitate this, the mathematical equation is modelled as in Equation (1). The rate of mutation
is directly related to the mutation probability. Equation (1) is formulated by using tangent function
with Gaussian mutation number. The Gaussian mutation number with a proper value of ‘Z’ in the
tangent function allows lower mutation probability values over larger values. The mutation is said to
happen if at least one bit among the string is updated. The displacement of the cat would be large if

Figure 1. Mutation probability vs spread distance Dk
i,d.
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two or more bits in the string is updated/mutated. To limit the larger displacements and the mutation
in line with cats behavior, Equations (2) and (3) are developed to make the cat explore the search space
systematically around the cats position. The X-OR operation in Equation (3) makes most of the cases
limit to 0, while Y k

i,d is made in most of the cases to obey the second condition as the MP (Xk
i,d) value

span is very small compared with the span of the random number generated between [0, 1].
3) Estimate the fitness value of all cats.
4) Replace the position of the ith cat with the best one from K cats.

2.2. Tracing Mode

This mode is portrayed to present the cats nature while it is tracing the targets rather than resting.
The change in positions of the cat is achieved by producing the change in their velocities.

V g+1
j,d = ω · V g

j,d + C · rn ·
(
Xgbest −Xg

j,d

)
(4)

where j is the index of a cat in the swarm, d the index of dimension in the cat, g the iteration number,
V g
j,d the velocity of the jth cat, C the coefficient for acceleration, ω the weight of inertia, and rn ∈ [0, 1]

a random number. The global Xgbest is selected without domination from the external archive that
contains cat positions. Using sigmoid limiting transformation S the velocity of the dth bit in the jth
cat is updated and represented as below.
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The sigmoid limiting transformation is used to map the range [−Vmax] to the range
[

1
1+eVmax

]
which is

a subset of [0, 1]. The updation of the dth bit in the jth cat is updated by the equation
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j,d =

{
1, rn < S(V g+1

j,d ),

0, rn ≥ S(V g+1
j,d ).

(6)

The flow of DCSO algorithm is as shown in Algorithm 1.

3. SIMULATION RESULTS FOR BENCHMARK PROBLEMS

Evaluation and simulation of the DCSO are performed using seven standard benchmark functions as
listed in Table 1. Benchmarking is widely adopted for any new algorithm to test its performance using
certain functions [24]. The functions (f1, f2, f3) [25] are unimodal and contain only one global minimum
or no minimum. The functions (f4, f5, f6, f7) are complex test functions and test the possibility of
optimization getting trapped in the local minima. Depending on the problem dimension the count of
local minima increases. The results obtained from this synthesis indicate a better performance of the
algorithms to solve the above stated problems. The results obtained for DCSO are compared with binary
GA (BGA) [33], binary PSO (BPSO) [34], and binary CSO (BCSO) [35]. 20 dimensions are considered
for all the functions. The real numbers are represented in binary form by 20 bits in all the experiments.
All the algorithms under this synthesis have undergone 50 independent runs, and each independent
run having 200000 functional evaluations to maintain a fair comparison. Computational complexity
is one metric for comparing the efficiency of stochastic algorithms for solving optimization problems.
It can be measured as the number of functions evaluations. The number of function evaluations per
generation for a given objective function using DCSO is given as (SMcats ∗ (SMP − 1)) + (TMcats).
The computation is done using MATLAB on a PC having 4GB RAM and an operating frequency of
3GHz. The control parameters setup of DCSO and other competing algorithms is given in Table 2
which were set following the rules in [7, 36]. Different experiments are carried out to investigate the
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effect of the selection of swarm size, CDC, and MR parameter values on the performance of the DCSO
algorithm. The values of the swarm size (15, 25, 50, 75, and 100), CDC (20%, 40%, 60%, 80%, and
100%) and MR (0.2, 0.4, 0.6, 0.8, and 1) are varied to select the best values of the parameters. The
values of swarm size 50, CDC 80% and MR 0.8 yield the best results in terms of solution accuracy and
convergence speed. The efficiency of these algorithms is recorded by considering mean and standard
deviation for all the benchmarked functions.

The results of DCSO alongside the competing algorithms are shown in Table 3. DCSO outperforms
other algorithms for f1 and f2. f3 exhibits multimodal property at higher dimensions, and DCSO
exhibits better performance over others in terms of the rate of convergence and search space exploitation
ability. The graphical representation of the unimodal evaluation is depicted in Fig. 2. The DCSO
exhibits improved performance over competing algorithms while running the f4 to f7 functions and the
output of these functions is represented in Fig. 3. The highlighted values in Table 3 represent the best
values, and it can be depicted that the standard deviation of all the functions of DCSO is less than
BCSO, BPSO, BGA. Standard deviation indicates the ability of the entity or value to move away from
the obtained solution. So, a small value of standard deviation is desired and indicates the stability of
the solution. As the purpose of our synthesis is minimization, the lowest possible mean value is desired.
It is observed from Table 3 that the mean value for DCSO is better than the other three algorithms.
The mean value obtained for f1 (Sphere) is 5.01e−10 for DCSO, 8.42e−08, 4.19e+02, 3.15e+02 for
BCSO, BPSO, BGA, respectively. The mean value obtained for f6 (Griewank) is 2.26e−10 for DCSO,
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Table 1. Unimodal and multimodal benchmark functions.

Table 2. Parameter composition for the DCSO, BCSO, BPSO and BGA.

DCSO BCSO BPSO BGA

Parameter
Tuned

value
Parameter

Tuned

value
Parameter

Tuned

value
Parameter

Tuned

value

Cats at

initial stage
50

Cats at

initial stage
50

Size of

swarm
135 Population 50

SMP 3 SMP 3 c1 2 CR 0.8

CDC 80% CDC 20% ω

Linearly

decreases

from 0.9 to 0.2

MR 0.2

MR 0.8 PMO 0.2 r1, r2 [0, 1] - -

ω

Linearly

decreases

from 0.9 to 0.2

MR 0.8

c1 2 ω

Linearly

decreases

from 0.9 to 0.2

r [0, 1] c1 2

- - r [0, 1]
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(a) (b) (c)

Figure 2. Convergence curve of the (a) sphere test function (f1), (b) axis parallel ellipsoid test function
(f2), (c) Rosen Brock test function (f3) and comparison among DCSO, BCSO, BPSO and BGA.

(a) (b)

(c) (d)

Figure 3. Convergence curve of the (a) Ackely’s test function (f4), (b) Rastrigin test function (f5), (c)
Griewank’s test function (f6), (d) Weierstrass test function (f7) and comparison.

3.87e+00, 4.46e+04, 7.14e+04 for BCSO, BPSO, BGA, respectively. Clearly, DCSO outperformed the
competing algorithms.
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Table 3. Numerical analogy on DCSO, BCSO, BPSO and BGA for 20 dimensions (Mean and standard
deviation representation).

Standard

Function
DCSO BCSO BPSO BGA

f1 5.01e−10±3.01e−08 8.42e−05±2.15e−04 4.19e+02±4.11e+02 3.15e+03±0.41e+02

f2 7.12e−09±4.22e−09 3.58e−04±2.58e−05 5.34e+01±8.42e+02 5.45e+02±1.02e+03

f3 1.51e+01±0.99e+00 8.58e+02±7.47e+03 0.12e+04±9.23e+04 6.58e+04±1.34e+04

f4 3.08e−03±1.56e−03 1.87e+00±1.1e+01 3.12e+01±7.12e−02 2.57e+01±1.27e+01

f5 1.16e+01±1.02e+00 8.15e+01±7.2e+01 2.03e+03±1.32e+01 3.69e+03±0.87e+01

f6 2.26e−10±1.21e−09 3.87e+00±5.46e−01 4.46e+04±4.25e+01 7.14e+04±0.68e+02

f7 2.31e−04±1.05e−02 8.71e−01±4.24e+00 8.24e+04±3.13e+04 9.18e+04±7.21e+04

Bold represents the best results among all the competing ones.

4. STATISTICAL TESTS

Statistical tests generally provide the quantitative analysis about a process. In the present context
these tests evaluate whether the superiority of the algorithm is significant or not over the competing
algorithms. One such test is Wilcoxon signed ranked test. This test is usually used to compare the
matched samples. It is also called the matched pairs test. It gives results of whether there is any
pairwise statistical significance between algorithms. Here the test is carried out between DCSO and
BCSO, BPSO, BGA algorithms pairwise individually. This work considers the Wilcoxon signed rank
test with significance level of ∝. The values of ∝ are considered to be 0.05 and 0.1. Two hypotheses are
considered for analysisH0 also called Null hypothesis (where no difference is observed in the performance
of algorithms) andH1 also called Alternative hypothesis (where difference is observed in the performance
of algorithms). The results of the tests are depicted Table 4 using R+, R−, and p-values. For all the
considered problems, R+ indicates the sum of signed ranks where the first algorithm outperforms the
second algorithm, and R− indicates the sum of signed ranks where the second algorithm outperforms
the first. From the results it can be said that the DCSO outperforms BCSO, BPSO, and BGA.

Table 4. Results that represent Wilcoxon signed rank test.

Dimension Algorithm R+ R− P -value

Significance level

α = 0.1 α = 0.05

p < α H0 Rejection p < α H0 Rejection

20

DCSO vs BCSO 28 0 0.0781 Yes Yes No No

DCSO vs BPSO 28 0 0.0156 Yes Yes Yes Yes

DCSO vs BGA 28 0 0.0156 Yes Yes Yes Yes

5. APPLICATION OF DCSO TO THINNED ANTENNA ARRAY SYNTHESIS

5.1. Planar Antenna Array Geometry

Let’s consider a PAA made of omnidirectional radiating elements having size 2N × 2M , which exhibits
symmetricity over the x, y-axes and is depicted in Fig. 4. The array factor (AF) for this geometry is
derived as

AF(I, θ, ϕ) = 4

N∑
n=1

M∑
m=1

Inm · cos [π · (n− 0.5) · U ] · cos [π · (m− 0.5) · V ] (7)
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Figure 4. Geometric presentation of PAA [37] having uniformly spaced elements.

The interelement spacing is considered as 0.5λ. Inm is the excitation amplitude of (n,m)th element
U = sin(θ) cos(ϕ), V = sin(θ) sin(ϕ). In thinning process, Inm = 1 if the (n,m)th element is switched
ON and Inm = 0 if the (n,m)th element is switched OFF.

5.2. Problem Formulation

The main objective is to achieve the suppression of PSLL while maintaining energy efficiency (a
smaller number of active elements) by discovering suitable combination of 1’s and 0’s. PSLLs exist
in principal planes (ϕ = 0◦ & 90◦) of uniformly illuminated planar antenna array radiation pattern.
Quite often, researchers exercise their algorithms on reducing the SLLs in the principal places to project
the effectiveness of the proposed algorithm. However, if the PSLL in ϕ = 0◦ & 90◦ planes is reduced,
then proportionately the sidelobe levels in other planes increase. Also, it is necessary to control PSLL
in all ϕ planes. Hence, we have considered these two scenarios of addressing the suppression of PSLL
in two principal planes for ϕ = 0◦ & 90◦ and in the entire ϕ plane.

5.2.1. Case I: Defined to Reduce PSLL in ϕ = 0◦ & 90◦ Planes

The objective function is formulated to find the sum of maximum PSLL in two ϕ planes (ϕ = 0◦ & 90◦)
as below

F (I) = max(U, V ∈S)

(
AFI

dB(θ, 0
◦)

AFmax

)
+max(U, V ∈S)

(
AFI

dB(θ, 90
◦)

AFmax

)
(8)

5.2.2. Case II: Defined to Reduce PSLL in ϕ Plane

The objective function is derived to find the maximum PSLL in the entire ϕ-plane.

F (I) = max(U, V ∈S)

(
AFI

dB(θ, ϕ)

AFmax

)
(9)

where AFmax is the peak value generated in main beam, and F is the fitness which is considered only
in the sidelobe region S ∈ (θϕ) (omitting the main beam).

5.3. Numerical Illustrations

The proposed DCSO algorithm is applied to the synthesis of a PAA of geometric expansion 20 × 10
based on its popularity from previously published work [7–9, 16, 17]. The results of DCSO are compared
on par with the existing BCSO [35], BPSO [34], and work in literature to test the its efficiency. The
azimuth angular regions (90◦ to 180◦) are considered for evaluating the objective functions. To generate
the radiation pattern with good angular resolution 451 angular samples are considered for simulation.
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10000 functional evaluations are performed for considered algorithms. For every execution the best
solution is chosen after evaluating the algorithm 20 times. The parameter setups for DCSO, BCSO,
and BPSO are same as listed in Table 2 except the BPSO swarm size is 100, CDC of BCSO 20%, and
the MR of DCSO considered as 0.4. A series of parameter tuning experiments have been conducted for
setting the parameters of DCSO.

5.3.1. Case 1: Suppression of PSLL in Two Principal Planes ϕ = 0◦ & 90◦

A uniformly illuminated periodic PAA exhibits a maximum PSLL of −13.23 dB in each of the principal
planes. Next, the average PSLL is documented for each algorithm. With applying DCSO optimization a
fitness value of −56 dB is attained, and BCSO and BPSO optimized PAAs produce a PSLL of −50.41 dB
and −49.2 dB, respectively, while the arrays are 54 percent filled (108 elements). DCSO optimization
produces a PSLL of −30.91 dB at ϕ = 0◦ and −25.08 dB at ϕ = 90◦. The patterns of the DCSO, BCSO,
and BPSO optimized arrays are shown in Fig. 5, and the status of the array elements is represented in
Table 5. The element status of a quadrant (x: +ve in horizontal plane and y: +ve in vertical plane)
of the PAA is represented due to symmetricity. Fig. 6 shows the PSLL variation and filling percentage
attained using DCSO, BCSO, and BPSO respectively for 20 runs. The mean PSLLs obtained by using
DCSO, BCSO, and BPSO are −53.34 dB, −50.14 dB, and −49.28 dB, respectively. The convergence
characteristics of all the algorithms in terms of average values are shown in Fig. 7. It can be observed
that DCSO requires only 2480 and 3840 function evaluations to reach the final values obtained by
BPSO and BCSO, respectively. The optimum PAA metrics obtained are represented in Table 6. The
best values of the competing algorithms are marked in bold. DCSO outperforms BCSO and BPSO for
producing best and average PSLL values in both the ϕ planes.

(a) (b)

Figure 5. Optimized radiation pattern (AF) for the best performing trail of 20×10 PAA at (a) ϕ = 0◦

plane and (b) ∅ = 90◦ plane.

Table 5. ON and OFF status indication of elements for 20× 10 PAA in ϕ = 0◦ and ϕ = 90◦ planes.

Best Array Element Status

for one quadrant

Optimization Method

DCSO BCSO BPSO

(1: ON state

0: OFF state)

1111111111 1110111110 1111111010

1111111100 0111111101 1111011100

1110110000 1111110000 1110100001

1101000000 1110000000 1011100000

0010000000 1001000000 0100000000
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Table 6. Pattern metrics of optimum array design for a 20× 10 PAA synthesis in ϕ = 0◦ and ϕ = 90◦

planes.

Optimization method

PSLL (in dB)
Array filling %

(at best PSLL)
Both planes

ϕ = 0◦ ϕ = 90◦
Best Avg.

DCSO −56.00 −53.34 −30.91 −25.08 54

BCSO −50.14 −49.27 −25.06 −25.07 54

BPSO −49.28 −48.92 −24.45 −25.37 54

Array with no thinning −26.23 −26.13 −12.97 −13.26 100

(a) (b)

Figure 6. Variation of (a) PSLL, (b) filling percentage over 20 runs using DCSO, BCSO and BPSO
for a 20× 10 PAA in both the planes.

Figure 7. The convergence characteristics measured with respect to average fitness value for a 20× 10
PAA in ϕ = 0◦ and ϕ = 90◦.

5.3.1.1 Comparison with Published Work for Case I

A 20 × 10 PAA has been synthesized by many researchers [7, 33, 36] in past, and the array obtained
by DCSO approach is compared with theirs. The comparisons are listed in Table 7. From Table 7
the DCSO algorithm suppresses the PSLL around 16.17 dB over GA, 10.55 dB over MGA, 4.82 dB over
OGA, 4.82 dB over BDE, and 4.57 dB over ACO. The filling percentage for all these arrays except ACO
is 54%.
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Table 7. Comparison with published results for 20× 10 PAA in ϕ = (0◦, 90◦) planes.

Optimization method
PSLL in dB Array filling %

(at best PSLL)Both planes 0◦ 90◦

DCSO −56.00 −30.91 −25.08 54

GA [33] −39.83 −20.07 −19.76 54

MGA [8] −45.45 −29.59 −15.85 54

OGA [9] −51.18 −26.09 −25.09 54

BDE [17] −51.18 −26.09 −25.09 54

ACO [16] −51.43 −25.76 −25.67 68

5.3.2. Case 2: Suppression of PSLL in Entire ϕ-Plane

Figure 8 represents the 3-D pattern produced after DCSO is performed, and Fig. 9 represents the 2-
D far-field patterns at ϕ = 0◦, 45◦, and 90◦. The optimized array produces the optimum PSLL of

Figure 8. 3-D radiation pattern at far field region for an optimized PAA using DCSO after reduction
of PSLL in all ϕ planes.

Figure 9. Optimized radiation pattern in ϕ = (0◦, 45◦, 90◦) planes for a 20× 10 PAA using DCSO.
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−20.87 dB with a filling percentage of 62 in the entire ϕ-plane. The optimum PSLLs found in BCSO
and BPSO are −20.16 dB and −19.56 dB, respectively. The corresponding filling percentages of these
arrays are 60 and 62, respectively. The mean PSLLs obtained by using DCSO, BCSO, and BPSO are
−20.47 dB, −19.84 dB, and −18.46 dB, respectively. The input status of elements for DCSO synthesis
is shown in Table 8. The PSLL variation and filling percentage for 20 runs is shown in Fig. 10. The
pattern metrics obtained after optimization is depicted in Table 9.

Table 8. ON and OFF status indication of elements for 20× 10 PAA in entire ϕ-plane.

Best Array Element Status

for one quadrant
DCSO

(1: ON state

0: OFF state)

1111111101

1111101010

1111110100

1101010001

0110100000

Table 9. Pattern metrics of optimum array design for a 20× 10 PAA synthesis in entire ϕ-plane.

Optimization

method

PSLL (in dB)

entire ϕ plane
% Filling

Best Avg. For best PSLL

DCSO −20.87 −20.47 62

BCSO −20.16 −19.84 62

BPSO −19.56 −18.46 60

It can be seen from Table 9 that DCSO has shown superiority over BCSO and BPSO in terms of
producing low PSLL in the entire ϕ-plane. The evolutionary performance in terms of average fitness
value by using DCSO, BCSO, and BPSO can be seen in Fig. 11, and it can be concluded that DCSO
converges faster thanBCSO and BPSO. Also, DCSO requires 2240 and 20160 function evaluations to
reach final values obtained by BPSO and BCSO, respectively.

5.3.2.1 Comparison with Published Work for Case-II

It can be depicted in Table 10 that for a 20 × 10 thinned PAA synthesis (in entire ϕ plane), the SLL
obtained by using DCSO is −20.87 dB, and 18.84 dB, −19.44 dB, −20.40 dB are the respective SLLs
of MGA, OGA, BDE. Hence, the DCSO algorithm offers the suppression of PSLL by around 2.03 dB,
1.43 dB, and 0.47 dB in comparison with optimization offered by MGA [8], OGA [9], and BDE [17],

Table 10. PSLL and filling factor comparison of DCSO with MGA, OGA, BDE for 20 × 10 PAA
synthesized in entire ϕ-plane.

Optimization

method

PSLL (in dB)

entire ϕ plane
% Filling

DCSO −20.87 62

MGA [8] −18.84 54

OGA [9] −19.44 54

BDE [17] −20.40 54
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(a) (b)

Figure 10. Variation of (a) PSLL, (b) filling percentage over 20 runs using DCSO, BCSO and BPSO
for the 20× 10 PAA in entire ϕ-plane.

Figure 11. The convergence characteristics measured with respect to average fitness value for a 20×10
PAA in entire ϕ-plane.

respectively. The percentage of filling of the array using DCSO is 62 percent. The conclusion that can
be drawn after all the functional evaluations is the DCSO outperforms the other proposed algorithms
with the benchmark as solution accuracy as it produces optimal designs of the arrays.

6. CONCLUSION

In present work, a novel algorithm called DCSO that mimics the natural demeanor of the cat is designed
to solve binary valued problems. A novel mutation probability equation is mathematically formulated
using the tangent function with Gaussian mutation characteristics. The algorithm is applied to seven
multimodal benchmark functions; the convergence curves are compared, and DCSO outperformed the
BCSO, BPSO, and BGA algorithms. Statistical analysis is done by using Wilcoxon signed ranked test
to show the stability of the obtained DCSO solutions. This optimization is used to perform the thinning
of large antenna arrays to produce optimal switch ON and OFF status of elements. Synthesis results of
20× 10 planar array show that −56 dB of PSLL is obtained for DCSO, and −50.14 dB and −49.28 dB
was observed for BCSO and BPSO, respectively. There is a significant reduction in PSLL compared
to existing state-of-art optimization algorithms. Other observations from above research are that the
DCSO is an innovation in field of array synthesis and can be comfortably applied in the synthesis of
large antenna arrays with wide apertures. Though the present paper is focused on the synthesis of
PAAs, the developed algorithm is compatible for applying to other complex electromagnetic problems.
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