
Progress In Electromagnetics Research B, Vol. 102, 81–98, 2023

Improved Non-Singular Fast Terminal Sensor-Less Sliding Mode
Control of IPMSM Considering External Disturbance

and Parameter Perturbation

Xiangfei Li, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou*

Abstract—A new non-singular fast terminal sensor-less sliding mode control algorithm (INFTSMC)
for IPMSM based on an improved extended sliding mode disturbance observer (IESMDO) is constructed
to address the problem of degraded control performance of IPMSM because of uncertainties. Firstly,
a mathematical model of IPMSM under parametric ingestion is developed, and a new control law for
the speed loop is designed. Then, an improved non-singular fast terminal sliding mode speed controller
(INFTSMC) based on a novel extended sliding mode disturbance observer (IESMDO) is designed,
where an improved super-twisting control law is designed to speed up convergence, while IESMDO can
accurately observe the unknown perturbed part F of the system in real-time relative to the sliding mode
disturbance observer (SMO). Finally, high-order square root cubature Kalman-filter (CKF) combined
with an adaptive estimator is proposed to accurately estimate the speed and rotor position of the motor
in real-time. Through simulations and semi-physical experiments with PI and traditional NFTSMC, it
is verified that the algorithm has better transient steady-state performance when external disturbances
and parameter perturbation are added externally to the motor, which is conducive to improve the
control effect of IPMSM.

1. INTRODUCTION

Interior permanent magnet synchronous motor (IPMSM) has gained wide attention in electric vehicles
because of its excellent control performance [1]. Currently, proportional-integral (PI) control is widely
used in industry due to the advantages of simple algorithms [2]. However, IPMSM is susceptible to
uncertainties such as unknown perturbations because its system is nonlinear. The traditional PI control
strategy has the disadvantage of integral saturation, which is not easy to meet the current industrial
requirements for the high precision performance of IPMSM control systems [3]. In recent years, to
meet the demand for high-performance IPMSM in engineering applications, various advanced control
methods such as predictive control [4], sliding mode control [5], and neural network control [6] have
been proposed in academia. Among them, sliding mode control (SMC) is simple and robust to external
disturbances, but it is difficult to suppress jitter.

To speed up the convergence and enhance the robustness of the control system, [7] introduced
dynamic integration into the sliding mode control to achieve the effect of weakening the jitter, but
the speed tracking performance of the control system is poor when the external disturbance is too
large. In [8], a non-singular terminal sliding mode control strategy is proposed based on the traditional
terminal sliding mode control, which enables the singularity problem to be solved and improves the
response speed of the system, but the tracking performance of the system is poor. In [9], a sliding mode
control method based on fractional order sliding mode surface is proposed to design a new convergence
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law using fractional order symbolic functions, which effectively suppresses the jitter phenomenon existing
in the system, but the algorithm for setting fuzzy rules is complicated. A new adaptive sliding mode
convergence law is proposed in [10], which effectively suppresses the jitter of the control output while
being able to dynamically adapt to the changes of the controlled system. Conventional speed control
systems contain sensors, resulting in poor system reliability under special operating conditions. With
the advancement of technology, velocity-free sensors are attracting attention because of their low cost
and high interference immunity [11]. In [12], a Modified unscented Kalman filter (UKF) was used to
improve the spherical sampling rule, but the accuracy of the observation under sudden load changes was
not verified. Ref. [13] improves an extended Kalman filter (EKF) observer by introducing an adaptive
fading factor, which can still be estimated accurately under sudden load change conditions. Ref. [14]
presents an improved cubature Kalman filter (CKF) for the estimation of speed and rotor position of
linear motors. In [13, 14], they combine the square root algorithm and time-varying noise valuator,
which significantly improves the accuracy, but none of them consider the complex operating conditions
where the other parameters of the motor vary.

In response to the above problems, complex operating conditions such as parameter perturbation
and external perturbations are taken into account. This paper proposes the third-order fast super-
twisting (ST) non-singular fast terminal sliding mode control (NFTSMC) method based on an improved
cubature Kalman filter (ICKF) without a speed sensor for IPMSM. The algorithm improves the third-
order super-twisting by adding a linear term [15] and combines it with NFTSM to form a speed controller.
At the same time, the non-singular terminal sliding mode is selected, and a double power convergence law
is introduced to design IESMDO to accurately estimate the unknown partial disturbances in real-time
and to compensate the INFTSMC with feedforward. By designing ICKF to estimate the rotor position
and speed of the motor, the IPMSM speed control system without a speed sensor is constituted, which
effectively improves the anti-interference capability and robustness of the motor closed-loop control
system.

2. MATHEMATICAL MODEL OF IPMSM

The IPMSM operates in the ideal state, and the stator voltage equation in the d-q axis can be expressed
as [16]: 

ud = Rsid + Ld
did
dt

− ωeLqiq

uq = Rsiq + Lq
diq
dt

+ ωe (Ldid + ψf )

(1)

where id and iq are the stator d-q axis current components, respectively (A); ud and uq are the stator
d-q axis voltage components, respectively (V); Ld and Lq are the stator winding d-q axis inductances,
respectively (H); ψf is the permanent magnet chain (Wb); Rs is the stator resistance (Ω); ωe is the
electric angular velocity (rad/s).

The IPMSM electromagnetic torque equation can be expressed as:

Te =
3

2
np [ψf + (Ld − Lq) id] iq =

3

2
npψextiq (2)

where Te is the electromagnetic torque output by IPMSM (N ·m); ψext = ψf + (Ld −Lq)id, ψext is the
effective magnetic chain; np is the number of pole pairs.

The mechanical motion equation of IPMSM can be expressed as:

dωe

dt
=
np
J

(Te − TL −Bωm) (3)

where TL is the load torque (N ·m); J is the moment of inertia (kg ·m2); B is the damping coefficient
(N ·m · s); ωm is the mechanical angular speed of the motor (rad/s).

Considering the impact of IPMSM operation on system stability under complex conditions, the
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mathematical model of IPMSM can be further obtained as [17]:
ud = Rsid + Ld

did
dt

− ωeLqiq +∆ud

uq = Rsiq + Lq
diq
dt

+ ωe(Ldid + ψf ) + ∆uq

Te =
3

2
npψextiq +∆Te

(4)

where ∆ud and ∆uq are the d-q axis voltage perturbations caused by parameter uptake, respectively
(V); ∆Te is the output electromagnetic torque perturbation (N ·m).

Substituting Eq. (4) into Eq. (3):

dωe

dt
=

3n2p
2J

ψextiq −
B

J
ωe −

np
J

(∆Te − TL +∆TL) = γiq + ξωe + F (5)

where γ = 3n2pψext/2J ; ξ = −B/J .

3. DESIGNED OF INFTSMC SPEED CONTROLLER BASED ON IESMDO

To ensure the high-performance control of IPMSM even under extreme conditions, this section improves
the super-twisting by adding a linear term and combines with NFTSM, the INFTSM control strategy.
This control method is used to design the IPMSM speed controller, in which the third-order fast
super-twisting control law solves the problems of slow convergence and parameter range limitations
of traditional super-twisting.

3.1. Designed of INFTSMC Speed Controller

From Eq. (5), the control law of the speed controller can be designed as [18]:

i∗q =
ω̇∗
e − ξωe − F + uc

γ
(6)

where i∗q is the given q-axis current component; ω∗
e is the given speed of the system; uc is the control

output of INFTSMC.
Substituting Eq. (5) into Eq. (6):

ω̇∗
e − ω̇e + uc = 0 (7)

The state error of the controller e is defined as e = ω∗
e − ωe. The equation of state is given by

ė1 = e2, ė2 = ė. The NFTSM surface was chosen as [19]:

s = e1 + α e
g/h
1 + βe

p/q
2 (8)

where α > 0; β > 0; g > 0, h > 0, p > 0, q > 0, 1 < p/q < 2; g/h > p/q.
Taking the derivative of Eq. (8):

ṡ = ė1 + α
g

h
e
g/h−1
1 e2 + β

p

q
e
p/q−1
2 ė2 = e2 + α

g

h
e
g/h−1
1 e2 + β

p

q
e
p/q−1
2 ė2 (9)

The traditional ST expression can be expressed as [15]:{
ṡ = −l1 |s|

1
2 sgn (s) + g

ġ = −l2sgn (s)
(10)

where l1 > 0; l2 > 0. Under external perturbation, conventional ST finite-time convergence requires
coefficients that satisfy the following values [15]:{

l2 > L

l1 > 2
√
l2 −

√
l22 − L2

(11)
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where L is the boundary of perturbation.
From Eq. (11), the finite values of l1 and l2 reduce the tunability of the system, and the absence of

linear term in the conventional ST algorithm leads to too slow convergence of the sliding mode surface
when it is far from the equilibrium point. The exponent of the state vector is always 1/2 which does
not allow the state of the sliding mode surface system to converge to a smaller size. To make the state
variables of the control system enter the sliding mode quickly, a linear term is added. The product of
the two nonlinear terms is set to be a linear term, so that its exponent is adjustable, which enhances
the tunability of the system. The improved super-twisting algorithm can be expressed as [15]:{

ṡ = −l1φ1 (s) + g − l1s

ġ = −l2f2 (s)
(12)

where

φ1 (s) = k1s+ k2 |s|α sgn (s) + k3 |s|1−α sgn (s) ;

f2 (s) = (φ1 (s) + s)′ (φ1 (s) + s)=

[
(k1 + 1)2s+ k22a |s|

2a−1 sgn (s) + k23(1−a) |s|
1−2a sgn (s)+

(a+ 1)(k1 + 1)k2 |s|a sgn (s) + k2k3sgn (s) + (2−a) |s|1−a sgn (s)

]
.

Theorem 1: From Eq. (8) to Eq. (12), the INFTSMC feedback control law is designed as in
Eq. (13) [18]:

uc =
q

βp
e
2−p/q
2 ·

(
1 +

αg

h
e
g/h−1
1

)
+ l1φ1 (s) + l2φ2 (s) + l1s (13)

and Eq. (12) satisfies the condition of Eq. (14), then the state error e will converge in finite time

ts ≤ 2
γ1

ln

(
1 + γ1

γ2
V

1
2
1 (0)

)
. {

r1 = k1λmin (Q) /λmax (P)

r2 = k2k3λmin (Q)λ
1/2
min (P) /λmax (P)

(14)

Proof 1: The following Lyapunov function V is selected as:

V =
1

2
e21 (15)

Taking the derivative of V :

V̇ = e1ė1 = υ(2V )q/p · e1−q/p
1 ·

(
1 + αe

g/h−1
1

)q/p
(16)

where 1− q/p and g/h− 1 are positive even numbers, so V̇ ≤ 0. From the Lyapunov stability theorem,
the origin is in a globally stable state. The next step is to prove the time ts for stable convergence of
the improved fast ST control law on the sliding mode surface.

Eq. (12) is rewritten as:

ṡ = −l1 (φ1 (s) + s)− l2f2 (s) = −l1f1 (s)− l2f2 (s) (17)

where f1(s) = (k1 + 1)s+ k2 |s|a sgn(s) + k3 |s|1−a sgn(s); f2(s) = f ′1(s)f1(s).
Proof 2: The quadratic-like positive definite Lyapunov function V (x) is selected as:

V (x) = ζTPζ (18)

where ζT = [ f1(s) g ]. It is easy to prove that V (x) is a positive definite and continuous function.
Taking the derivative of ζ:

ζ̇=[ f ′1 (s) ṡ ġ ]
T
=f ′1 (s) [ −l1f1 (s) + g −l2f1 (s) ]

T
=f ′1 (s)

[
−l1 1

−l2 0

] [
f1 (s)

ġ

]
=f ′1 (s)Aζ (19)

where A =

[
−l1 1
−l2 0

]
; l1 > 0; l2 > 0. The matrix A is a Hurwitz matrix.
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For any positive definite symmetric matrix Q, there must exist a positive definite symmetric matrix
P satisfying the Lyapunov function V (x).

ATP+PA = −Q (20)

Taking the derivative of Eq. (18):

V̇ (x) = ζ̇TPζ + ζTPζ̇ = f ′1 (s) ζ
T
(
ATP+PA

)
ζ = −f ′1 (s) ζTQζ (21)

where f ′1(s) = (k1 + 1) + k2a |s|a−1 + k3(1 − a) |s|−a > 0, V̇ (x) is negatively fixed, and the system is
asymptotically stable on a large scale.

From Eq. (18) and Eq. (21):

λmin (P) ∥ζ∥22 ≤ V ≤ λmax (P) ∥ζ∥22 (22)

where λmin(P) ∥ζ∥22 and λmax(P) ∥ζ∥22 are the minimum and maximum eigenvalues of the matrix P;

∥ζ∥22 is the 2-norm on Euclidean space R2, as shown in Eq. (23):

∥ζ∥22 = ζ21 + ζ22 = f21 (s) + g2

= (k1 + 1)2s2 + k22 |s|
2a + k23 |s|

2−2a+2(k1 + 1)k2 |s|a+1+2(k1 + 1)k3 |s|2−a + 2k2k3 |s|+g2 (23)
From Eq. (22) and Eq. (23):{

k2 |s|a ≤ ∥ζ∥2 ≤ (V (x)/λmin (P))1/2

k3 |s|1−a ≤ ∥ζ∥2 ≤ (V (x)/λmin (P))1/2
(24)

From Eq. (21) and Eq. (24):

V̇ (x) = −f ′1 (s) ζTQζ

≤ −λmin (Q) f ′1 (s) ∥ζ∥
2
2 − k2aλmin (Q) |s|a−1 ∥ζ∥22 − k3(1− a)λmin (Q) |s|−a ∥ζ∥22

≤ −(k1 + 1)λmin (Q)

λmax (P)
V − k2aλmin (Q)

λmax (P)
V

1

|s|1−a − k3(1− a)λmin (Q)

λmax (P)
V

1

|s|a

= −(k1 + 1)λmin (Q)

λmax (P)
V −

k2k3λmin (Q)λ
1/2
min (P)

λmax (P)
V 1/2 = −r1V − r2V

1/2 (25)

where r1 = (k1 + 1)λmin(Q)/λmax(P); r2 = k2k3λmin(Q)λ
1/2
min(P)/λmax(P).

Eq. (25) is rewritten as: (
1

2
· V −1/2 · V̇

)
+
r1
2

(
V 1/2

)
= −r2

2
(26)

Eq. (26) is equivalent to Eq. (27):(
V 1/2

)′
+
r1
2

(
V 1/2

)
= −r2

2
(27)

Solving Eq. (27):

V
1
2 = −r2

r1
+
r2
r1

· exp−
r1
2
t+V

1
2 (0) · exp−

r1
2
t (28)

The stable convergence time of the improved super-twisting control law on the sliding mode surface
ts can be obtained from Eq. (29):

ts ≤
2

r1
ln

(
1 +

r1
r2
V

1
2 (0)

)
(29)

where when r1 = 0 or r2 = 0, V (x) is a simple exponential convergence, and e will converge in a finite
time.

When the sliding mode surface converges in finite time, that is s = ṡ = 0, the equivalent control
law can be obtained as:

uc =
q

βp
e
2−p/q
2 ·

(
1 +

αg

h
e
g/h−1
1

)
+ l1φ1 (s) + l2φ2 (s) + l1s (30)
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Substituting Eq. (30) into Eq. (6) to obtain i∗q as:

i∗q =
ω̇∗
e − ξωe − F + uc

γ

ω̇∗
e − ξωe − F +

q

βp
e
2−p/q
2 ·

(
1 +

αg

h
e
g/h−1
1

)
+ l1φ1(s) + l2φ2(s) + l1s

γ
(31)

Fig. 1 is the block diagram of the INFTSMC.

Figure 1. The block diagram of INFTSMC.

3.2. Designed of Improved Extended Sliding Mode Disturbance Observer (IESMDO)

Based on the conventional sliding mode perturbation observer (SMO), the non-singular terminal is
selected as the sliding mode surface to effectively reduce the convergence time of the system, improving
the jitter caused by the high gain of the conventional SMO and enhancing the performance of the
observer for speed tracking by introducing a double power convergence law.

Defining variable as x1 = ω̂e − ωe, Eq. (6) is redefined as:
dω̂e

dt
= γiq + ξω̂e + F̂ + usmo

dF̃

dt
= G · usmo

(32)

where ω̂e is the observed speed; F̂ is the estimated value of F ; usmo is the control law of IESMDO.
From Eq. (5) and Eq. (32), Eq. (33) can be obtained as:

ẋ1 = ξx1 + F̃ + usmo

dF̃

dt
= G · usmo − ℓ(t)

(33)

where F̃ = F̂ − F ; ℓ(t) = dF/dt.
Selecting NTSM surface [20]:

s1 = x1 + c1ẋ
g/t
1 (34)

where c1 > 0; g and t are the positive odd numbers to be designed; 1 < g/t < 2.
Taking the derivative of Eq. (34):

ṡ1 = ẋ1 + c1
g

t
ẋ
g/t−1
1 ẍ1 (35)

The double power convergence law is designed [21]:

ṡ1 = −τ1 |s1|b1 sgn(s1)− τ2 |s1|b2 sgn(s1) (36)

where τ1 and τ2 are the positive odd numbers to be designed; b1 = 1− r; b2 = 1 + r; 0 < r < 1.
From Eqs. (34)∼(36), usmo can be obtained as:

usmo = ueq + ufn (37)



Progress In Electromagnetics Research B, Vol. 102, 2023 87

where ueq = −ξx1; ufn = −
∫ t
0

(
t

c1g
ẋ
2−g/t
1 + τ1 |s1|b1 sgn(s1) + τ2 |s1|b2 sgn(s1)

)
dτ .

Theorem 2: From Eq. (32) to Eq. (37), when the gains are chosen to satisfy Eq. (39), x1 converges
to 0 in finite time [18].  τ1 |s1|b1+1 ≥

∣∣∣ ˙̃F ∣∣∣
τ2 |s1|b2+1 ≥

∣∣∣ ˙̃F ∣∣∣ (38)

Proof 3: The following Lyapunov function V1 is selected as:

V1 =
1

2
s21 (39)

Taking the derivative of V1:

V̇1 = s1ṡ1 = s1

(
ẋ1 + c1

g

t
ẋ
g/t−1
1 ẍ1

)
= s1 · c1

g

t
ẋ
g/t−1
1

(
ẍ1 +

t

c1g
ẋ
2−g/t
1

)
(40)

Substituting Eq. (37) into Eq. (33):

ẋ1 = F̃ + ufn (41)

Taking the derivative of Eq. (41):

ẍ1 =
˙̃F + u̇fn (42)

From Eq. (37)∼Eq. (43):

V̇1 = s1 ·
c1g

t
ẋ
g/t−1
1

(
˙̃F − τ1 |s1|b1 sgn(s1)− τ2 |s1|b2 sgn(s1)

)
= −c1g

t
ẋ
g/t−1
1

(
−s1 · ˙̃F + τ1 |s1|b1 sgn(s1) · s1 + τ2 |s1|b2 sgn(s1) · s1

)
= −c1g

t
ẋ
g/t−1
1

(
−s1 · ˙̃F + τ1 |s1|b1+1 + τ2 |s1|b2+1

)
(43)

Because of g/t > 0, ẋ
g/t−1
1 > 0, Eq. (43) can be transformed into two forms:

V̇1 = −c1g
t
ẋ
g/t−1
1

(
−s1 · ˙̃F + τ1|s1|b1+1 + τ2|s1|b2+1

)
≤ −c1g

t
ẋ
g/t−1
1

(
τ1|s1|b1+1 + |s1|

(
τ2|s1|b2+1 − | ˙̃F |

))
(44)

V̇1 = −c1g
t
ẋ
g/t−1
1

(
−s1 · ˙̃F + τ1|s1|b1+1 + τ2|s1|b2+1

)
≤ −c1g

t
ẋ
g/t−1
1

(
τ2|s1|b2+1 + |s1|

(
τ1|s1|b2+1 − | ˙̃F |

))
(45)

If
∣∣∣ ˙̃F ∣∣∣ ≤ N , N ≥ 0, when τ2 |s1|b2+1 ≥

∣∣∣ ˙̃F ∣∣∣:
V̇1 ≤ −c1g

t
ẋ
g/t−1
1

(
τ1|s1|b1+1

)
= −c1g

t
ẋ
g/t−1
1

(
τ1 · (2V1)

b1+1
2

)
≤ 0 (46)

when τ1 |s1|b1+1 ≥
∣∣∣ ˙̃F ∣∣∣:
V̇1 ≤ −c1g

t
ẋ
g/t−1
1

(
τ2|s1|b2+1

)
= −c1g

t
ẋ
g/t−1
1

(
τ2 · (2V1)

b2+1
2

)
≤ 0 (47)

According to the Lyapunov stability theorem [20], it is known that the system will satisfy the
sliding mode reachability condition.

From Eq. (46) and Eq. (47): 
|s1| ≤

(
N

τ2

) 1
b2

|s1| ≤
(
N

τ1

) 1
b1

(48)
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From Eq. (48), the convergence region of s1 can be found as:

|s1| ≤ min

((
N

τ2

) 1
b2

,

(
N

τ1

) 1
b1

)
(49)

Eq. (36) can be found as:

|ṡ1| ≤ τ1 |s1|b1 + τ2 |s1|b2 ≤ τ1 ·min

((
N

τ2

) 1
b2

,

(
N

τ1

) 1
b1

)b1

+ τ2 ·min

((
N

τ2

) 1
b2

,

(
N

τ1

) 1
b1

)b2

(50)

Suppose that tr is the convergence time of the s1 from the initial value to s1 = 0. The system
enters the terminal sliding mode surface after post tr and converges to 0 after te. The total convergence
time can be expressed as [20]:

t = tr + te = tr +
c1g

g − t
max

(∣∣∣x1(tr)1−g/t
∣∣∣) (51)

To effectively reduce the sliding mode jitter, the saturation function ℜ(s) is used instead of the
sign function:

ℜ(s) = 2

1 + exp−τs
(52)

where τ > 0. Fig. 2 is the block diagram of IESMDO.

Figure 2. The block diagram of IESMDO.

4. DESIGNED OF IMPROVED SQUARE ROOT CUBATURE KALMAN-FILTER
SENSORLESS (ICKF)

Considering the problems of high cost and strict environmental requirements of sensors, this section
selects the high-order square root cubature Kalman algorithm. The speed and rotor position of the
IPMSM are estimated by ICKF instead of an optical encoder, and it has good estimation accuracy.

4.1. State Equation of IPMSM

From Eq. (1) and Eq. (3), Eq. (53) can be expressed as:

did
dt

=
1

Ld
(ud + npωmLqiq −Rsid)

diq
dt

= 1
Lq

(uq − npωmLdid − npωmψf −Rsiq)

dωm

dt
=

1

J
(Te − TL −Bωm)

dθm
dt

= ωm

(53)

where ωm is the mechanical angular velocity; θm is the mechanical angle.
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Selecting the new state variable: x∗ = [ id iq ωm θm ]T ; u = [ ud uq Te TL ]T ; y =

[ id iq ]T .
Development of a nonlinear mathematical model of the motor:{

ẋ∗(t) = Ax(t) +Bu(t) + w

z(t) = Cx(t) + v
(54)

Discretizing the state equation, letting T be the sampling period:{
ẋ∗ (k) = G1x (k − 1) +Hu (k − 1) +Wk−1

Z (k − 1) = Cx (k − 1) + vk−1
(55)

4.2. Improved Square Root Cubature Kalman-Filter (ICKF)

Generalized fifth-order volume integral formula can be expressed as [22]:

I(g) =

∫
Rn

g(x)N(x; 0, I)dx = Ŵ0g([0]) + Ŵ1

i=1∑
2n

g([v]i) + Ŵ1,1

i=1∑
2n(n−1)

g([v, v]i) (56)

where Ŵ0, Ŵ1, and Ŵ1,1 are the weights of the corresponding trajectories of [0], [v]i, and [v, v]i,
respectively; n is the number of system state dimensions; v needs to satisfy the following Eq. (57):

I0
I2
I4
I2,2

 =


1 2n 2n(n− 1)

0 2v2 4(n− 1)v2

0 2v4 4(n− 1)v4

0 0 4v4


 Ŵ0

Ŵ1

Ŵ1,1

 (57)

where I0 =
∫
Rn

exp(−xTx)dx =
√
πn; I2 =

∫
Rn

x2i exp(−xTx)dx =
√
πn/2; I4 =

∫
Rn

x4i exp(−xTx)dx =

3
√
πn/4; I2,2 =

∫
Rn

x2ix
2
j exp(−xTx)dx =

√
πn/4.

According to Eq. (57), the solution can be found as:
v =

√
3/2

Ŵ0 =
√
πn (1− (7− n)n/18)

Ŵ1 =
√
πn [(4− n)/18]

Ŵ1,1 =
√
πn/36

(58)

Convert Eq. (56) to the standard Gaussian distribution form:

I(g) =

∫
Rn

g(x)N(x; 0, I)dx =
1√
πn

∫
Rn

g(
√
2x)× exp

(
−xTx

)
dx

=

(
1− (7− n)n

18

)
g([0]) +

4− n

18

i=1∑
2n

g
(
[
√
3]i

)
+

1

36

i=1∑
2n(n−1)

g
(
[
√
3,
√
3]i

)
=

i=1∑
2n2+1

ωig (ξi) (59)

From Eq. (59), volume points ξ̃ and weight ω̃i can be expressed as [22]:

ξi =


[0]i, i = 1

[
√
3]i, i = 2, · · · , 2n+ 1

[
√
3,
√
3]i, i = 2n+ 2, · · · , 2n2 + 1

(60)

ωi =


1− n(7− n)/18 i = 1

(4− n)/18 i = 2, · · · , 2n+ 1

1/36 i = 2n+ 2, · · · , 2n2 + 1

(61)
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According to the Sage-Husa recursive estimation method [23], a time-varying noise statistical

valuator is designed to estimate the variance R̃k of v(k) in real-time:

R̃k = (1− dk−1)R̃k−1 + dk−1

(
z̃kz̃

T −Hk,k−1Pk|k−1H
T
k,k−1

)
(62)

where dk−1 = (1 − b)/(1 − bk); b is the forgetting factor, 0.95 < b < 0.99; z̃k = zk − h(x̂k|k−1) is the
measurement of new news; Hk,k−1 is the linearized observation matrix.

Eq. (63) is designed according to the EKF equation:

Pxz,k|k−1 = Pk|k−1H
T
k,k−1 (63)

Substituting Pk|k−1 = Sk|k−1S
T
k|k−1 into Eq. (63):

Hk,k−1 = PT
xz,k|k−1/(S

T
k|k−1Sk|k−1) (64)

Substituting Eq. (63) and Eq. (64) into Eq. (62):

R̂k = (1− dk−1)R̂k−1 + dk−1

(
z̃kz̃

T − PT
xz,k|k−1

(
ST
k|k−1Sk|k−1

)−1
Pxz,k|k−1

)
(65)

4.3. Algorithm-Specific Steps of ICKF

The algorithm process includes system initialization, state prediction, and state update. The specific
formulas are derived as follows:

a) System initialization: 
x̂0 = E(x0)

S0 = chol(p0)

R̂0 = R0

where chol(∗) indicates the Cholesky decomposition; system initial state is x0 = [ 0 0 0 0 ]; the
initial state covariance array is p0 = [ 0.5 0.5 0.01 0.0 ]; R0 = diag[ 0.1 0.1 ].

b) Prediction process [23]:
(1) Calculating the higher order volume points (i = 0, 1, ..., 2n2)

xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (66)

where Sk−1|k−1 = chol(Pk−1|k−1).
(2) Calculating the volume points after propagation

x∗i,k|k−1 = f
(
xi,k|k−1

)
(67)

where x∗i,k|k−1 are the volume points of propagation in the prediction process.

(3) Stating prediction estimates

x̂k|k−1 =
2n2∑
i=0

ωix
∗
i,k|k−1 (68)

In Eq. (69), the predicted values of the state variables x̂k|k−1 are obtained by weighting and summing
the propagated volume points x∗i,k|k−1.

(4) Calculating the square roots of the prediction error variance array

Sk|k−1 = qr
[√

ω0

(
x∗0,k|k−1 − x̂k|k−1

)
· · · √ω2n2

(
x∗2n2,k|k−1 − x̂k|k−1

)√
Qk−1

]
(69)

where qr(∗) indicates the QR decomposition; Sk|k−1 are the square roots of the error variance array of
the prediction process.

c) Update process:
When the predicted value at moment k is obtained, it is updated and corrected by the measurement

equation and the gain matrix.
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(1) Calculation of higher order volume points (i = 0, 1, ..., 2n2)

xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (70)

(2) Calculating the volume points after propagation

zi,k|k−1 = h
(
xi,k|k−1

)
(71)

where zi,k|k−1 are the volume points propagated during the measurement.
(3) Measurement state prediction

ẑk|k−1 =

2n2∑
i=0

ωizi,k|k−1 (72)

where the predicted value of the volume prediction ẑk|k−1 is obtained by weighting the sum of the
volume points of the volume measurement equation zi,k|k−1.

(4) Calculating the square roots of the new interest covariance array

Szz,k|k−1 = qr

[
√
ω0

(
z0,k|k−1 − ẑk|k−1

)
· · · √ω2n2

(
z2n2,k|k−1 − ẑk|k−1

)√
R̂k

]
(73)

where

√
R̂k is the Cholesky decomposition factor of the matrix R̂k; Szz,k|k−1 is the quantitative

measurement covariance array of the new rest at moment k.
(5) Calculating the mutual covariance array and gain array

Pxz,k|k−1 =
2n2∑
i=0

ωi

[
xi,k|k−1 − x̂k|k−1

]
×
[
zi,k|k−1 − ẑk|k−1

]T
Kk =

[
Pxz,k|k−1/S

T
zz,k|k−1

]
/Szz,k|k−1

(74)

where Kk is the Kalman gain matrix at moment k; Pxz,k|k−1 is the measurement mutual covariance
array at moment k.

(6) Estimating the square roots of the state and its covariance array{
x̂k|k = x̂k|k−1 +Kk

[
zk − ẑk|k−1

]
Sk|k = chol ∗

[
Sk|k−1′KkSzz,k|k−1′ − 1

] (75)

where x̂k|k is the state estimate at moment k; chol∗ indicates a Cholesky update.
After correcting the predicted values to obtain the optimal estimates of the system state variables

x̂k|k at moment k and the square root of its covariance array Sk|k, then return to Eq. (66) for another
state cycle.

5. EXPERIMENTS RESULTS

To verify the feasibility of the algorithm, the IESMDO based INFTSMC sensor-less algorithm is built
in MATLAB platform. The parameters of IPMSM are shown in Table 1. Table 2 shows the control
parameters. Fig. 3 is the block diagram of IPMSM.

Remark 1: The values of γ and ξ in the algorithm of this paper are rectified by γ = 3n2pψext/2J

and ξ = −B/J . The NFTSMC algorithm is s = e1 + α1e
g1/h1

1 + β1e
p1/q1
2 . The conventional ST control

law ṡ = −l3 |s|
1
2 sgn(s) −

∫
l4sgn(s)dτ is chosen, and NFTSMC controller selects the traditional SMO

for the observation of system disturbance. Instead of the photoelectric encoder, the ICKF algorithm
is selected for PI, NFTSMC, and INFTSMC algorithms to estimate the speed and position to form a
closed-loop control.

From Fig. 3, the red dashed box shows the proposed algorithm in this paper, whose control flow
is as follows: Firstly, designing the modified super-twisting non-singular fast terminal sliding mode
controllers for the speed loop of IPMSM. At the same time, the IESMDO accurately observes, in real
time, the external disturbance and parameters ingestion parts, and feeds the observed values into the
controller to achieve stable operation of the IPMSM under complex operating conditions.
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Table 1. The parameters of IPMSM.

Parameters Units Values

Dc voltage/udc V 600

Rated speed/nN r/min 1900

Stator resistance/Rs Ω 2.75

Pole number/np pairs 2

d axis inductance/Ld H 0.004

q axis inductance/Lq H 0.009

Magnet flux/ψf Wb 0.12

Inertia/J kg ·m2 0.029

Table 2. The parameters of PI/NFTSMC/INFTSMC.

PI NFTSMC INFTSMC

P = 100 α1 = 0.01 α = 0.05

I = 20 β1 = 0.005 β = 0.01

/ p1/q1 = 7/5 p/q = 7/5

/ g1/h1 = 5/3 g/h = 5/3

/ l3 = 0.6 k1 = 0.5

/ l4 = 1.5 k2 = 1.8

/ / k3 = 0.9

/ / a = 1/2

Figure 3. The block diagram of the motor speed control system.

5.1. Simulation Analysis of IPMSM under Parametric Uptake and Unknown
Perturbation

The parameter regression experimental conditions are shown in Table 3.
Under the overall sensorless control, it can be seen from Fig. 4(a) that the response time of IN-

FTSMC to reach the specified speed is smaller than PI and NFTSMC. In the motor system, the
load variation has a large effect on the transient process of motor speed, while the resistance effect is
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Table 3. Parameter perturbation experimental conditions.

Time Perturbation Range of perturbation

0.5 s ψf/Wb 0.12→0.08

0.7 s Rs/Ω 2.75→3.90

1.5 s Lq/H 0.009→0.006

2.0 s Lq/H 0.004→0.003

2.5 s TL/N·m 15→20

small and negligible. When the mechanical parameters of the motor are ingested, the speed of PI and
NFTSMC control has significant fluctuation and overshoot, while the speed under INFTSMC control
can accurately track to the given speed in a very short time. Fig. 4(a) shows that the steady-state
control accuracy of INFTSMC is better than that of PI and NFTSMC in the enlarged plot for each
operating condition. Figs. 4(b), (c), and (d) show that the INFTSMC has more stable torque and d-q
axis current waveforms, better control performance in both transient and steady states, and minimal
pulsation.

In Fig. 5(a), the SMO has some overshoot in the speed tracking due to the high gains when the
motor parameters are regenerated, and some jitter occurs during the transient process. Compared with
SMO, IESMDO has better speed tracking performance, improves the jitter caused by high gains of
SMO, and effectively reduces the system convergence time by selecting non-singular terminals as the
sliding mode surface and introducing the double power convergence law. From Fig. 5(b), the unknown
perturbed part F waveform observed by IESMDO is smoother, and the jitter is effectively reduced.

(a) (b)

(c) (d)

Figure 4. Simulation comparison results of PI+ICKF/NFTSMC+ICKF/INFTSMC+ICKF. (a)
Simulation comparison of speed. (b) Simulation comparison of torque. (c) Simulation comparison
of d-axis current. (d) Simulation comparison of q-axis current.
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(a) (b)

Figure 5. Simulation comparison results of SMO/IESMDO. (a) Speed tracking error e. (b) Unknown
parts of the total perturbation F .

(a)

(b)

(c)

Figure 6. THD analysis of A phase stator current. (a) PI+ICKF. (b) NFTSMC+ICKF. (c)
INFTSMC+ICKF.

From Fig. 6, Compared with the other two algorithms, the proposed INFTSMC+ICKF can
effectively suppress current harmonics in the case of parameter ingestion. Table 4 shows the
comprehensive performance comparison of PI, NFTSMC, and INFTSMC control methods under the
ICKF closed loop.
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Table 4. Comparison of PI+ICKF/NFTSMC+ICKF/INFTSMC+ICKF.

Performance indicators PI+ICKF NFTSMC+ICKF INFTSMC+ICKF

Speed convergence time1 0.31/0.31 0.14/0.16 0.10/0.10

Torque ripple 14.52% 9.67% 5.11%

Speed static difference2 0.09/0.17 0.06/0.11 0.021/0.024

Average speed error rate3 0.0662 0.0321 0.011

ia THD 17.75% 9.24% 6.24%

(a) (b)

Figure 7. Combined simulation results of INFTSMC+ICKF. (a) Rotational speed estimation of
INFTSMC+ICKF. (b) Rotor angle estimation of INFTSMC+ICKF.

Figure 7 shows the simulation comparison of the speed control system combining INFTSMC and
ICKF. Fig. 7(a) is the speed estimation curve; Fig. 7(b) is the rotor angle estimation curve. (MEA
is the measured value; CKF is the cubature Kalman-filter estimated value; and ICKF is the cubature
Kalman-filter estimated value).

From Fig. 7, compared with the CKF, the ICKF algorithm for motor speed estimation slowly
converges to the true value, and the maximum tracking speed relative errors at steady state are 0.005
and 0.001%, respectively. The speed estimation accuracy is higher than the common CKF algorithm in
the speed regulation condition. When the load torque changes, the ICKF speed estimation error becomes
a little larger, but still converges to the true value and estimates the motor speed more consistently
than the CKF in the regenerated case. In summary, it can be seen that the ICKF algorithm has high
estimation accuracy and is more adaptable. Table 5 shows the comparison of the speed and position
estimation results of CKF and ICKF in the INFTSMC.

Table 5. The comparison of the speed and position estimation results of CKF and ICKF.

Performance Indicators CKF ICKF

Variance of speed error 0.143 0.046

Variance of position error 0.00041 0.00021

5.2. Analysis of RT-Lab Experimental Results

To further verify the effectiveness of the method, RT-Lab is used to implement the hardware-in-the-loop
simulation (HILS) experiment of the IPMSM drive system. Fig. 8 is the RT-Lab experimental platform.
Fig. 9 is the experimental plots of the full working conditions. From Fig. 8, RT-LAB (OP5600) is used
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DSP

RT-LAB

Figure 8. RT-LAB experimental platform.

(a)

(b)

(c)

Figure 9. Comparison of experiment results. (a) PI+ICKF. (b) NFTSMC+ICKF. (c)
INFTSMC+ICKF.
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to simulate the remaining components of the motor system such as IPMSM and inverter, with a real
DSP controller of model TMS320F2812. The hardware-in-the-loop semi-physical system used in this
paper adopts the structure of actual controller+virtual controlled object to model the controlled object
of the system, and the real-time simulator runs the solved model to interact with the real controller. The
hardware-in-the-loop semi-physical simulation platform experiments can be used to obtain experimental
results consistent with the actual motor. The control algorithm is mainly realized by modifying the
algorithm in the Simulink environment and then downloading it to the RT-Lab controller to ensure that
the platform parameters and indicators are normal and start running.

Figure 9 shows a slight decrease in the control performance of the experiment compared with
Fig. 4. When parameter ingestion occurs in the motor, the overall performance of PI+ICKF and
NFTSMC+ICKF is affected, with jitter in speed and large d-q current and torque pulsations, but
the basic trend and effect comparison is consistent with the simulation results. The A-phase current,
d-q current, and torque pulsation of PI+ICKF and NFTSMC+ICKF are distorted under ingestion.
However, the INFTSMC+ICKF can accurately track the specified speed so that the actual current
pulsations and torque pulsations in the d-q axis are effectively suppressed, mainly since the IESMDO
is better able than the SMO to accurately observe and feed-forward compensation to the controller for
unknown disturbance. In summary, INFTSMC+ICKF has the advantages of high anti-disturbance and
good robustness under parameter ingestion and unknown perturbation.

6. CONCLUSION

For the problems of overall motor control performance degradation caused by external disturbances
and sensor failures in IPMSM drive systems, an ICKF sensor-less INFTSMC algorithm for IPMSM
based on ICKF is proposed in this paper. By comparing simulations and experiments under different
operating conditions, the algorithm proposed in this article has been verified to have high-precision
control performance under unknown disturbances, effectively enhancing the robustness of the system.
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