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Identification of VNS-AGA Permanent Magnet Synchronous Wind
Generator Parameters Considering Magnetic Saturation

and VSI Compensation

Zhun Cheng1, Chao Zhang2, and Yang Zhang2, *

Abstract—In order to solve the problem of the influence of magnetic saturation and voltage source
inverter (VSI) nonlinear factors on the parameter identification of permanent magnet synchronous wind
generator (PMSWG), a variable neighborhood search-adaptive genetic algorithm (VNS-AGA) based
on magnetic saturation and VSI compensation is proposed in this paper. Considering the existence of
magnetic saturation, a mathematical model of PMSWG considering magnetic saturation is established.
The least square method is used to identify the inductance of dq axis. The influence of VSI nonlinear
factors on the system is regarded as a disturbance voltage, which is used as an electrical parameter; the
parameters of PMSWG are identified simultaneously; and voltage compensation is carried out. After
the accurate distortion voltage compensation mathematical model and fitness function are established,
GA and adaptive algorithm are combined to increase the diversity of the population. Then variable
neighborhood search (VNS) strategy is introduced to search the optimal region. Experimental results
show that the proposed method is more accurate and convergent after considering magnetic saturation
and on-line identification and compensation of disturbance voltage.

1. INTRODUCTION

Wind power generation as a renewable energy generation method has been developing rapidly in recent
years [1]. With the development of power electronics and advanced control methods, PMSWG has
gradually become the mainstream of wind power generation at this stage [2, 3]. The accuracy of the
PMSWG high performance control system is related to the motor parameters, which are generally
the standard minimum values and do not take into account the parameter changes of the motor at
the moment of operation. When the PMSWG is in operation, the parameters will change with the
change in temperature. The stator resistance and the permeability of the ferromagnet have a nonlinear
relationship with the temperature, which leads to a mismatch between the proportional-integral (PI)
controller parameters and the actual parameters of the PMSWG and reduces the dynamic and steady-
state performance of the PMSWG. The determination of these parameters mainly depends on the
accuracy of PMSWG parameters; therefore, accurate identification of PMSWG parameters is the key to
improving the performance of the PMSWG drive system [4–6]. There are two main methods for PMSWG
parameter identification, namely, offline identification method and online identification method.

In offline identification, the identification method generally involves obtaining the motor parameters
by injecting a certain frequency and amplitude voltage with the motor stationary or slightly moving.
Although offline identification can provide initial values for PI controller design, ignoring eddy current
losses in the motor core and possible parameter variations caused by permanent magnet temperature
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makes offline parameter identification methods unable to track online [7–9]. Online identification can
automatically correct PI controller parameters through real-time parameter measurement with motor
operation data, which can effectively solve the problem of system control performance degradation
caused by parameter changes [10]. The traditional methods for online identification are least squares
(LS), extended Kalman filter (EKF), and model reference adaptive system (MRAS); however, with the
increasingly complex operating conditions of PMSWG and the strong coupling of motor parameters,
the traditional methods cannot meet the requirements of online identification. Reference [11] proposed
a recursive least squares (RLS) method for parameter identification based on LS, analyzed the factors
affecting the identification accuracy, and the identification results can be close to the actual values,
but the increase in the amount of data leads to data saturation, which makes the identification
accuracy decrease. Reference [12], the optimized EKF was used to measure the motor parameters,
and the method is less computational, but the system noise matrix Q and measurement matrix R
require a large number of experiments to obtain them, which is difficult to implement in practical
applications. Reference [13] designed the adaptive rates of resistance, inductance, and magnetic chain
of the motor, respectively, and although the recognition in effect is good, the design of adaptive
rates is a difficult point in the implementation of the MRAS recognition system, and there is the
problem of scattering of recognition results due to multi-parameter recognition in the case of under-
ranking. With the development of technology, the computing power of computers has been greatly
improved, and intelligent algorithms have been developed in parameter identification and optimization
with the help of computer technology [14, 15]. Intelligent algorithms do not require initial values of
parameters, have the advantages of fast speed and low cost, and are widely used in motor parameter
identification [16]. The common intelligent algorithms are artificial neural networks (ANN), genetic
algorithms (GA), and particle swarm algorithms (PSO). References [17, 18] used neural network
algorithms for motor parameter identification and analyzed the effect of neural network learning rate on
parameter identification, although the accuracy of parameter identification is high. The initial values
require a lot of training, which makes the neural network algorithm design more complex. Reference [19]
introduced the relevant concepts of quantum mechanics into the particle evolution process and proposed
the quantum particle swarm algorithm, which discarded the speed term of the particle swarm algorithm
to obtain a faster convergence rate and overcame the limitation that the parameters of the particle
swarm algorithm were difficult to determine, but the problem of convergence to a local optimum was
still unavoidable.

GA is widely used in the field of parameter identification for its wide applicability, good stability,
and robustness. In [20], GA was used to identify the parameters of electric machines, and it was
shown experimentally that the method had high accuracy, but it was computationally intensive and
prone to local optimum problems. In [21], quantum rotational gates and multi-state quantum bit
encoding operations were added to the GA, and it was experimentally shown that the method had a
high parametric search capability and was fast, but there were problems of under-ranking and high
complexity.

When PMSWG is in actual operation, it will be inevitably affected by the nonlinear factors of
VSI, which mainly include the switching distortion of switching devices, the nonlinearity of inductors
and capacitors, and the noise of the power supply [22]. The disturbance voltage generated by VSI
nonlinear factors will distort inverter output voltage and current, resulting in motor output torque
fluctuation, noise increase, efficiency reduction, and other problems [23]. Reference [24] proposed an
online estimation method of rotor flux and VSI nonlinearity of permanent magnet synchronous motor
driver, and an online estimation of distortion voltage caused by VSI nonlinearity was used to estimate
rotor flux. Reference [25] took into account the nonlinear effects of VSI in the parameter estimation
model, and distortion voltage can be estimated simultaneously with other motor parameters, which can
effectively track machine parameter variations by compensating for nonlinear factors.

In PMSWG, magnetic saturation occurs when the magnetic flux density in the solenoid coil reaches
a certain value, leading to a decrease in the permeability of the coil, resulting in a decrease in the output
power and efficiency of the motor. When performing motor parameter identification, considering the
effect of magnetic saturation on the motor can provide more accurate motor parameters, thus improving
the accuracy and efficiency of motor control. In [26], a torque pulsation suppression method with
online identification of dq-axis inductance parameters with magnetic saturation was proposed, and the



Progress In Electromagnetics Research C, Vol. 134, 2023 183

identified parameters were used to achieve accurate torque control of a permanent magnet synchronous
motor. In [27], a space vector dynamics model identification method for a rotating induction motor
model considering both magnetic saturation and iron losses was proposed by modeling the magnetic
saturation effect and subsequently estimating the electrical parameters of this model using the genetic
algorithm offline technique, which experimentally showed a higher accuracy of electrical parameter
identification.

In this paper, the mathematical model of the ideal PMSWG is changed by practical situations,
taking into account the influence of the nonlinear factors of the power-type inverter on the parameter
identification and the effect of the magnetic saturation effect of the motor on the inductance. The work
of our paper is summarized as follows:

(1) Considering the existence of magnetic saturation, which leads to the nonlinear variation of the
inductance of PMSWG, the second-order polynomial is used to fit the relationship between
inductance and current, and the dq-axis inductance is identified by the least-squares method, which
improves the accuracy of VNS-AGA method identification in combination with the nonlinear model
of PMSWG.

(2) To solve the influence of VSI nonlinear factors on the operating performance of PMSWG, a
mathematical model of nonlinear factors is established? The influence of nonlinear factors on the
system is regarded as a disturbance voltage to be identified, and the disturbance voltage identified
by the VNS-AGA method is corrected in real-time to obtain higher identification accuracy.

(3) The VNS strategy is introduced in the AGA to make the parameter identification results more
accurate by discovering more potential optimal solution regions in the search space and performing
a fine search in the current optimal solution region.

2. MATHEMATICAL MODEL OF PMSWG

2.1. The Ideal Model of PMSWG

In the process of parameter identification, the reference voltage output by the PI current controller will
be used instead of the measured voltage; however, the actual voltage applied to the phase winding is not
equal to the voltage output by the PI current controller due to the existence of the VSI nonlinear factor,
and the VSI nonlinear factor must be considered in the identification model to improve the accuracy of
identification. {

uD = ud + Vd-dis

uQ = ud + Vq-dis
(1){

Vd-dis = DdVdis

Vq-dis = DqVdis
(2)

where Dd and Dq are the dq-axis periodic perturbation components, respectively; Vdis is the effect of
the VSI nonlinear factor on the system viewed as a perturbation voltage.{

uD = Rid − ωLqiq +DdVdis

uQ = Riq − ωLdid + ωφf +DqVdis
(3)
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where iA is the three-phase current of stator ABC.
The principle of parameter identification is shown in Fig. 1.
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Figure 1. Block diagram of the identification principle.

2.2. Fitness Function Design for VSI Nonlinear Factors

Vector control methods are adopted in this paper, as shown in Equation (5).
ûD0 (k) = −ω (k)Lqiq0 (k) +Dd0 (k) V̂dis

ûQ0 (k) = R̂iq0 (k) + ω (k) φ̂f +Dd0 (k) V̂dis

ûD1 (k) = R̂id1 (k)− ω (k)Lqiq1 (k) +Dd1 (k) V̂dis

ûQ1 (k) = R̂iq1 (k) + ω (k) φ̂f + ω (k)Ldid1 (k) +Dq1 (k) V̂dis

(5)

where ûD0(k), Dd0(k) are the data sampled at the Kth time; ûD1(k), ûQ1(k), id1(k), iq1(k), Dd1(k),
Dq1(k) are the data sampled at the Kth time.
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where W is the maximum number of iterations.
The fitness function is shown in Equation (7).

Pmin =
3∑

i=1

wipi (7)

where wi is the weighting coefficient. Since the identification parameters are all important, the weighting
coefficient is taken as 1/3.

2.3. Magnetic Saturation Model of PMSWG

Due to the existence of the magnetic saturation effect, PMSWG quadrature axis inductance is difficult to
measure, so the second-order polynomial is used to fit the relationship between inductance and current,
as shown in the following equation.{

Ld1 (id1, iq1) = Ld0 +m1id1 +m2iq1 +m3i
2
d1 +m4i

2
q1 +m5id1iq1

Lq1 (id1, iq1) = Lq0 + n1id1 + n2iq1 + n3i
2
d1 + n4i

2
q1 + n5id1iq1

(8)
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where Ld0 is a constant; m1, m3, n1, n3 are the self-saturation effect coefficients of dq axis inductance,
respectively. m2, m4, n2, n4 are the cross saturation coefficients of dq axis inductors, respectively.

By substituting Equation (8) into Equation (3){
uD = Rid1 − ωLq1 (id1, iq1) iq1 +DdVdis

uQ = Riq1 − ωLd1 (id1, iq1) iq1id1 + ωφf +DqVdis
(9)

3. PMSWG PARAMETER IDENTIFICATION METHOD

3.1. Inductance Identification Considering Magnetic Saturation

Due to magnetic saturation, the inductance of the motor will change nonlinearly with the current of the
stator. To improve the identification performance, the unary quadratic equation given in Equation (8) is
used to fit the relationship between inductance and current. For parameter identification, to accurately
identify motor parameters from a large number of data, two variables y1, y2 unrelated to speed will
be defined. First, the least square method will be used to identify the two variables, and then the
parameters will be identified from these variables.

x1 = Rid1 +DdVdis

x2 = Riq1 +DqVdis

y1 =
(
Ld0 +m1id1 +m2iq1 +m3i

2
d1 +m4i

2
q1 +m5id1iq1

)
iq1

y2 =
(
Lq0 + n1id1 + n2iq1 + n3i

2
d1 + n4i

2
q1 + n5id1iq1

)
id1 + φf

(10)

So, Equations (4)–(8) can be expressed as{
uD = x1 − ωy1
uQ = x2 − ωy2

(11)

Given the current of the dq axis id1 and iq1, the measured voltage is collected at N different speeds,
expressed as ω1, · · · , ωn, and the measured voltage can be expressed as uD1,n, uQ1,n, n = 1, · · · , N .
Equation (11) can be expressed as (12).{

uD1,n = x1 − ωny1
uQ1,n = x2 − ωny2

(12)

uD1,n and uQ1,n are collected at the rate of ωn, of which x1, x2, y1, y2 can be identified using the least
square method in Equations (14) and (17).

Given y1,k, k = 1, ...,K, Equation (10) gives (13).
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(
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2
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2
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)
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According to Equation (15), Ld0,m1,m2,m3,m4,m5 can be identified.
Equation (10) can be used to obtain (16).

y2,k =
(
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2
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2
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)
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XLq =
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2
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+ φf

(18)
According to Equation (18), Lq0, n1, n2, n3, n4, n5 can be identified.

In order to identify the above parameters, K > 6. Ld0,m1,m2,m3,m4,m5 and Lq0, n1, n2, n3, n4, n5

can be identified according to Equations (15) and (18), and Ld1 and Lq1 can be identified according to
Equation (8).

If the decoupling scheme is not employed, one needs to estimate multi-parameters simultaneously
from all the measurements, in which the estimation error of one parameter could affect the estimation
accuracy of other parameters. Experimental data collection of PMSWG inductance identification is
shown in Fig. 2.

Figure 2. Experimental data collection of PMSWG inductance identification.

3.2. Adaptive Genetic Algorithm

The crossover rate and mutation rate are kept constant during the evolution of GA. During the
initialization of the population, the diversity of the population is high, and the crossover rate and
mutation rate at this time do not have much effect on the population. However, in the evolutionary
stage of the population, the better individuals need smaller crossover rates and mutation rates, and the
opposite for the worse individuals, so the constant crossover rates and mutation rates adversely affect
the diversity of the population and the convergence of the algorithm. With AGA, the crossover rate
and mutation rate are made to vary with the fitness value of the population. The crossover rate and
mutation rate of AGA are calculated as follows:

Pc =


k1 (fmax − f ′)

fmax − fmin
, f ′ ≥ favg

k2, f ′ < favg

(19)

Pm =


k3 (fmax − favg)

fmax − fmin
, f ≥ favg

k4, f < favg

(20)

where fmax is the maximum fitness value among population individuals, fmin the minimum fitness value
among population individuals, favg the mean value among population individuals, f ′ the maximum
fitness value between two individuals in the crossover operation, f the fitness value in the variation
operation, and k1, k2, k3, k4 are the random numbers between [0 1].
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(a) (b)

Figure 3. Diagram general description. (a) Crossover rate adjustment curve; (b) mutation rate
adjustment curve.

From Fig. 3, when the fitness of the population is smaller than the average fitness of the individuals,
the crossover rate and variation rate remain constant, and when the fitness of the population is between
the average fitness and the maximum fitness of the individuals, the population fitness is linearly related
to the crossover rate and variation rate. This also indicates that when the fitness value of the population
is small, a larger crossover rate and variation rate are needed to make the individuals evolve better; the
larger the fitness value of the individuals is, the smaller the crossover rate and variation rate are, which
also indicates that the better individuals do not need to evolve and keep the most individuals.

3.3. Variable Neighborhood Search Strategy

The idea of variable neighborhood search (VNS) is to systematically change the volume neighborhood
structure set in the search process to expand the search range and obtain a local optimal solution, and
then systematically change the volume neighborhood structure set again based on this local optimal
solution to expand the search range and find another local optimal solution.

The steps of the VNS strategy are as follows:

(1) Initial value x, defining the set of variable neighborhood structures Ni(x), i = 1 as the starting
point of the search.

(2) The variable neighborhood structure set is used to search, and the current optimal solution is
disturbed or transformed. If a better solution Nk(x) than x is found in x′, then x = x′, i = 1.

(3) If the variable neighborhood search set still cannot find a better solution than x, let i++.

(4) Compare the current optimal solution with the historical optimal solution. If the current optimal
solution is better, update the historical optimal solution; otherwise, go back to step (1) and redefine
the neighborhood structure.

(5) Repeat the above steps until the stop criterion is met, and x is printed.

(6) The variable neighborhood search strategy is combined with adaptive genetic algorithm, and the
local search ability of variable neighborhood search and the global search ability of adaptive genetic
algorithm are used to find high quality solutions quickly.

The steps of VNS-AGA are as follows:

(1) Let the initial solution be x, the set of variable neighborhood structures Nk(x), k = 1, 2, ..., kmax,
the initial values of the parameters kmax, tmax, kstep, where kmax is the maximum domain, tmax the
maximum computation time, and kstep the number of domain steps per iteration.

(2) Search for a local optimal solution in the neighborhood of the current solution. If a better local
optimal solution is found, the neighborhood change is carried out.

(3) Randomly generate x′1, x
′
2, ..., x

′
r (x′1, x

′
2, ..., x

′
r ∈ Np(x)) in the pth domain structure set of x.

(4) Run AGA to obtain the local optimal solution x′1, x
′
2, ..., x

′
r, and choose x′1, x

′
2, ..., x

′
r the best as x′′

, i.e., f(x′′) = min
1≤i≤r

f(x′′).
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(5) If f(x′′) = min
1≤i≤r

f(x′′), x = x′, go to step (1); conversely, make k = k + kstep and go to step (2).

(6) Repeat the above steps until the stopping criterion is met.

The flowchart of VNS-AGA to identify PMSWG parameters is shown in Fig. 4.

Figure 4. Flowchart of VNS-AGA identification of PMSWG parameters.

4. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 5 is block diagram of the vector control strategy with id = 0, and the RT-LAB hardware-
in-the-loop simulation (HILS) experiment platform is shown in Fig. 6, which is used to verify the
feasibility of the proposed method. The digital signal processing (DSP) controller running the algorithm
is TMS320F2812. The parameters of PMSWG and power device are shown in Table 1.

The proposed identification method VNA-AGA is compared with AGA and hybrid genetic
algorithm (HGA) [28]. The three methods can identify and compensate the disturbance voltage. The
parameters of these methods are set as follows: population size is 20; crossover rate is 0.75; mutation
rate is 1.5; running time is 0.5 s; iteration time is the ratio of running time to sampling time; and
system sampling frequency is 10 kHz. In order to make the identification results clear observation, the
resistance, flux, and disturbance voltage are expanded by 10, 5, and 100 times, respectively.

The identification results and errors are shown in Table 2.
The identification curves of Ld and Lq are shown in Fig. 7. Considering the existence of magnetic

saturation, the actual value of Ld is 5.2mH, and the identification result is 5.28mH, which is 0.08mH
different from the actual value; the actual value of Lq is 11.5mH, and the identification result is
11.82mH, with an error of 2.8%. The identification curve of magnetic flux is shown in Fig. 8. The
actual value of magnetic flux in the offline state of the motor in this paper is 0.175Wb, and the
identification result of the proposed VNS-AGA method is 0.178Wb, which is different from the actual
value by 0.003Wb, with an error of 1.9%. In addition, the errors of the identification results of AGA
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Figure 5. Conceptual diagram of vector control strategy with id = 0.

Figure 6. RT-LAB experimental platform.

Ld Lq

Figure 7. Ld and Lq identification curve.
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Table 1. PMSWG parameter.

Parameters Value

Polar number 4

Stator resistance/Ω 0.933

Stator d axis inductance/mH 5.20

Stator q axis inductance/mH 11.5

Permanent magnet flux/Wb 0.175

Torque inertia/kg·m2 0.003

Rated voltage/V 380

Rated torque/(N·m2) 10

Rated speed/(r/min) 1000

Coefficient of viscous friction B/N·m/rad/s 0.1

(a) (b)

(c)

Figure 8. Permanent magnet flux identification curve. (a) AGA, (b) HGA, (c) VNS-AGA.

and HGA proposed in the paper are 3.8% and 6.9% from the actual values, and the errors of the AGA
and HGA methods are 2 and 3.6 times of the errors of the proposed VNS-AGA method, respectively.

Figures 9 and 10 show the graphs of resistance and disturbance voltage under the three identification
methods, respectively, and the errors of the resistance and disturbance voltage identification results are
similar. As shown in Fig. 9, the result of resistance identification under optimization VNS-AGA is
1.898Ω, and the error of the result with the actual value of motor resistance is 1.82%; the errors of the
result with the actual value under two algorithms of AGA and HGA are 5.31% and 2.9%, respectively,
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Table 2. Comparison of three algorithms simulation.

Parameters AGA HGA VNS-AGA

Stator resistance/Ω 0.982 0.960 0.949

error/% 5.31 2.90 1.82

Vdis/V 0.962 −1.027 −1.019

error/% 3.8 −2.6 −1.9

Permanent magnet flux/Wb 0.182 0.187 0.178

error/% 3.8 6.9 1.9

Identification time/ms 67 42 31

Fitness value 0.935 0.721 0.614

and the error of the AGA identification result is 2.9 times of the error of the VNS-AGA identification
result. As shown in Fig. 10, the discrimination result of the disturbance voltage under the optimized
VNS-AGA is −1.019V; the error of the result with the actual value of the disturbance voltage is
1.9%; the discrimination result of the AGA is −1.072V; and the discrimination error is 7.2%, which is
3.8 times of the discrimination error of the VNS-AGA. The self-adaptive process does not find that the
corresponding crossover rate is too small, which will lead to stagnant search and make the discrimination
voltage converge locally with large error.

Through the experimental analysis, the error between the results of AGA and VNS-AGA
identification and the actual values are different, which further indicates that by adding the variable
neighborhood strategy, the initial population is more evenly distributed; the diversity of the population
is better preserved; and the current optimal interval is searched more accurately, which makes the
identification results more accurate. In the comparison of the three algorithms, the error of AGA is
the largest, and the error of VNS-AGA is the smallest in the identification results of resistance and
perturbation voltage; the error of HGA is the largest, and the error of VNS-AGA is the smallest in the
identification results of magnetic flux.

The fitness function curves of the three algorithms in this paper are shown in Fig. 11. By the
VNS-AGA discrimination method, it converges to 0.614 at 31ms, and the final fitness values of the
AGA and HGA discrimination methods are 0.935 and 0.721, respectively. The convergence times are
67ms and 42ms, respectively, and among the three algorithms, VNS-AGA has the smallest fitness and
converges the fastest, so it can be concluded that the convergence of the identification results is faster
by adding the variable neighborhood strategy.

(a) (b)
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(a) (b)

Figure 9. Stator resistance identification curve. (a) AGA, (b) HGA, (c) VNS-AGA.

(a) (b)

(c)

Figure 10. Disturbance voltage identification curve. (a) AGA, (b) HGA, (c) VNS-AGA.
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(a) (b)

(c)

Figure 11. Fitness function value curve. (a) AGA, (b) HGA, (c) VNS-AGA.

5. CONCLUSION

Due to the influence of magnetic saturation and VSI nonlinear factors, the precision error of PMSWG
identification increases, and the convergence rate slows down. A method of PMSWG parameter
identification with VNS-AGA considering magnetic saturation and VSI compensation is proposed.
Considering the existence of magnetic saturation, a mathematical model of PMSWG considering
magnetic saturation is established. The least square method is used to identify the inductance of
dq axis. The influence of VSI nonlinear factors on the system is regarded as a disturbance voltage,
which is used as an electrical parameter. The parameters of PMSWG are identified simultaneously, and
voltage compensation is carried out. A variable neighborhood search strategy is introduced in the AGA
for a fine search of the current optimal region. Conclusions from the experiments are:

(1) The least square method is used to identify the inductance of dq axis, and the stator resistance,
permanent magnet flux, and disturbance voltage can be identified by using the identified dq inductance
and the proposed VNS-AGA method.

(2) After considering magnetic saturation and VSI compensation, the accuracy error of VNS-AGA
identification method is 1%–2%, and the convergence time is 31ms, which is more accurate and faster
than AGA and HGA.
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