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ABSTRACT: A new non-dissipative and explicit finite-difference time-domain (FDTD) method is proposed for relaxation of the Courant
condition of FDTD(2,6) in three and two dimensions. To the time-development equations, the third- and fifth-degree spatial difference
terms with fourth- and second-order accuracy, respectively, are appended with coefficients. A set of optimal coefficients for the appended
terms is searched to minimize the numerical error in phase velocity but relax the Courant condition as well. The numerical errors with the
new method are more reduced than those with the previous methods for each Courant number. However, there exists a large anisotropy
in the phase velocity errors at large Courant numbers.

1. INTRODUCTION

The Finite-Difference Time-Domain (FDTD) method has
been widely used as a method for numerical simulations of

electromagnetic fields for more than a half century [1, 2]. The
FDTD method consists of the time-development equations of
electric andmagnetic fields based onMaxwell’s equations. The
time-development equations are discretized with the second-
order finite difference in both time and space. The divergence
free condition for both electric and magnetic fields is always
satisfied in the staggered grid (Yee grid) system.
As a disadvantage of the FDTD method, phase velocity

errors cause numerical oscillations due to lower-order finite
differences. Finite differences with a higher-order accuracy
are used for the reduction of phase velocity errors. With the
FDTD(2,4) method, spatial difference terms are approximated
with the fourth-order difference [3, 4]. The sixth-order spa-
tial difference is used in the time-development equations of
FDTD(2,6) in the same way. The FDTD method with the tth-
and xth-order accuracies in time and space, respectively, is
called FDTD(t, x).
By performing Fourier transform of the time-development

equations and by setting the determinant to zero, the dispersion
relation is obtained as amatrix eigenvalue problem [5, 6]. Then,
the Courant condition is obtained from the dispersion relation.
The dispersion relation of FDTD(2,6) is written as follows:
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Here, the Courant numbers are defined as Cx = c∆t/∆x,
Cy = c∆t/∆y and Cz = c∆t/∆z. Numerical frequency
and wavenumber are defined as W = sin(ω∆t/2) and Kx =
sin (kx∆x/2), respectively. Note that Kz = 0 in two dimen-
sions. In n dimensions, the right-hand side of Eq. (1) is maxi-
mized at k∆x = k∆y = k∆z = π:

W2 = n

(
149

120
C

)2

,

whereC = Cx = Cy = Cz (i.e.,∆x = ∆y = ∆z) is assumed.
Therefore, a numerical instability occurs if the right-hand side
of Eq. (1) is more than 1 (i.e., C ≥ 120/149

√
2 ∼ 0.57 and

C ≥ 120/149
√
3 ∼ 0.46 in two and three dimensions, re-

spectively). Note that the numerical instability occurs for C >
1/
√
3 ∼ 0.577 and C > 6/7

√
3 ∼ 0.495 with FDTD(2,2) and

FDTD(2,4), respectively, in three dimensions.
The phase velocity errors with FDTD(2, x) schemes (x =

2, 4, 6, 8) decrease as the order of the spatial difference in-
creases [7]. However, the Courant condition becomes more
restricted by using higher-order finite differences in space.
Since FDTD(2,6) has a more restrictive Courant condition than
FDTD(2,4), smaller∆t and larger number of time steps are re-
quired. For this reason, FDTD(2,6) is not used commonly.
Implicit FDTD methods [8–14] relax the Courant condition.

Since the implicit equations need to be solved with iterative
convergence or matrix inversion, they have higher computa-
tional costs. Nonstandard-type FDTD methods [15–20] utilize
diagonal difference terms with coefficients to correct the nu-
merical dispersion relation and to reduce phase velocity errors.
However, it is not easy to obtain optimal coefficients of the ap-
pended terms.
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Recently, an explicit method for relaxing the Courant condi-
tion has been developed [21]. For the derivation of the time-
development equations of this method, the third-degree differ-
ence terms are appended to FDTD(2,4) with coefficients. Opti-
mal coefficients are determined by a brute-force search, which
minimize the mean values of the phase velocity errors in the
entire wavenumber space.
In this paper, the Courant condition of FDTD(2,6) is relaxed

in the same way as the previous study [21]. A new FDTD
method, which is non-dissipative and explicit, is developed by
appending third- and fifth-degree difference terms to the time-
development equations of FDTD(2,6).
This paper is organized as follows. Section 2 shows the time-

development equations and the numerical dispersion relations
of the new method. Section 3 shows the optimal coefficients
and phase velocity errors. Section 4 shows the results of nu-
merical tests. Section 5 gives the conclusion.

2. FORMULATION AND NUMERICAL DISPERSION
RELATION

2.1. General Form
The following time-development equations are used, in which
third- and fifth-degree spatial difference terms are appended:
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where c is the speed of light; α and β are coefficients with the
third- and fifth-degree difference terms, respectively; and Dn

x

is a nth-degree spatial difference operator. Note that Dn
z = 0

in two dimensions. A set of optimal coefficients is determined
as a function of the Courant number. The time-development
equations are based on the Taylor expansion of the central fi-
nite difference in time, which has odd-degree difference terms
only. A numerical dissipation arises from even-degree differ-
ence terms.

2.2. FDTD(2,6) with Third-Degree Difference
The first-degree spatial difference operatorD1

x with sixth-order
accuracy is written as follows:
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The third-degree difference operator D3
x with fourth-order

accuracy is written as follows:
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The dispersion relation is derived from Eqs. (2), (3), and (4)
with D5

x = 0 as follows:
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Note that Kz = 0 in two dimensions. The left-hand side takes
a value in the range of 0 ≤ W2 ≤ 1. The Courant condition is
relaxed by adjusting the coefficient α.
This method is referred to as “scheme 1” in this paper.
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2.3. FDTD(2,6) with Third- and Fifth-Degree Differences
The fifth-degree difference operator D5

x with second-order ac-
curacy is written as follows:
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The dispersion relation is derived from Eqs. (2), (3), (4), and
(6) as follows:
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Note that Kz = 0 in two dimensions. The Courant condition is
relaxed by adjusting both α and β.
This method is referred to as “scheme 2” in this paper.

3. OPTIMAL COEFFICIENTS
A set of optimal coefficients for the third- and fifth-degree dif-
ference terms is obtained by a brute-force search as performed
in the previous study [21]. The angular frequency ω is obtained
by solving the dispersion relation. Here, ω = 2 sin−1 W/∆t in
Eq. (8) is obtained as a function of the numerical wavenumber
K from Eqs. (5) and (7). The phase velocity is obtained by di-
viding the real part of angular frequency ω by wavenumber k.
The coefficients are determined to minimize the phase veloc-
ity errors and suppress the numerical instabilities. The phase
velocity error is given by the following equation:
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The phase velocity error ε is obtained as a function of the co-
efficients α and β for a specific Courant number. In this study,
C = Cx = Cy = Cz (i.e.,∆x = ∆y = ∆z) is assumed. A set
of optimal coefficients α and β is searched for minimizing the
error ε under the condition of Im(ω) ≤ 0.
In two dimensions, the optimal coefficients for schemes 1

and 2 are searched for 0.5 ≤ C ≤ 1. Tables 1 and 2 show the
sets of optimal coefficients for schemes 1 and 2 using Eqs. (5)
and (7), respectively.
In three dimensions, the optimal coefficients for schemes 1

and 2 are searched for 0.4 ≤ C ≤ 1. Tables 3 and 4 show the
sets of optimal coefficients for schemes 1 and 2 using Eqs. (5)
and (7), respectively.

3.1. Numerical Error in Two Dimensions
A method using the time-development equations with the
fourth-order operator D1

x and the second-order operator D3
x is

previously proposed [21], which is referred to as “Sekido23”
in this paper.
The phase velocity errors of schemes 1 and 2 are compared

with those of FDTD(2,6) and Sekido23 in two dimensions. Fig-
ure 1 shows the mean values of the phase velocity errors ε as
a function of the Courant number C. Panels (a)–(c) show the
phase velocity errors in the entire wavenumber space, at θ = 0◦

and at θ = 45◦, respectively. Here, θ is the angle relative to the
x axis. The black, red, green, and blue lines show the numeri-
cal errors with FDTD(2,6), Sekido23, schemes 1 and 2 with the
optimal coefficients in Tables 1 and 2, respectively.
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TABLE 1. Optimal coefficients for scheme 1 in two dimensions.

C α C α

0.50 0.0075 0.76 0.0899
0.51 0.0114 0.77 0.091
0.52 0.0152 0.78 0.0919
0.53 0.0188 0.79 0.0926
0.54 0.0222 0.80 0.0932
0.55 0.0256 0.81 0.0937
0.56 0.0289 0.82 0.0941
0.57 0.032 0.83 0.0943
0.58 0.0352 0.84 0.0945
0.59 0.0383 0.85 0.0946
0.60 0.0414 0.86 0.0946
0.61 0.0446 0.87 0.0945
0.62 0.0479 0.88 0.0943
0.63 0.0514 0.89 0.0941
0.64 0.0558 0.90 0.0939
0.65 0.0608 0.91 0.0936
0.66 0.0652 0.92 0.0932
0.67 0.0693 0.93 0.0928
0.68 0.0728 0.94 0.0924
0.69 0.076 0.95 0.0919
0.70 0.0788 0.96 0.0914
0.71 0.0813 0.97 0.0909
0.72 0.0835 0.98 0.0903
0.73 0.0855 0.99 0.0898
0.74 0.0871 1.00 0.0894
0.75 0.0886

TABLE 2. Sets of optimal coefficients for scheme 2 in two dimensions.

C α β C α β

0.50 0.2049 0.3304 0.76 −0.0351 −0.0812
0.51 0.1951 0.295 0.77 −0.0364 −0.0806
0.52 0.1856 0.2628 0.78 −0.0369 −0.0794
0.53 0.1763 0.2334 0.79 −0.0327 −0.0753
0.54 0.1672 0.2064 0.80 −0.0268 −0.0704
0.55 0.158 0.1813 0.81 −0.0218 −0.0662
0.56 0.1488 0.1579 0.82 −0.0135 −0.0602
0.57 0.1395 0.1361 0.83 −0.0069 −0.0553
0.58 0.1299 0.1154 0.84 −0.0029 −0.0521
0.59 0.1199 0.0956 0.85 0.0059 −0.0463
0.60 0.1096 0.0768 0.86 0.011 −0.0427
0.61 0.0984 0.0582 0.87 0.0159 −0.0393
0.62 0.0864 0.0398 0.88 0.0232 −0.0348
0.63 0.0733 0.0215 0.89 0.0265 −0.0325
0.64 0.0575 0.0015 0.90 0.0319 −0.0292
0.65 0.0423 −0.0165 0.91 0.0379 −0.0257
0.66 0.0279 −0.0322 0.92 0.045 −0.0218
0.67 0.0171 −0.0437 0.93 0.048 −0.0199
0.68 0.0053 −0.0548 0.94 0.0529 −0.0172
0.69 −0.0019 −0.0614 0.95 0.0561 −0.0154
0.70 −0.0092 −0.0674 0.96 0.0602 −0.0132
0.71 −0.0176 −0.0737 0.97 0.0641 −0.0112
0.72 −0.0224 −0.0767 0.98 0.0691 −0.0087
0.73 −0.0265 −0.0788 0.99 0.0752 −0.0059
0.74 −0.0316 −0.0814 1.00 0.0756 −0.0055
0.75 −0.0337 −0.0816

The Courant conditions are relaxed for large Courant num-
bers where FDTD(2,6) is unstable. Panel (a) shows that the nu-
merical errors of the present schemes are smaller than those of
FDTD(2,6) for small Courant numbers. The numerical errors
of the present schemes are smaller than or the same as those of
Sekido23. The numerical errors of scheme 2 are smaller than
those of the other schemes for all Courant numbers. Panels (b)
and (c) show that the numerical errors at θ = 45◦ are smaller
than those at θ = 0◦. Panel (b) shows that the numerical er-
rors of schemes 1 and 2 at θ = 0◦ show the same tendency
as those of the entire wavenumber space in Panel (a). Panel
(c) shows that the numerical errors of scheme 1 at θ = 45◦

are smaller than or the same as those of Sekido23 at the all
Courant numbers. The numerical errors of scheme 2 at θ = 45◦

are smaller than or the same as those of Sekido23 except for
0.64 < C < 0.8.
Figure 2 shows the dependence of the phase velocity errors

on wavenumber atC = 1with Sekido23, schemes 1 and 2. The
horizontal axis is the wavenumber kx∆x, and the vertical axis
is the wavenumber ky∆y. At θ = 45◦ (i.e., kx = ky), the phase
velocity errors of the present schemes are smaller than those of
Sekido23. At θ = 0◦ (i.e., ky = 0), however, the phase velocity

errors of the present schemes are almost the same as those of
Sekido23.

3.2. Numerical Error in Three Dimensions

The phase velocity errors of the present schemes are com-
pared with those of FDTD(2,6) and Sekido23 in three dimen-
sions. Figure 3 shows the mean values of the phase veloc-
ity errors ε as a function of the Courant number C. Panels
(a)–(d) show the phase velocity errors in the entire wavenum-
ber space, at (θ, ϕ) = (0◦, 0◦), at (θ, ϕ) = (45◦, 0◦) and at
(θ, ϕ) = (45◦, 45◦), respectively. Here, θ and ϕ are zenith and
azimuth angles, respectively. The black, red, green, and blue
lines show the numerical errors with FDTD(2,6), Sekido23,
schemes 1 and 2 with the optimal coefficients in Tables 3 and
4, respectively.
The Courant conditions are relaxed for large Courant num-

bers where FDTD(2,6) is unstable. Panel (a) shows that the nu-
merical errors of scheme 2 are smaller than those of the other
schemes. The numerical errors of scheme 1 are smaller than or
the same as those of FDTD(2,6) and Sekido23 for C < 0.9.
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TABLE 3. Optimal coefficients for scheme 1 in the three dimensions.

C α C α

0.40 −0.0132 0.71 0.1417
0.41 −0.0054 0.72 0.1414
0.42 0.0019 0.73 0.141
0.43 0.0089 0.74 0.1405
0.44 0.015 0.75 0.1399
0.45 0.0218 0.76 0.1391
0.46 0.0279 0.77 0.1383
0.47 0.0338 0.78 0.1374
0.48 0.0398 0.79 0.1365
0.49 0.0462 0.80 0.1355
0.50 0.0582 0.81 0.1346
0.51 0.0704 0.82 0.1337
0.52 0.0811 0.83 0.1329
0.53 0.0905 0.84 0.1321
0.54 0.0987 0.85 0.1313
0.55 0.1059 0.86 0.1306
0.56 0.1121 0.87 0.1299
0.57 0.1175 0.88 0.1292
0.58 0.1221 0.89 0.1286
0.59 0.1261 0.90 0.128
0.60 0.1294 0.91 0.1274
0.61 0.1323 0.92 0.1268
0.62 0.1347 0.93 0.1263
0.63 0.1366 0.94 0.1258
0.64 0.1382 0.95 0.1253
0.65 0.1395 0.96 0.1248
0.66 0.1404 0.97 0.1244
0.67 0.1411 0.98 0.1239
0.68 0.1416 0.99 0.1235
0.69 0.1418 1.00 0.1231
0.70 0.1418

TABLE 4. Sets of optimal coefficients for scheme 2 in the three dimen-
sions.

C α β C α β

0.40 0.3618 0.9847 0.71 0.0008 −0.1068
0.41 0.3401 0.8626 0.72 0.0039 −0.1021
0.42 0.3192 0.7539 0.73 0.0209 −0.0868
0.43 0.2989 0.6565 0.74 0.0346 −0.0746
0.44 0.2787 0.568 0.75 0.0488 −0.0626
0.45 0.2582 0.4866 0.76 0.0583 −0.0543
0.46 0.2366 0.4098 0.77 0.0696 −0.0451
0.47 0.2123 0.334 0.78 0.0806 −0.0365
0.48 0.1721 0.2337 0.79 0.0886 −0.0302
0.49 0.1164 0.1124 0.80 0.0959 −0.0246
0.50 0.0693 0.0164 0.81 0.1051 −0.0179
0.51 0.0256 −0.0649 0.82 0.113 −0.0124
0.52 −0.0103 −0.1271 0.83 0.1189 −0.0082
0.53 −0.0405 −0.1752 0.84 0.118 −0.0082
0.54 −0.066 −0.2121 0.85 0.1248 −0.0038
0.55 −0.0835 −0.235 0.86 0.1289 −0.001
0.56 −0.1079 −0.2632 0.87 0.1363 0.0035
0.57 −0.1178 −0.2717 0.88 0.1392 0.0054
0.58 −0.1286 −0.2796 0.89 0.1427 0.0076
0.59 −0.1353 −0.2817 0.90 0.1478 0.0105
0.60 −0.1423 −0.2832 0.91 0.1507 0.0122
0.61 −0.1378 −0.2723 0.92 0.1536 0.0138
0.62 −0.129 −0.2576 0.93 0.1563 0.0153
0.63 −0.1156 −0.2389 0.94 0.1607 0.0175
0.64 −0.1018 −0.2207 0.95 0.1617 0.018
0.65 −0.092 −0.2069 0.96 0.1642 0.0193
0.66 −0.0739 −0.1861 0.97 0.1661 0.0202
0.67 −0.0542 −0.1647 0.98 0.167 0.0206
0.68 −0.0399 −0.1489 0.99 0.1678 0.021
0.69 −0.03 −0.1374 1.00 0.1699 0.0219
0.70 −0.0166 −0.1235

Panels (b), (c), and (d) show that the numerical errors at
(θ, ϕ) = (45◦, 45◦) are the smallest among the three directions.
Panels (b) and (c) show that the numerical errors of schemes
1 and 2 at (θ, ϕ) = (0◦, 0◦) and (θ, ϕ) = (45◦, 0◦) show the
same tendency as those of the entire wavenumber space in Panel
(a). Panel (d) shows that the numerical errors of scheme 1 at
(θ, ϕ) = (45◦, 45◦) are smaller than or the same as those of
Sekido23 except for 0.85 < C. The numerical errors of scheme
2 at (θ, ϕ) = (45◦, 45◦) are smaller than or the same as those
of Sekido23 except for 0.51 < C < 0.7.
Figure 4 shows the dependence of the phase velocity errors

on wavenumber in the kx − ky and kr − kz planes at C = 1.
Here, we define the x = y, z = 0 line as axis “r” ((θ, ϕ) =
(45◦, 0◦)). At small wavenumbers, the phase velocity errors of
scheme 1 are smaller than those of Sekido23 and scheme 2. At
large wavenumbers, the phase velocity errors of scheme 2 are
smaller than those of Sekido23 and scheme 1.

4. NUMERICAL RESULTS

4.1. Numerical Tests in Two Dimensions
Test simulations are performed with the same conditions as the
previous study [21]. The following current density is imposed

in the same way as the previous study [21]:

Jx
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2
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)
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(
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)
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(
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2
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)
=− cosh−2

(
t− 4

2τ

)
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(
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2
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)
= cosh−2

(
t− 4

2τ

)
Jy

(
x = 0, y =

∆y

2
, z = 0, t

)
=− cosh−2

(
t− 4

2τ

)
(9)

where τ = 0.15.
Figure 5 shows the results of numerical simulations with

Sekido23, schemes 1 and 2 in two dimensions. Panels (a)–(i)
show the spatial profiles of the magnetic field Bz component
with C = 0.7 and 1.
With C = 0.7 and 1, the numerical simulations with both

schemes 1 and 2 are performed stably as well as Sekido23. Pan-
els (a)–(c) show that the numerical oscillations with scheme
2 are smaller, and the waveform is closer to the exact wave-
form than those with the other schemes at C = 0.7. The dif-
ferences between the theoretical speed of light and numerical
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(a) (b)

(c)

FIGURE 1. The mean values of the two-dimensional phase velocity errors: (a) in the entire wavenumber space; (b) at θ = 0◦; (c) at θ = 45◦.

(a) (b) (c)

FIGURE 2. Dependence of the phase velocity errors on wavenumber at C = 1 in two dimensions: (a) Sekido23; (b) scheme 1; (c) scheme 2.

phase velocities, which depend on wavenumbers, are the cause
of the numerical oscillations. However, as seen in Panels (d)–
(f), there is little difference in the waveform due to the numeri-
cal oscillations among the three schemes at C = 1. Panels (a)–
(f) show that the numerical oscillations at θ = 45◦ are smaller
than those at θ = 0◦ with C = 0.7 and 1. Panels (b) and (c)
in Figure 1 show that the phase velocity errors at θ = 45◦ are
smaller than those at θ = 0◦ at C = 0.7 and 1. Therefore, the
results of the numerical tests are consistent with the numerical
errors in phase velocity.
Table 5 shows the computational time of the simulations with

C = 0.5 and 1. In the same way as [21], the computational
time is measured on a single core of the Intel Xeon Gold 6230R
processor. The Intel Fortran compiler Version 2021.5.0 is used
with options of “-ipo -ip -O3 -xCASCADELAKE”.
The computational time with C = 0.5 is two times of that

with C = 1. At the same Courant number, the computational
time increases as the number of operations increases. With
C = 0.5, the computational times with schemes 1 and 2 are
1.21 and 1.53 times longer than that with Sekido23, respec-
tively, although schemes 1 and 2 have 1.625 and 2.375 times

TABLE 5. Computational time of the two-dimensional simulations.

C = 0.5 C = 1

Sekido23 1.51422649439424 0.756914421655238
scheme 1 1.83647139837965 0.920353360809386
scheme 2 2.31595435785130 1.15252507405356

larger number of operations than Sekido23, respectively. The
total computational time is given by the sum of the processing
time and the memory access time.

4.2. Numerical Tests in Three Dimensions
Test simulations are performed with the same conditions as the
previous study [21]. Figure 6 shows the results of numerical
simulations with Sekido23, schemes 1 and 2 in three dimen-
sions. Panels (a)–(l) show the spatial profiles of the magnetic
field Bz component with C = 0.7 and 1.
With C = 0.7 and 1, the numerical simulations with both

scheme 1 and 2 are performed stably as well as Sekido23. Pan-
els (a)–(f) show that the numerical oscillations with scheme 2
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Sekido and Umeda

(a) (b)

(c) (d)

FIGURE 3. The mean values of the three-dimensional phase velocity errors: (a) in the entire wavenumber space; (b) at (θ, ϕ) = (0◦, 0◦); (c) at
(θ, ϕ) = (45◦, 0◦); (d) (θ, ϕ) = (45◦, 45◦).

(a) (c) (e)

(b) (d) (f)

FIGURE 4. Dependence of the phase velocity errors on wavenumber at C = 1 in two dimensions: (a) Sekido23 in the kx-ky plane; (b) scheme 1 in
the kx-ky plane; (c) scheme 2 in the kx-ky plane; (d) Sekido23 in the kr-kz plane; (e) scheme 1 in the kr-kz plane; (f) scheme 2 in the kr-kz plane.

are smaller, and the waveform is closer to the exact waveform
than those with the other schemes atC = 0.7. However, as seen
in Panels (g)–(l), there is little difference in the waveform due to
the numerical oscillations among the three schemes at C = 1.
The numerical oscillations at (θ, ϕ) = (45◦, 45◦) are smaller
than those at (θ, ϕ) = (0◦, 0◦) and (45◦, 0◦). Panels (b)–(d) in
Figure 3 show that the numerical errors at (θ, ϕ) = (45◦, 45◦)
are the smallest among the three directions. Therefore, the re-
sults of the numerical tests are consistent with the numerical
errors in phase velocity.

Table 6 shows the computational time of the simulations with
C = 0.4 and 1. The computational time with C = 0.4 is 2.5
times of that with C = 1. At the same Courant number, the
computational time increases as the number of operations in-
creases. With C = 0.4, the computational time with schemes 1
and 2 are 1.24 and 1.28 times longer than that with Sekido23,
respectively, although schemes 1 and 2 have 1.625 and 2.375
times larger number of operations than Sekido23, respectively.
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Spatial profiles of Bz in two dimensions at t = 200∆t/C: (a) Sekido23 with C = 0.7; (b) scheme 1 with C = 0.7; (c) scheme 2 with
C = 0.7; (d) Sekido23 with C = 1; (e) scheme 1 with C = 1; (f) scheme 2 with C = 1.

(a) (c) (e)

(b) (d) (f)

(g) (i) (k)
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(h) (j) (l)

FIGURE 6. Spatial profiles of Bz in three dimensions at t = 200∆t/C: (a) Sekido23 in the x-y plane with C = 0.7; (b) Sekido23 in the r-z plane
with C = 0.7; (c) scheme 1 in the x-y plane with C = 0.7 with C = 0.7; (d) scheme 1 in the r-z plane with C = 0.7; (e) scheme 2 in the x-y
plane with C = 0.7 with C = 0.7; (f) scheme 2 in the r-z plane with C = 0.7; (g) Sekido23 in the x-y plane with C = 1; (h) Sekido23 in the r-z
plane with C = 1; (i) scheme 1 in the x-y plane with C = 1; (j) scheme 1 in the r-z plane with C = 1; (k) scheme 2 in the x-y plane with C = 1;
(l) scheme 2 in the r-z plane with C = 1.

TABLE 6. Computational time of the three-dimensional simulations.

C = 0.4 C = 1

Sekido23 479.554174284451 192.729279914498
scheme 1 592.487470116466 237.065526464768
scheme 2 613.259739442542 245.371084113605

5. CONCLUSION
A new non-dissipative and explicit method is developed
for relaxation of the Courant condition in FDTD(2,6). The
FDTD(2,6) method is not used commonly, because its Courant
condition is too restricted. In the present study, third- and
fifth-degree spatial difference terms are appended to the
time-development equations of FDTD(2,6) with coefficients
in the same way as our previous study [21].
A coefficient search is performed by using the dispersion re-

lations for relaxing the Courant condition and minimizing the
mean value of the phase velocity errors in the whole wavenum-
ber space. The present schemes are stable with large Courant
numbers up to C = 1 as the previous study [21].
The numerical errors of the present schemes are smaller than

those of FDTD(2,6) with small Courant numbers. For large
Courant numbers, the numerical errors of FDTD(2,6) with the
fourth-order third-degree difference terms only are not reduced
substantially from those of FDTD(2,4) with the second-order
third-degree terms. This is because the Courant condition of
FDTD(2,6) is more restricted than that of FDTD(2,4).
The FDTD(2,6) scheme with the third- and fifth-degree dif-

ferences have smaller phase velocity errors than FDTD(2,6)
with third-degree difference only. However, numerical oscil-
lations with the present schemes based on FDTD(2,6) have al-
most the same amplitude as those with the previous scheme
based on FDTD(2,4). There remains a large anisotropy in the
phase velocity errors with one-dimensional higher-degree dif-
ference terms. Therefore, a straightforward extension of the
present scheme to FDTD(2,8) is not effective.
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