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Abstract—Computation of the magnetic field generated by permanent magnets is essential in the
design and optimization of a wide range of applications. However, the existing methods to calculate
the magnetic field can be time-consuming or ungeneralised. In this research, a deep learning-based fast-
computed and generalised model of three-dimensional (3D) magnetic field is studied. The volumetric
deep neural network model (V-Net) which consists of a contracting part to learn the geometrical context
and an expanding part to enable the concise localization was applied. We synthetically generated the
ground truth datasets from permanent magnets of different 3D shapes to train the V-Net. The accuracy
and efficiency of this deep learning model are validated. Predicting on 50 random samples, the V-
Net took 4.6 s with a GPU T4 and 23.2 s with the CPU whereas the others took a few hundreds to
thousands of seconds. Therefore, the deep learning model can be potentially utilised to replace the other
methods in the computation and study of the magnetic field for the design and optimization of magnetic
devices (the codes used in this research are published openly in https://github.com/vantainguyen/3D V-
Net MagneticField).

1. INTRODUCTION

Permanent magnets have been effectively implemented in many applications including in non-
invasive treatments and diagnoses [1, 2], magnetic gears and couplings [3–5], contactless sensing, and
robotics [6, 7]. In order to facilitate the design and optimization processes [8] of the magnetic devices,
the computation of the magnetic field distribution generated by utilized permanent magnets is essential.

The conventional method to compute the magnetic field from an object is Finite Element Method
(FEM) [9]; however, this method can be time-consuming and may not be suitable for an optimization
process of magnetic devices with large variables. Therefore, there have been many attempts to
investigate different techniques to tackle this issue. For magnetic field of basic shapes such as
cylinders [10], polyhedron [11], elliptical cylinders [12], and cones [13, 14], analytical and semi-analytical
models can be derived which are faster in terms of computational expenses than FEM. Recently,
machine learning models based on multilayer perceptron (MLP) have been demonstrated to be more
computationally efficient than the semi-analytical models and FEM [15]. One of the drawbacks of
the current analytical, semi-analytical and MLP-based models is that they are limited to some special
geometries of permanent magnets; in other words, they are lack of generalization. Moreover, the semi-
analytical and MLP-based models are faster than the FEM; however, they can be time-consuming for
the 3D field simulation.
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With the ability of modelling two-dimensional (2D) magnetic field of random shapes in a single
model, deep learning has been applied [16]. However, the 2D magnetic field modelling can be useful
when the shapes of permanent magnets are symmetrical. Moreover, the magnetic field distribution
in real-world is three dimensional (3D), thus, a fast-computed and accurate modelling of the 3D field
can be useful in the design and optimization processes. Therefore, in this article, we present a deep
learning-based model of 3D magnetic field which can construct the field from arbitrarily magnetized
geometrical shapes in a single model. We model the 3D magnetic field based on the V-Net [17] deep
learning architecture. The computational efficiency and generalization of this deep learning model are
demonstrated, and it can be a candidate to replace the need of FEM and the others for the computation
of the magnetic field.

2. METHOD

The volumetric deep neural network model (V-Net) is applied to learn the magnetic field distribution
generated from permanent magnets. The details of this model and data generation method to train the
model are discussed as follows.

2.1. Deep Learning Model

Inspired by the volumetric deep neural network [17] which was initially developed to solve the volumetric
medical image segmentation, our deep learning model (V-Net) consists of three major components: the
contracting part (encoder), expanding part (decoder), and skip connections (Fig. 1). The contracting
part contains six down-sampling convolutional layers; each convolutional layer has a filter kernel 3×3×3,
same padding [18], and stride 2 × 2 × 2 which enables the reduction of the input sizes by half; leaky
rectified linear unit (ReLU) with a slope coefficient 0.3 is utilized as the activation function to add the
non-linearity to the computation, and batch normalization is applied after each convolution layer. The
application of the activation function and batch normalization can help prevent the gradient vanishing
and exploding issues [18]. The number of filters (feature maps) of the preceding convolutional layer
doubles the number of filters of the previous one; the number of filters of the first convolutional layer
is called the filter base. The expanding part contains five up-sampling (transpose) convolutional layers.
Each convolutional layer has a 3× 3× 3 filter kernel, same padding, and 2× 2× 2 striding which allows

Figure 1. 3D V-Net architecture for 3D magnetic field modelling.



Progress In Electromagnetics Research B, Vol. 100, 2023 175

increasing input sizes. The same as the contracting part, batch normalization and leaky ReLu activation
are applied after each convolutional operation. The skip connections with concatenation enable the V-
Net to apply the fine-grained details in the encoder part to construct the output of the decoder part,
which helps compensate the information loss due to the down-sampling of the inputs in the contracting
part. The number of filters in the expanding part are equal to that in the symmetrical contracting part.

The inputs of the V-Net are 3D 64× 64× 64× 3 tensors with three channels; each channel contains

the information about the magnitude of projection of the vector magnetization J⃗ on the coordinate
system OXY Z (Fig. 2). In other words, the red, green, and blue channels are correspondent to the
magnetization projections on the OX (JX), OY (JY ), and OZ (JZ) coordinates, respectively, with the
value in each channel being the projection magnitude. Moreover, the outputs are 3D 64× 64× 64× 3
tensors with three channels; the red, green, and blue channels are the axial (Ax), azimuthal (Az), and
radial (Ra) components of the magnetic field, respectively.

Figure 2. Permanent magnet and medium setting.

2.2. Data generation and Preprocessing

The magnetic field generated from a permanent magnet can be computed by solving the Maxwell’s
equations (Eqs. (1) and (2)) taking the material properties into account (Eq. (3)) in magnetostatics
with FEM [9].

∇⃗ × H⃗ = 0 (1)

∇⃗ · B⃗ = 0 (2)

B⃗ = µ0H⃗ + J⃗ (3)

where H, B, µ0, and J are the magnetic field intensity, magnetic flux density, permeability of the
vacuum medium and magnetization, respectively.

However, the FEM is time-consuming to compute a large number of samples, thus we utilised
faster-computed semi-analytical expressions derived from Eqs. (1), (2), and (3) and validated against
the FEM (Appendix A) to simulate the ground truth (label) magnetic field.

The equations of the magnetic field are coded and executed using the object-oriented programming
language Python. The missing data in the simulated magnetic field components are limited to less than
one percent. Moreover, these missing data are filled using the K-nearest neighbours technique [19] with
four neighbours.

In order to cope with the variations in the magnetic field components, they are normalized by the
standard scaler method (Hnorm, Eq. (4)). Moreover, the data normalization can lead to the improvement
of the model’s numerical stability and training speed [20].

Hnorm =
H − µ

σ
, (4)
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Figure 3. Examples of generated data; SC: Sectional cone, EC: Elliptical cylinder, T: Tesla, Ax, Az,
and Ra are the axial, azimuthal and radial components of the magnetic field.

where µ and σ are the mean and standard deviation of each field component (H).
In this study, we generated 13500 random label samples of 3D permanent magnets with different

shapes and configurations (geometrical parameters are listed in Tables B1–B3, Appendix B) including
cones [13, 14]; more complex configurations are created by adding a random elliptical cylinder [12] to
the cones and adding a random sectional cone to the cones. For a visualization purpose, some examples
(2D sections) of the generated data after applying the normalization are depicted in Fig. 3. For testing
the robustness of the V-Net model, we generated 50 random samples from the out of training intervals
(Table B4, Appendix B) and 50 random samples from an unseen pattern (circular cylinder) in the
training data (Table B5, Appendix B). In total, 160GB of data were generated.

The mean squared error function (Eq. (5)) is utilised as the loss function which is to be minimised
during the training process.

L =
1

N

N∑
1

(Hi − Ĥι)
2, (5)

where H and Ĥ are the label and predicted magnetic fields, and N is the total number of the computed
points in space.

In order to evaluate the performance of the deep learning model, three metrics are implemented.
The first one is the cosine similarity (Eq. (6)) whose range is between −1 (the worst fit) and

1 (the best fit). It measures the closeness of two arrays (vectors) of the predicted and label values
correspondingly.

Cosimi(H, Ĥ) =
H · Ĥ

||H|| ||Ĥ||
, (6)

The second measure is the R squared (R2) (Eq. (7)) which is the proportion of the variation in the
dependent variable which can be explained by the independent variables. R2 has a range between 0 and
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1 (the best fit), and it can be less than 0 for the worse performance of the deep learning model.

R2(H, Ĥ) = 1−

N∑
1

(Hi − Ĥι)
2

N∑
1

(Hi − E[H])2

, (7)

The third metric is the Pearson correlation coefficient (ρ) (Eq. (8)) which measures the linear relationship
between two datasets. This metric has a range of −1 (oppositely correlated) and 1 (perfectly correlated).

ρ(H, Ĥ) =
cov(H, Ĥ)

σHσ
Ĥ

, (8)

where σH and σ
Ĥ

are the standard deviations of the ground truth and predicted field, and cov(H, Ĥ)
is the covariance between them.

3. EXPERIMENTS

The ground truth data are split into training, validation, and testing datasets with a ratio of 80/10/10.
In order to facilitate the loading data during training V-Net, the data were converted into TFRecord
format [21] which stores a sequence of binary records (three shards for training data, one shard for
validation, and one shard for testing datasets). The initial learning rate was set to 0.001 as the default
value from Tensorflow Adam optimizer [22], and this learning rate was decreased by a factor of 1/10 after
10 epochs of no improvement in the validation loss; the minimum learning rate was 1e-5. The training
batch size was set to 16 which was suitable for our computing facility. Early stopping was implemented to
terminate the training process when no improvement in the validation loss was observed for consecutive
15 epochs. Inspired by the U-Net architecture [23] the number of filters was chosen. Moreover, we
trained the V-Net with two different initial numbers of filters 32 and 64 (other hyperparameters remain
the same). The V-Net with 64 filters stopped at the 47th epoch whereas the V-Net with 32 filters took
more than 80 epochs to complete (Fig. 4). Regardless of the training epoch, the 64 filters V-Net took
5.76 hours, and the 32 V-Net consumed 3.73 hours. However, we achieved the convergence of the V-Net
with 64 filters with lower validation loss (0.0018) than the one with 32 filters (0.0032). Therefore, for
further analysis of the performance of the V-Net model, we chose 64 filters V-Net.

Figure 4. Loss and validation loss (val loss) of the training process with 32 and 64 filters; MSE: Mean
squared errors.
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4. RESULTS

The trained deep learning model V-Net with 64 filters base was applied to compute the magnetic field
generated from 1350 random samples of the unseen testing dataset. The histograms of the cosine
similarity, R-squared and Pearson correlation coefficient of the predictions and labels are depicted in
Fig. 5. These figures show that the majority of the metric values are in the interval of 0.9 and 1.
Moreover, the percentages of the returned metrics greater than 0.95 for the (axial, azimuthal and radial
components) are (99.85, 99.63, 99.78) (Cosimi in %), (94.44, 99.26, 96.74) (R2 in %), and (98.96, 99.63,
99.70) (ρ in %), respectively. These results demonstrate that the deep learning model can accurately
predict the magnetic field distribution from unseen data samples.

(a) Cosine similarity

(b) R-squared (R  ) 

 

(c) Pearson correlation coefficient (ρ) 

2

Figure 5. Comparison metrics between the labels and predictions of the testing dataset; (a) Cosine
similarity (Cosimi), (b) R-squared (R2), (c) Pearson correlation coefficient (ρ).

For the purpose of visual inspection (comparison), Figs. 6, 7, and 8 display the ground truth and
prediction of the magnetic field distribution of a random sample (this sample will be available on the
public Github repository) drawn from the unseen testing dataset in the Axial, Sagittal, and Coronal
planes. It can be seen that it is hardly distinguishable by human naked eyes between the ground truth
and the predicted results using the V-Net; moreover, the mean (µ) and standard deviation (σ) of the
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Figure 6. Visual comparison of the axial component; Geo & Mag denotes the geometry and
magnetization of the magnet.

normalised errors (differences between the two results) computed using Eq. (9) are comparatively small
(µ ≤ 2.4%, σ ≤ 7.08%).

Error =
|H − Ĥ| · 100%
IQRH(5, 95)

, (9)

where IQRH(5, 95) is the interquartile range between the 5th and 95th percentiles of the corresponding
ground truth field.
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Figure 7. Visual comparison of the azimuthal component; Geo & Mag denotes the geometry and
magnetization of the magnet.

The trained V-Net is also utilized to predict the magnetic field distribution from 50 random cone
samples generated from geometrical parameters outside the training intervals (Table B4, Appendix B).
We observed that the accuracy of the prediction slightly decreases (Fig. 9) compared to the accuracy
of the testing dataset (in the training intervals); the percentages of the returned metrics greater than
0.95 for the (axial, azimuthal and radial components) are (92.0, 100.0, 28.0) (Cosimi in %), (8.0, 94.0,
0.0) (R2 in %), and (90.0, 100.0, 28.0) (ρ in %), respectively. The accuracy of the predicted results
(Fig. 10) compared to the ground truth decreases further for the unseen pattern from the training
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Figure 8. Visual comparison of the radial component; Geo & Mag denotes the geometry and
magnetization of the magnet.

dataset (we have included the cone, complex geometries formed by the cone and the sectional cone; the
cone and the elliptical cylinder in the training dataset, but we tested the performance of the V-Net on
the permanent magnets of a circular cylindrical shape). For these unseen pattern data, the percentages
of the returned metrics greater than 0.95 for the (axial, azimuthal and radial components) are (6.0,
62.0, 0.0) (Cosimi in %), (0.0, 24.0, 0.0) (R2 in %), and (4.0, 62.0, 0.0) (ρ in %), respectively. These
are a common phenomenon observed with the supervised machine learning [15]. Moreover, it can be
addressed by retraining V-Net with the data generated from the desired intervals (the transfer learning
techniques [24] can be implemented to accelerate the training process).
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Table 1. Computational time comparison.

Methods Execution time (s)

V-Net 4.6 with a GPU T4 and 23.2 with the CPU

FEM [9, 14, 25] > 39000

SAE [14, 15] > 39000

MLP [15] 743.8 with a GPU T4 and 12019.3 with the CPU

(a) Cosine similarity

(b) R-squared (R  ) 2

(c) Pearson correlation coefficient (ρ) 

Figure 9. Comparison metrics between the labels and predictions of the out-of-training dataset; (a)
Cosine similarity, (b) R-squared (R2), (c) Pearson correlation coefficient (ρ).
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(a) Cosine similarity 

(b) R-squared (R  ) 2

(c) Pearson correlation coefficient (ρ)

Figure 10. Comparison metrics between the labels and predictions of the unseen pattern dataset; (a)
Cosine similarity, (b) R-squared (R2), (c) Pearson correlation coefficient (ρ).

The V-Net has been validated to be able to accurately predict the magnetic field distribution
of unseen samples from the training datasets. Moreover, this model is efficient in terms of the
computational expenses. Compared with FEM simulated on the Electromagnetic Simulation Software R⃝
(EMS) (EMWorks, Inc., Montreal, Quebec, Canada) and the semi-analytical expressions (SAEs), the V-
Net consumes mush less time to be executed than the others. It took 23.2 seconds with a CPU and only
4.6 seconds with a GPU (Tesla T4) for the V-Net’s prediction on 50 random samples, whereas it took
more than 39000 seconds for the FEM and SAEs to be executed (Table 1), and the multilayer perceptron
model MLP [15] took 12019.3 s with a CPU and 743.8 s with a GPU. An example of the parameters
utilized for the FEM simulation is listed in Table B6, Appendix B. The three models are executed on
the same personal computer with a processor Intel Core i7-9700, 3.0GHz. The programming language
Python 3.9.5 was applied to execute the V-Net, MLP, and SAEs.
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5. DISCUSSION AND CONCLUSION

With the advancement of the computational power including the achievement of the graphics processing
units (GPUs), deep learning has been demonstrated to be able to learn a wide range of tasks from medical
image processing to physics-informed problems [26, 27]. In this study, we applied a deep learning model
V-Net to learn the magnetic field distribution created from permanent magnets in 3D space. The ground
truth data were synthetically generated from validated semi-analytical expressions.

For the unseen testing dataset, the percentages of the returned metrics greater than 0.95 for the
(axial, azimuthal, and radial components) are (99.85, 99.63, 99.78) (Cosimi in %), (94.44, 99.26, 96.74)
(R2 in %) and (98.96, 99.63, 99.70) (ρ in %). Moreover, it is hardly visually distinguishable between the
label and predicted fields (Figs. 6–8). These metrics demonstrate that the labels and predictions are
in a good agreement. When applying the trained V-Net to compute the field of the samples generated
from out of training intervals and unseen pattern ones, the performance of the V-Net decreased. This
is a commonly seen phenomenon in the supervised learning where the machine learning model needs
to be trained on the similar patterns or within the intervals of the testing datasets to obtain the most
possible accuracy. In order to improve the prediction accuracy for datasets from the out of training
intervals or unseen patterns, the V-Net can be retrained on the desired intervals; in this case, transfer
learning where the pre-trained V-Net which already learned some representations of the training data
can be utilised to accelerate the training process.

In this proof-of-concept study, we have trained the deep learning model on datasets generated
by permanent magnets whose geometries are the different combinations of basic shapes. The
source codes are published in an open Github repository (https://github.com/vantainguyen/3D V-
Net MagneticField) for the replication and extension of the deep learning model for other desired
geometries. Transfer learning [24] where pre-trained model can be utilised to expedite the training
process.

It is also demonstrated that the V-Net is much more efficient in terms of the computational expenses
than the FEM, SAEs, and MLP models. This means that the V-Net can be a candidate to replace the
others in the computation of the magnetic field distribution for the design and optimization of magnetic
devices.
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APPENDIX A. SEMI-ANALYTICAL EXPRESSIONS OF THE MAGNETIC FIELD

For a permanent magnet with the OXY Z coordinate system depicted in Fig. A1, the axial, azimuthal
and radial components of the magnetic field generated by this magnet at computed point K in cylindrical
coordinate system (r, φ, z) can be expressed as Eqs. (A1), (A2), and (A3) [15]. For some simplified
geometries such as cones and elliptical cylinders, these expressions can be further simplified (please refer
to [12, 14] for more details).

HAxial(K)

=
1

4πµ0

‹
S

(
JX [1 0 0 ]

[
1
0
0

]
l⃗X+JY [0 1 0 ]

[
0
1
0

]
l⃗Y +JZ [0 0 1 ]

[
0
0
1

]
l⃗Z

)
· n⃗ (z − zQ)(

rQ2 + r2 − 2rQr cos (φ− φQ) + (z − zQ)
2
) 3

2

ds, (A1)
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HAzimuthal(K)

=
1

4πµ0

‹
S

(
JX [1 0 0 ]

[
1
0
0

]
l⃗X+JY [0 1 0 ]

[
0
1
0

]
l⃗Y +JZ [0 0 1 ]

[
0
0
1

]
l⃗Z

)
· n⃗rQ sin (φ− φQ)(

r2Q + r2 − 2rQr cos (φ− φQ) + (z − zQ)
2
) 3

2

ds (A2)

HRadial(K)

=
1

4πµ0

‹
S

(
JX [1 0 0 ]

[
1
0
0

]
l⃗X+JY [0 1 0 ]

[
0
1
0

]
l⃗Y +JZ [ 0 0 1 ]

[
0
0
1

]
l⃗Z

)
· n⃗ (r−rQ cos (φ−φQ))(

rQ2 + r2 − 2rQr cos (φ− φQ) + (z − zQ)
2
) 3

2

ds, (A3)

where the unit vectors of axes OX, OY , and OZ are denoted as l⃗X , l⃗Y and l⃗Z , respectively; the unit
vector normal to the magnet’s surface at the source point Q is represented as n⃗.

Figure A1. Computational 3D geometry of a permanent magnet.

APPENDIX B. GEOMETRICAL PARAMETERS

Table B1. Training intervals for cones (Fig. B1).

Parameters Minimum values Maximum values

JX,Y,Z (T) −1.5 1.5

β (rad) π/10 π/4

h (mm) 6 20
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Figure B1. Geometrical parameters of a cone. Figure B2. Geometrical parameters of the
complex geometry (sectional cone + cone).

Table B2. Training intervals for the complex geometry (sectional cone + cone) (Fig. B2).

Parameters Minimum values Maximum values

JX,Y,Z (T) −1.5 1.5

α (rad) π/10 π/3

h (mm) 8 15

β (rad) π/10 π/4

h1 (mm) 6 20

Table B3. Training intervals for another complex geometry (elliptical cylinder + cone) (Fig. B3).

Parameters Minimum values Maximum values

JX,Y,Z (T) −1.5 1.5

Semi-axis a (mm) 6 20

Semi-axis b (mm) 6 20

h (mm) 6 10

β (rad) π/10 π/4

h1 (mm) 6 20

Table B4. Out of training intervals (cones) (Fig. B1).

Parameters Minimum values Maximum values

JX,Y,Z (T) −1.5 1.5

φ (rad) π/10 π/4

h (mm) 21 25
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Table B5. Unseen Patterns from the training dataset (circular cylinders) (Fig. B4).

Parameters Minimum values Maximum values

JX,Y,Z (T) −1.5 1.5

R (mm) 6 20

h (mm) 6 20

Table B6. Parameters of the cone (Fig. B1) used in the FEM [14].

Parameters Values

JX,Y,Z (T) 0, 0, 1

β (rad) π/6

h (mm) 10

Mesh elements 1291757

Mesh nodes 216346

Figure B3. Geometrical parameters of the
complex geometry (elliptical cylinder + cone).

Figure B4. Geometrical parameters of a circular
cylinder.
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