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Stabilization of Evanescent Wave Propagation Operators

Michael Andersson*, Daniel Sjöberg, and Gerhard Kristensson

Abstract—This paper presents a stabilized scheme that solves the wave propagation problem in a
general bianisotropic, stratified medium. The method utilizes the concept of propagators, i.e., the wave
propagation operators that map the total tangential electric and magnetic fields from one plane in
the slab to another. The scheme transforms the propagator approach into a scattering matrix form,
where a spectral decomposition of the propagator enables separation of the exponentially growing and
decaying terms in order to obtain a well-conditioned formulation. Multilayer structures can be handled
in a stable manner using the dissipative property of the Redheffer star product for cascading scattering
matrices. The reflection and transmission dyadics for a general bianisotropic medium with an isotropic
half space on both sides of the slab are presented in a coordinate-independent dyadic notation, as well
as the reflection dyadic for a bianisotropic slab with perfect electric conductor backing (PEC). Several
numerical examples that illustrate the performance of the stabilized algorithm are presented.

1. INTRODUCTION

Structures that are layered in one coordinate direction, and possibly but not necessarily homogeneous in
the remaining two, are common in nature as well as in microwave and optical devices. Such structures
take their full description in three dimensions (3D), but their scattering properties are often considered
in a one-dimensional (1D) setting, which reduces the complexity of the problem considerably. Methods
reducing 3D problems to 1D are referred to as semi-analytical, and have been of great interest in the
past, and are in fact still of considerable importance in practice, e.g., in the design and optimization
process of many types of structures with electromagnetic functionality [31]. The parameter space needed
to be considered in the optimization process of an electromagnetic device is typically very large with
many local minima [3], which in practice implies that initial simulations are commonly performed by
the use of simplified methods like 1D approximations [38, 5, 10], and the move to full 3D modelling is,
if even possible, only done for verification and tuning of the final design of the device.

Simplifications where the microstructure is replaced with a macroscopic description can be
accomplished by the use of, e.g., homogenization techniques [29, 32, 23, 16], that gives an effective
medium approximation of the device. Alternatively, it is common to use equivalent-circuit techniques
in order to approximate complex devices [33, 34, 11, 37]. Modeling approaches based on the standard
transfer or scattering matrix methods for stratified systems are classical, and adapted versions
of the methods to analyze behaviors of metasurface stacks have been recently reported in the
literature [17, 35, 1].

This paper is focused on the propagator method, which is an approach adapted for solving 1D
scattering problems of planar stratified structures, where the slabs in general can be arbitrary linear
materials, i.e., bianisotropic materials [30, 9]. The propagator technique can also be seen as a vector
generalization of the transmission (ABCD) matrix [25], or as a generalization of wave propagation
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through homogeneous media modeled as a transmission line [33]. The propagator method is in fact
most closely related to the less known wave matrix formulation reported in [26].

The propagator method is for most purposes accurate, but the formulation is in fact inherently
unstable, which is a well known common characteristics of other related transfer and scattering matrix
approaches. Historically, there has been a desire to reformulate these methods in a numerically stable
manner and several stabilized schemes have been developed in the past [6, 24, 12, 36, 13, 19, 15]. More
recent works that call for well-conditioned formulations are reported in [18, 4]. Numerical problems with
the propagator formalism were early pointed out in [36], that stabilized the reflection problem by use
of a spectral recursive transformation method. Our paper introduces a reformulation of the propagator
method [30, 9], that solves the reflection as well as the transmission problem, by changing the approach
into a scattering matrix formulation, where the exponentially growing and decaying terms are separated,
resulting in a well-conditioned formulation. Having a stable and robust scattering matrix formulation for
each slab in a given multilayer stack, the total scattering matrix, i.e., the composition of the individual
scattering matrices, is then constructed by use of the Redheffer star product technique [27]. The
dissipation property of the star product ensures the numerical stability of the algorithm for single as
well as multilayer structures.

The stabilization of the propagator approach has been driven by the need of extending its
applicability to accurately handling devices that support evanescent wave modes such as structures
made up of complex materials that exhibit strong dispersion within the frequency band of interest, or
multilayered periodic bandgap devices. The propagator can also be used in connection with frequency
selective surfaces (FSS) [8], where evanescent wave modes are present. Recently [7] made a stability
improvement due to the presence of higher order modes when considering the problem of multi-modal
scattering and propagation through several closely spaced periodic grids. The methodology presented
in this paper is a building block in handling similar higher order mode couplings through evanescent
waves.

The present paper is organized as follows. The propagator method is revisited in Section 2, and
the inherently unstable nature of the method is explained and illustrated by numerical examples in
Section 3. The wave and scattering matrix forms are discussed in Section 4 in connection with the
stable reformulation of the propagator method. The composition of a stack of slabs by the star product
is revisited in Section 5. The numerical accuracy and stability of the new formulation are verified in
Section 6. A summary with conclusions are given in Section 7, and appendices including basic equations
and relations are included at the end of the paper.

2. SUMMARY OF THE PROPAGATOR METHOD

This section summarizes the propagator method, which constitutes a systematic analysis that solves
the wave propagation problem in a general bianisotropic layered medium. A more detailed presentation
of the propagator method is found in [30, 9], and references therein. The foundation of the method is
the notion of the propagator, i.e., the wave propagation operator that maps the total tangential electric
and magnetic fields from one plane in the slab to another. This is in contrast to the more common
approach of propagating the eigenmodes, i.e., the forward and backward moving modes of the slab.

The reflection and transmission problem is treated in a concise way using a coordinate-free dyadic
notation. The reflection and transmission dyadics for a medium enclosed with isotropic half spaces on
both sides is presented as well as the reflection dyadic for a medium with perfect electric conductor
(PEC) backing. The current on the metal backing of the latter case is also given.

The formulation presented in this section extends the earlier reported method for the treatment
of an arbitrary background medium distinct from vacuum by introducing the concept of relative wave
impedance operators in accordance with Appendix D.

2.1. The Plane Wave Spectrum Representation

For the purpose of studying wave propagation in layered media as illustrated in Figure 1, it is appropriate
to decompose the electromagnetic field in a spectrum of plane waves by use of the Fourier transform in
the lateral variables in accordance with Appendix A. We adopt the time convention e−iωt, and provided
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Figure 1. The source region z < z0 < z1 and symbolic representation of the left and right propagating
split fields F± in region 1 and N , outside the stratified region. The extent of the source region is limited
by the plane z = z0.

all the generating sources are located in the isotropic half-space z < z0, the incident, reflected, and
transmitted fields are given by

Ei(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 −

ẑkt

kz

)
· F+(kt, z1)e

ikt·ρ+ikz(z−z1) dkx dky (1)

Er(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 +

ẑkt

kz

)
· r+ · F+(kt, z1)e

ikt·ρ−ikz(z−z1) dkx dky (2)

Et(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 −

ẑkt

kz

)
· t+ · F+(kt, z1)e

ikt·ρ+ikz(z−zN−1) dkx dky (3)

Here, (1) is valid in the region z0 ≤ z ≤ z1, (2) in z ≤ z1, and (3) in z ≥ zN−1.
Furthermore, F+(kt, z1) is the Fourier component of the transverse, electric excitation at the

interface z = z1, and r+ and t+ denote the reflection and transmission dyadics for excitation from
the left, see Section 2.5. Here, ρ = xx̂ + yŷ is the transverse position vector, kt = kxx̂ + kyŷ is the
transverse wave vector, I2 = x̂x̂ + ŷŷ is the transverse identity dyadic, and x̂, ŷ, and ẑ are the unit
vectors in the x, y, and z coordinate directions. Finally, the longitudinal wave number kz is given by
(where kt = |kt| and k is the wavenumber in the isotropic material)

kz =

{√
k2 − k2t kt < k

i
√

k2t − k2 kt > k
(4)

We assume that the isotropic regions are lossless, hence the wavenumber k is real and positive. In
general, the surrounding isotropic regions could have different material parameters, i.e., we could have
k = ka in (1) and (2), whereas k = kb in (3), where ka and kb are the wavenumbers for the different
materials.
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2.2. The Fundamental Equation

From now on, the tangential wave vector, kt, is assumed being fixed but arbitrary. The Fourier
components of the electric and magnetic fields can be uniquely decomposed in their tangential and
normal components as {

E(kt, z) = Et(kt, z) + ẑEz(kt, z)

H(kt, z) = Ht(kt, z) + ẑHz(kt, z)
(5)

Substituting the constitutive relations describing the material into the Maxwell equations (see
Appendix B for further details) and eliminating the normal field components Ez and Hz, gives a system
of ordinary differential equations (ODEs) in the tangential components of the electric and magnetic fields
only. The fundamental equation for one-dimensional time-harmonic wave propagation becomes [9]

d

dz

(
Et(kt, z)

η0J ·Ht(kt, z)

)
= ik0M(kt, z) ·

(
Et(kt, z)

η0J ·Ht(kt, z)

)
(6)

where J = ẑ × I2 is a rotation in the x-y-plane by π/2, and M(kt, z) is a 4× 4 complex-valued dyadic
referred to as the fundamental dyadic, see Appendix C.

Equation (6) is the general equation for wave propagation in linear, laterally homogeneous media.
From the solution of this equation, can the longitudinal parts of the fields and flux densities be found [9].

2.3. Wave Propagation Operators

The propagator formalism makes use of the fact that the total tangential electric and magnetic fields
are continuous across the interfaces in a planar stratified structure as illustrated in Figure 1. Thus,
the propagator, i.e., the wave propagation operator, maps the total tangential electric and magnetic
fields at the front surface of the structure to the total tangential electric and magnetic fields at the rear
surface of the structure.

2.3.1. Single Layer

A formal solution to the fundamental Equation (6) can be written [9](
Et(kt, z)

η0J ·Ht(kt, z)

)
= P(kt, z, z1) ·

(
Et(kt, z1)

η0J ·Ht(kt, z1)

)
(7)

where the propagator P is a 4×4 complex-valued dyadic, mapping the tangential electric and magnetic
fields from z1 to z. For a homogeneous material, an explicit solution of (6) can be found, and in this
case the propagator is (note that the order of the z-arguments in the propagator is important)

P(kt, z, z1) = eik0(z−z1)M(kt) (8)

where the fundamental dyadic M contains all the wave propagation properties of the slab, and
the exponential function propagates the field from one position z1 to another position z. Note
that (7) is a transfer matrix form that relates the total tangential electric and magnetic fields between
boundaries [26].

2.3.2. Several Layers

Let zj , j = 1, . . . , N − 1, be the locations of N − 1 parallel interfaces, as depicted in Figure 1, and let
Mj , j = 1, . . . , N , be the fundamental dyadics of the corresponding regions, respectively. It is assumed
that all slabs are homogeneous and that the environmental regions j = 1 and j = N are isotropic and
homogeneous.

Since the tangential electric and magnetic fields are continuous at the boundaries, a cascade coupling
technique can be applied. Using (8) repeatedly gives(

Et(kt, zN−1)

η0J ·Ht(kt, zN−1)

)
= P(zN−1, z1) ·

(
Et(kt, z1)

η0J ·Ht(kt, z1)

)
(9)
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where the propagator for the layered bianisotropic structure is

P(zN−1, z1) = eik0(zN−1−zN−2)MN−1 · . . . · eik0(z3−z2)M3 · eik0(z2−z1)M2 (10)

Hence, the propagator for a layered structure is given by the product of the propagators for each layer.
Note that in general the dyadics do not commute, so the order of the products matter.

2.4. Wave Splitting in Simple Medium

In order to efficiently organize the solution of the wave propagation problem, we introduce a wave
splitting in the isotropic regions surrounding the stratified region. The wave splitting is a one-to-one
transformation between the total tangential fields Et and η0J ·Ht, respectively, and two new split fields
F+ and F−, i.e., forward and backward traveling fields, respectively.

This section extends the vacuum wave splitting reported in [30, 9] to any linear homogeneous and
isotropic medium, which is relevant if the layered structure is being enclosed by an isotropic material
distinct from vacuum.

By introducing the relative wave impedance operator Zr that relates the electric and magnetic
fields propagating in the ±z-direction through

η0J ·Ht(kt, z) = ∓Z−1
r (kt) ·Et(kt, z) (11)

see Appendix D, the wave splitting in any isotropic, homogeneous medium, becomes(
F+(kt, z)

F−(kt, z)

)
=

1

2

(
I2 −Zr

I2 Zr

)
·
(

Et(kt, z)

η0J ·Ht(kt, z)

)
(12)

with inverse (
Et(kt, z)

η0J ·Ht(kt, z)

)
=

(
I2 I2

−Z−1
r Z−1

r

)
·
(
F+(kt, z)

F−(kt, z)

)
(13)

where explicit expressions for Z−1
r and Zr are given by (D1) and (D2), respectively, in Appendix D.

2.5. Reflection and Transmission Dyadics

The reflection and transmission dyadics are found from the formal solution to the scattering problem
expressed by the propagator dyadic in (9). Combination of (9) and the wave splitting relations (12)
and (13) for an arbitrary material a on the left and material b on the right, gives the scattering relation(

F+(kt, zN−1)

F−(kt, zN−1)

)
= W ·

(
F+(kt, z1)

F−(kt, z1)

)
(14)

where (
W11 W12

W21 W22

)
=

1

2

(
I2 −Zr,b

I2 Zr,b

)
·
(
P11 P12

P21 P22

)
·
(

I2 I2

−Z−1
r,a Z−1

r,a

)
(15)

Recall that the generating sources are assumed being located in the half-space z < z0 < z1, as depicted in
Figure 1. Thus, the assumption of no sources on the right-hand side of the slab implies F−(kt, zN−1) = 0
and the reflection and transmission dyadics with excitation from the left are defined by{

F−(kt, z1) = r+ · F+(kt, z1)

F+(kt, zN−1) = t+ · F+(kt, z1)
(16)

where the expressions for r+ and t+ in terms of the blocks of (15) are [9, 30]{
r+ = −W−1

22 ·W21

t+ = W11 +W12 · r+
(17)

In the case of a PEC backed slab, the boundary conditions make it more convenient to express the fields
at the boundary zN−1 in terms of the total fields(

0
−η0JS

)
=

(
Et(kt, zN−1)

η0J ·Ht(kt, zN−1)

)
= T ·

(
F+(kt, z1)

F−(kt, z1)

)
(18)
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where JS is the surface current density at z = zN−1, with T defined by

T = P(zN−1, z1) ·
(

I2 I2

−Z−1
r,a Z−1

r,a

)
(19)

In this case we obtain the reflection and conductance dyadics, r+ and g+, respectively, by{
r+ = −T−1

12 ·T11

g+ = T21 +T22 · r+
(20)

where the conductance dyadic is related to the electric surface current density on the PEC surface for
left excitation through [9]

−η0JS = g+ · F+(kt, z1) (21)

Usually, only the reflection dyadic r+ is of interest.

3. MOTIVATION FOR THE NEED OF A STABILIZATION SCHEME

The wave propagator formalism is inherently unstable, as pointed out in the Introduction. This section
considers this characteristic of the method in more detail and it is shown that numerical breakdown
can occur when evanescent wave fields are present in the scattering problem. Numerical examples are
presented in order to illustrate and motivate the need for introducing a stabilization scheme in the
formulation. At the end of this section, the wave and scattering matrix forms are discussed.

3.1. Origin of Numerical Instabilities

The fundamental dyadic M has eigenvectors and eigenvalues {vm, nm}4m=1

M · vm = nmvm (22)

where the eigenvalues nm are the refractive indices of the propagating modes, which have polarizations
given by the eigenvectors vm. The propagator has the same eigenvectors and propagation factors as
eigenvalues

P · vm = eik0nmdvm (23)

where d is the thickness of the slab, and the quantity nmd is often referred to as the optical thickness.
Note that in lossless isotropic media we would typically have two waves of different polarizations,
transverse electric (TE) and transverse magnetic (TM), propagating in each direction, with two positive
refractive indices corresponding to waves propagating in the +z direction, and two negative refractive
indices corresponding to waves propagating the −z direction. However, since we are dealing with
general bianisotropic media and complex-valued refractive indices, we refrain from exploiting this in our
notation and simply label all refractive indices by nm.

We can now see the origin of the numerical instabilities when one or several of the eigenvalues nm

become complex, i.e., the wave modes become evanescent: the exponential function in (23) will become
either very large or very small as k0d becomes large. Thus, in this situation, similar to what was early
reported in [6], the elements of the propagator become dominated by the exponentially growing waves,
and those of the decaying waves which contain the essential physics, are lost in the computation.

3.2. Illustrations by Numerical Examples

As argued in the preceding subsection, evanescent wave modes inside a slab or any stratified structure
can cause numerical breakdown of the wave propagation algorithm, see e.g., [6, 24, 12, 36, 13, 19, 15].
This subsection illustrates the problem by showing a number of situations where instabilities occur
unless a stabilization scheme is applied. All examples presented in this section have been computed in
matlab where the expm command was used to evaluate the propagator P. Other options are possible,
e.g., spectral decomposition by use of diag, that may result in slightly different numerical performance,
with unessential impact on the main results.
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3.2.1. Orthogonal Basis

In isotropic regions, the wave modes are either homogeneous, obliquely propagating plane waves or
inhomogeneous (evanescent) plane waves depending on whether the tangential wave number, kt, is less
or greater than the wave number in the material, k. It is common to introduce an angle of incidence (the
angle between the incident wave propagation direction and the normal of the structure), θi, through
the relation kz = k cos θi, cf. (4). When evanescent waves are present, i.e., kt > k, it is often more
convenient to use kz/k than cos θi.

The transverse wave number kt =
√

k2x + k2y = k sin θi is a non-negative real number, which in

general is non-zero, and then it is appropriate to make use of the orthogonal basis defined by{
ê∥(kt) = kt/kt = x̂ cosϕi + ŷ sinϕi

ê⊥(kt) = ẑ × ê∥(kt) = −x̂ sinϕi + ŷ cosϕi
(24)

for the representation of transverse vectors in the x-y-plane. The azimuth angle of incidence ϕi is the
angle of the tangential wave vector kt relative x̂. In isotropic media, a wave with the electric field along
ê∥ is said to be TM-polarized, whereas if the electric field is along ê⊥ the wave is TE-polarized.

3.2.2. Reflection and Transmission

With the sources located on the left-hand side of the structure, the reflection and transmission dyadics
are represented in the orthogonal basis by{

r+ = r+∥∥ê∥ê∥ + r+∥⊥ê∥ê⊥ + r+⊥∥ê⊥ê∥ + r+⊥⊥ê⊥ê⊥

t+ = t+∥∥ê∥ê∥ + t+∥⊥ê∥ê⊥ + t+⊥∥ê⊥ê∥ + t+⊥⊥ê⊥ê⊥
(25)

where the first and second subscripts of the coefficients denote the polarization states of the reflected
(transmitted) and incident waves, respectively.

The reflected and transmitted power densities, including the cross polarized scattering components,
are given by the reflectance and transmittance, R+ and T+, respectively. These are in turn given by
quadratic expressions of the components of the reflection and transmission dyadics (25) as{

R+ = |r+∥∥ sinχ+ r+∥⊥ cosχ/ cos θi|2 + |r+⊥∥ cos θi sinχ+ r+⊥⊥ cosχ|2

T+ = |t+∥∥ sinχ+ t+∥⊥ cosχ/ cos θi|2 + |t+⊥∥ cos θi sinχ+ t+⊥⊥ cosχ|2
(26)

where θi is the angle of incidence, and χ is the polarization angle, χ = 0 (TE polarization) and χ = π/2
(TM polarization). For details, see [29, 9]. However, the expressions (26) are limited to the case of
equal environments enclosing the structure. To this end one can alternatively apply the more general
expressions given by

R+ =
(r+ ·E0)

∗ · Z−1
r,a · r+ ·E0

E∗
0 · Z

−1
r,a ·E0

and R− =
(r− ·E0)

∗ · Z−1
r,b · r− ·E0

E∗
0 · Z

−1
r,b ·E0

(27)

T+ =
(t+ ·E0)

∗ · Z−1
r,b · t+ ·E0

E∗
0 · Z

−1
r,a ·E0

and T− =
(t− ·E0)

∗ · Z−1
r,a · t− ·E0

E∗
0 · Z

−1
r,b ·E0

(28)

where ∗ denotes the complex conjugate; Z−1
r,a and Z−1

r,b are the relative wave admittance operators of

medium a on the left and medium b on the right, respectively, see Appendix D; andE0 is the polarization
defined by

E0 = ê∥ sinχ+ ê⊥ cosχ

which can also be given a cartesian representation in a global coordinate system, E0 = Exx̂ + Eyŷ,
depending on which is most convenient.
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3.2.3. Dielectric Slab with Losses

Our first case is a lossy dielectric material of thickness d enclosed by free space. Due to the losses,
the wave number in the material has an imaginary part causing an exponentially decreasing/increasing
wave propagation factor. The slab is assumed being isotropic with relative material parameters given
by

ϵ = (1 + i)I3, µ = µI3, ξ = ζ = 0 (29)

The eigenvalues of the fundamental dyadic are

n2 = ϵµ− k2t /k
2
0 (30)

Thus, the refractive index in the material has an imaginary part Imnm ̸= 0, causing an exponentially
decreasing/increasing wave propagation factor, cf. Section 3.1. Figure 2 shows results for the computed
reflectance and transmittance, by use of the standard propagator formulation in [29, 9]. It is clearly seen
that numerical instabilities occur for thick slabs, indicated by the strong oscillations and above-unity
results that start at k0d ≈ 60. Thus, the type of instability is associated with attenuated fields due to
absorption in lossy layers that have high thickness/wavelength ratio [15].
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Figure 2. The reflectance and transmittance (TM polarization) by use of the standard propagator
formulation in [29, 9], for the lossy isotropic slab at angle of incidence θi = 35◦.

3.2.4. Frustrated Total Internal Reflection

When a plane wave in a dense medium is incident at a sufficiently large angle on a less dense medium,
we have the situation of a real longitudinal wave number kz in the dense medium, and an imaginary one
in the less dense (with exponential attenuation of evanescent waves). When only two media are present,
this leads to total internal reflection, and zero transmission. However, even though there is exponential
attenuation, there are still some electromagnetic fields in the less dense medium (having evanescent
waves). If a second interface is brought close enough to the first interface, a positive power transfer
through the coupling of evanescent waves in both directions may occur (tunneling). This typically
happens when the distance is significantly less than the wavelength in free space.

Results are shown in Figure 3 for an air slab enclosed by isotropic dielectric materials a and b with
refractive indices na = nb = 2. The air slab has material parameters

ϵ = I3, µ = µI3, ξ = ζ = 0 (31)
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Figure 3. The reflectance and transmittance (TM polarization) by use of the standard propagator
formulation in [29, 9], for the air slab enclosed by isotropic dielectric materials distinct from vacuum, at
angle of incidence θ = 35◦.

Figure 3 shows results from computed reflectance and transmittance by use of the same technique
as the preceding example, i.e., without use of any stabilization scheme. Note that for very small
k0d, there is high transmittance and low reflectance, which changes to low transmittance and high
reflectance around k0d ≈ 1. The numerical instabilities start at kd ≈ 60. For details and derivation of
the correspondence between the electromagnetic analog of quantum mechanical tunneling by use of the
transfer matrix approach, see [28].

3.2.5. Non-Magnetic Lossless Gyrotropic Slab

When a plasma (a collection of free floating charged particles) is subjected to a magnetic field, a
gyrotropic material model is applicable. The eigenwaves of this material are circularly polarized with
respect to the axis of the magnetic field. With a sufficiently strong magnetic field, one of the eigenwaves
may have an imaginary wave number, causing exponential attenuation or increase. A non-magnetic
gyrotropic lossless material is modeled by the constitutive relations (where the notation [ϵ] is used for
a matrix representation of the dyadic ϵ in the xyz coordinate system)

[ϵ] =

(
ϵr iϵg 0

−iϵg ϵr 0
0 0 ϵz

)
, µ = I3, ξ = ζ = 0 (32)

where ϵr, ϵg, and ϵz are real numbers, with ϵr and ϵz being non-negative. At normal incidence, kt = 0,
it can be shown that the eigenvalues of the fundamental matrix M are

n2
± = ϵr ± ϵg (33)

Thus, there exists a wave number in the material, with imaginary part Imnm ̸= 0, if |ϵg| > ϵr, causing
exponentially decreasing/increasing wave propagation factors.

For reference and verification purposes, we list below analytical expressions for the reflection and
transmission dyadics in case of normal incidence on a gyrotropic slab, which can be found by explicit
calculations using the eigenvectors and eigenvalues of M. The results for cases without and with PEC-
backing are given in the following paragraphs.
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Slab Enclosed by Air The reflection and transmission coefficients for a slab enclosed by air at normal
incidence are

r+∥ = −

(
1 +

tan(ξn+)

in+

)(
1 +

tan(ξn−)

in−

)
− (1− in+ tan(ξn+)(1− in− tan(ξn−)

4

(
1 +

tan(ξn+)

2in+

(
1 + n2

+

))(
1 +

tan(ξn−)

2in−

(
1 + n2

−
))

r+⊥ = −

tan (ξn+)

n+

(
1− n2

+

)
4

(
1 +

tan (ξn+)

2in+

(
1 + n2

+

)) +

tan (ξn−)

n−

(
1− n2

−
)

4

(
1 +

tan(ξn−)

2in−
(1 + n2

−)

)
t+∥ =

1

2

(
cos (ξn+) +

sin (ξn+)

2in+

(
1 + n2

+

)) +
1

2

(
cos (ξn−) +

sin (ξn−)

2in−

(
1 + n2

−
))

t+⊥ =
1

2i

(
cos (ξn+) +

sin (ξn+)

2in+

(
1 + n2

+

)) − 1

2i

(
cos (ξn−) +

sin (ξn−)

2in−

(
1 + n2

−
))

(34)

where ξ = k0d is the phase thickness of the slab, and n± are given by (33). The reflection and
transmission dyadics are {

r+ = r+∥ I2 + r+⊥J

t+ = t+∥ I2 + t+⊥J
(35)

where J = ẑ × I2 = ẑ × (ê∥ê∥ + ê⊥ê⊥) = ê⊥ê∥ − ê∥ê⊥. The co- and cross polarization coefficients r+∥
(t+∥ ) and r+⊥ (t+⊥), respectively, are related to the coefficients of the reflection (transmission) dyadics (25)

by r+∥ = r+∥∥ = r+⊥⊥ and r+⊥ = −r+∥⊥ = r+⊥∥ and similarly for the transmission coefficients.

PEC Backed Slab The reflection coefficients for a PEC backed slab with air to the left at normal
incidence are 

r+∥ −
1 +

tan(ξn+)

n+

tan(ξn−)

n−(
1− i

tan(ξn+)

n+

)(
1− i

tan(ξn−)

n−

)

r+⊥ = −

tan(ξn+)

n+
− tan(ξn−)

n−(
1− i

tan(ξn+)

n+

)(
1− i

tan(ξn−)

n−

)
(36)

with the reflection dyadic of the form
r+ = r+∥ I2 + r+⊥J (37)

The reflectance and transmittance for a gyrotropic slab enclosed by air are depicted in Figure 4, which
shows that the degradation of numerical accuracy starts at kd ≈ 5. Furthermore, Figure 5 presents
|r+∥ |, for the case of a PEC-backed lossless gyrotropic slab, showing that the instabilities start at kd ≈ 5

also for this case, similar to the results reported in [36].

3.2.6. Dispersive Bianisotropic Slab

This example considers a PEC backed dispersive chiro-omega medium enclosed by vacuum, as an
example of an anti-reflection surface optimized for low reflection within a given frequency band, see [20].
The chiro-omega medium is an example of a bianisotropic medium. This example illustrates that a slight
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Figure 4. The reflectance and transmittance at normal incidence by use of the standard propagator
formulation in [29, 9], and the analytical expressions (34) and (35), for a lossless gyrotropic slab enclosed
by air, with ϵr = 40 and ϵg = 80.
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Figure 5. The co-polarized reflection coefficient at normal incidence by use of the standard propagator
formulation in [29, 9], and the analytical expressions (36) and (37), for a PEC-backed lossless gyrotropic
slab with ϵr = 40 and ϵg = 80 [36].

perturbation of a material parameter can cause loss of accuracy without the use of any stabilization
scheme of the propagator formalism.

More specifically, the permittivity and permeability dyadics ϵ and µ of the slab are given by the
matrix representations [20]

[ϵ] =

(
ϵt 0 0
0 ϵt 0
0 0 ϵzz

)
[µ] =

(
µt 0 0
0 µt 0
0 0 µzz

)
(38)
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where 

ϵt = ϵr

(
1 +

ω2
p

ω2
0 − ω2 −

(
ω2
p +A2ω2

)
/3− i2νω

)
ϵzz = ϵr

µt = µr

(
1 +

A2ω2

ω2
0 − ω2 −

(
ω2
p +A2ω2

)
/3− i2νω

)
µzz = µr

(39)

The other two coupling dyadics, ξ and ζ, are [21]

[ξ] =

(
iκ iΩ 0
−iΩ iκ 0
0 0 0

)
[ζ] =

(−iκ iΩ 0
−iΩ −iκ 0
0 0 0

)
(40)

where 
κ =

√
ϵrµrωpAω sinβ

ω2
0 − ω2 − (ω2

p +A2ω2)/3− i2νω

Ω =

√
ϵrµrωpAω cosβ

ω2
0 − ω2 − (ω2

p +A2ω2)/3− i2νω

(41)

Figures 6 and 7 show the real and imaginary parts of the material variables corresponding to ϵ, µ, ξ,
and ζ, respectively. Notice that data for a perturbed slab, where A is changed from 0.353 to 0.553, are
included for the purpose of comparison.
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Figure 6. Real and imaginary parts of the variables (39) of ϵ and µ, with parameters in accordance
with paper VII in [21], i.e., with ϵr = 3, µr = 1, f0 = 10 GHz, ω0 = 2πf0, ωp = 2.29 · 1010, ν = 5GHz,
β = 48.0◦ and A = 0.353. The material parameters of the perturbed slab were identical, except A that
was given the value 0.553.

Figure 8 shows results from computed reflectance for the PEC backed bianisotropic slab and its
perturbed counterpart. It is seen in Figure 8 that numerical instabilities occur in the case of the
perturbed slab, within the frequency band where the slab exhibits strong dispersion, i.e., between 9 and
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Figure 7. Real and imaginary parts of the variables (41) of ξ and ζ, with parameters in accordance
with paper VII in [21], i.e., with ϵr = 3, µr = 1, f0 = 10 GHz, ω0 = 2πf0, ωp = 2.29 · 1010, ν = 5GHz,
β = 48.0◦ and A = 0.353. The material parameters of the perturbed slab were identical, except A that
was given the value 0.553.
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Figure 8. Reflectance at normal incidence from a PEC backed dispersive bianisotropic slab of thickness
60mm, enclosed by vacuum. The values of the constitutive dyadic ϵ, µ, ξ and ζ in (38) and (40) are
specified in Figure 6 and 7, respectively.

10GHz. Thus, this example illustrates the fact that a stabilization scheme is needed in order to get
accurate results, which is critical if the propagator method is intended to be used in combination with,
e.g., an optimization algorithm for the design of devices that exhibit strong dispersion.
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3.2.7. Periodic Bandgap Structure

Define a unit cell structure, consisting of two isotropic materials having high and low refractive indices
nH and nL, respectively, and thicknesses dH and dL. By stacking a number of unit cells in sequence,
it is well known that a stopband with very low transmission may occur. When choosing the optical
thickness nHdH = nLdL = λ0/4, where λ0 is the free space wavelength at design frequency f0, the result
is a stopband centered at f0 with a bandwidth determined by the contrast nH/nL.

Inspired by Chapter 6 in [22] on dielectric mirrors, we assume that the periodic structure has an
odd number of layers, with the high index layer nH being the first and last layer. More specifically,
we assume nL = 1.38, nH = 2.32 and choose a structure made of 70 periods, i.e., in total 141 layers.
Figure 9 shows results in the case of the structure being enclosed by isotropic dielectric materials a and
b, with refractive indices na = 1 and nb = 1.52, i.e., vacuum on the left and an isotropic dielectric
material on the right.

In Figure 9, it is seen that numerical instabilities occur with respect to transmission around the
center of the stopband, i.e., λ = 500 nm. This can be explained by the total propagator of the structure
being (PH · PL)

N · PH, where PH is the propagator for the high index material, PL is the propagator
for the low index, and N is the number of unit cells. In the stopband, it can be shown that some of the
eigenvalues of the unit cell propagator PH · PL are not of unit magnitude, and similar problems as in
the previous examples with exponentially increasing or decreasing factors occur.
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Figure 9. Reflectance and transmittance at normal incidence by use of the standard propagator
formulation in [29, 9], for the periodic bandstop structure.

The given examples have shown that care should be taken when evanescent wave modes are present
in the scattering problem. The origin of the numerical instabilities, specifically associated with total
internal reflection as well as from the imaginary component of the refractive index associated with
absorption in layers that have high thickness/wavelength ratio is discussed in more detail in [15].
Furthermore, it was also illustrated that care should be taken for frequencies where strong dispersion
occurs.

4. STABLE REFORMULATION OF THE PROPAGATOR METHOD

This section introduces the main result of the present paper, i.e., a reformulation of the propagator
method presented in [30, 9], that solves the reflection as well as the transmission problem in a well-
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conditioned formulation accomplished by transforming the method into a scattering matrix form in
combination with a spectral decomposition of the propagator where exponentially growing and decaying
terms are separated. A similar technique has been reported in [6].

4.1. Wave and Scattering Matrix Relations

The propagator method is on a transfer matrix form, i.e., based on wave propagation operators that
map the total tangential electric and magnetic fields through a stack of material layers, cf. (9). Using
a wave splitting, see Section 2.4, transforms the propagator formulation into a wave matrix form, cf.
(14), that relates the forward and backward propagating electric waves [26].

As illustrated in Figure 10, the wave matrix formulation relates the input and output wave fields
in accordance with(

F+(kt, zN−1)
F−(kt, zN−1)

)
= W ·

(
F+(kt, z1)
F−(kt, z1)

)
=

(
W11 W12

W21 W22

)
·
(
F+(kt, z1)
F−(kt, z1)

)
(42)

and for the scattering matrix formulation depicted in Figure 11, the relation reads(
F−(kt, z1)

F+(kt, zN−1)

)
= S ·

(
F+(kt, z1)

F−(kt, zN−1)

)
=

(
S11 S12

S21 S22

)
·
(

F+(kt, z1)
F−(kt, zN−1)

)
(43)

Thus, by definition, theW - and S-matrix formulations mainly differ with respect to the relation between
the input and output wave fields. However, cascading slabs with the W -matrix form is ordinary matrix
multiplication while the S-matrices are cascaded in terms of the star product that is reviewed in
Section 5.

W

d

a b

Input

F
+ (k t , z1)

F
- (k t , z1)

Output

F
+ (k t , zN ´ 1)

F
- (k t , zN ´ 1)

W11

W21

W12

W22

Figure 10. The wave matrix W for a slab enclosed by two homogeneous isotropic half-spaces a on the
left, and b on the right. The total tangential output fields (scattered) F+(kt, zN−1) and F−(kt, zN−1)
consist of waves transmitted through the slab as well as waves reflected from the slab. Outside the
slab the wave functions are expressed as a superposition of forward and backward propagating (electric)
fields, see Section 2.4.

It was pointed out in the Introduction, that the propagator method and related methods are
inherently unstable, a fact supported by the discussion in Section 3.1. As is illustrated in Figure 10
and seen in (42), the wave matrix always propagates the fields in the forward direction when
d = zN−1 − z1 > 0. It is in fact the arguments of P that determines the direction of propagation.
This implies that wave fields associated with eigenvalues having negative imaginary part will increase
when mapped with W, cf. the motivation given in Section 3.1. Thus, the existence of evanescent wave
fields can render numerical instabilities in layers that have high thickness/wavelength ratio.
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Input F
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- (k t , z1)

OutputF
+ (k t , zN - 1)

InputF
- (k t , zN - 1)

S21

S11

S12

S22

Figure 11. The scattering matrix S for a slab enclosed by two homogeneous isotropic half-spaces a on
the left, and b on the right. The scattering matrix S relates the total tangential input fields F+(kt, z1)
and F−(kt, zN−1) to the output fields F−(kt, z1) and F+(kt, zN−1), i.e., the scattering matrix relates
the incident fields to the scattered in any direction. The block matrices S11 and S22 map the reflected
backward and forward propagating fields, whereas S12 and S21 map the transmitted backward and
forward propagating fields, respectively.

The blocks of the scattering matrix (dyadic) S are by definition the reflection and transmission
dyadics r± and t±, where the + or − sign indicates whether the incident field is propagating in the
positive or negative z-direction, respectively. Thus, S can be rewritten in terms of the wave matrix
(dyadic) W through the transformation [9]

S11 = r+ = −W−1
22 ·W21

S12 = t− = W−1
22

S21 = t+ = W11 +W12 · r+ = W11 −W12 ·W−1
22 ·W21

S22 = r− = W12 · t− = W12 ·W−1
22

(44)

where the blocks S11, S12, S21, and S22 have been identified with the reflection and transmission dyadics,
cf. Section 2.5, hence the name scattering matrix make sense.

The inverse of (44) gives the wave matrix W in terms of the scattering matrix S i.e.,
W11 = S21 − S22 · S−1

12 · S11

W12 = S22 · S−1
12

W21 = −S−1
12 · S11

W22 = S−1
12

(45)

From (44) it is clear that S is not stable if W is not stable. To this end, in order to obtain a numerically
stable formulation, we will instead derive the scattering matrix formulation (43) through reformulation
of (14).

4.2. Spectral Decomposition

In the following, we use the left eigenvectors um defined by u∗
m · P = eik0dnmu∗

m rather than the
right eigenvectors vm used in Section 3.1. The left eigenvectors can be computed straightforwardly
numerically for any given P. For instance, in matlab use [V,D,U] = eig(M) to compute right
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eigenvectors V, eigenvalues D, and left eigenvectors U, whereas in python we could use scipy.linalg.eig
function with the option left=True to make the same computation. Hence, we have

U† ·P = D ·U† (46)

where U is a 4× 4 matrix with the left eigenvectors as columns, † the Hermitian transpose, P the 4× 4
matrix representation of the propagator, and D a diagonal matrix of eigenvalues

D =


eik0dn1 0 0 0

0 eik0dn2 0 0
0 0 eik0dn3 0
0 0 0 eik0dn4

 (47)

The propagator dyadic P is diagonalizable if it is not defective, i.e., if the eigenvectors still span C4.
More details concerning different representations the propagator P, can be found in Appendix F of [9].
We now proceed to use this spectral decomposition to find a stable formulation for the scattering matrix.

4.3. Transformation into Stable Scattering Matrix Form

As a first step in the development of an unconditionally stable formulation, we derive the scattering
matrix form (43) through reformulation of (14). The scattering relation (14) for a slab, enclosed by two
homogeneous isotropic half-spaces is rewritten as(

I2 I2
−Z−1

r,b Z−1
r,b

)
·
(
F+
b

F−
b

)
= P ·

(
I2 I2

−Z−1
r,a Z−1

r,a

)
·
(
F+
a

F−
a

)
(48)

where we introduced F±
a = F±(kt, z1), F

±
b = F±(kt, zN−1), and P = P(zN−1, z1) for brevity. The

split fields on either side of the structure can be written in terms of the excitation fields F+
a and F−

b
and the scattering matrix as(

F+
a

F−
a

)
=

(
I2 0
S11 S12

)
·
(
F+
a

F−
b

)
=

[(
I2 0
0 0

)
+

(
0 0
I2 0

)
·
(
S11 S12

S21 S22

)]
·
(
F+
a

F−
b

)
(49)(

F+
b

F−
b

)
=

(
S21 S22

0 I2

)
·
(
F+
a

F−
b

)
=

[(
0 0
0 I2

)
+

(
0 I2
0 0

)
·
(
S11 S12

S21 S22

)]
·
(
F+
a

F−
b

)
(50)

With arbitrary excitations F+
a and F−

b , we find that insertion of these expressions in (48) yields a
matrix equation[(

0 I2
0 −Z−1

r,b

)
−P ·

(
I2 0
Z−1
r,a 0

)]
·
(
S11 S12

S21 S22

)
= P ·

(
I2 0

−Z−1
r,a 0

)
−
(
0 I2
0 Z−1

r,b

)
(51)

From this equation, one could solve directly for the scattering matrix S, but this only leads to the
instabilities explored in the previous section. Instead, we use the spectral decomposition (46), which
yields [

U† ·
(
0 I2
0 −Z−1

r,b

)
−D ·U† ·

(
I2 0
Z−1
r,a 0

)]
·
(
S11 S12

S21 S22

)
=

[
D ·U† ·

(
I2 0

−Z−1
r,a 0

)
−U† ·

(
0 I2
0 Z−1

r,b

)]
(52)

To make (52) stable and avoid propagation factors that are both large and small, identify propagation
factors satisfying |eik0dnm | > 1 (this could correspond to any number of modes, but for the sake of
clarity we assume here that these are m = 1 and m = 2) and divide the equations by these. Note that
the eigenvectors U† and eigenvalues nm are computed from the eigenproblem for M, and P is never
explicitly computed. The result is[

D− ·U† ·
(
0 I2
0 −Z−1

r,b

)
−D+ ·U† ·

(
I2 0
Z−1
r,a 0

)]
·
(
S11 S12

S21 S22

)
=

[
D+ ·U† ·

(
I2 0

−Z−1
r,a 0

)
−D− ·U† ·

(
0 I2
0 Z−1

r,b

)]
(53)
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where

D− =

e−ik0dn1 0 0 0
0 e−ik0dn2 0 0
0 0 1 0
0 0 0 1

 and D+ =


1 0 0 0
0 1 0 0
0 0 eik0dn3 0
0 0 0 eik0dn4

 (54)

The relation between (52) and (53) is easily seen by observing that D = D−1
− ·D+. Thus, by dividing

by the potentially large exponential functions, all coefficients have finite amplitude leading to a well-
conditioned form [12]

S =

(
S11 S12

S21 S22

)
=

[
D− ·U† ·

(
0 I2
0 −Z−1

r,b

)
−D+ ·U† ·

(
I2 0
Z−1
r,a 0

)]−1

·
[
D+ ·U† ·

(
I2 0

−Z−1
r,a 0

)
−D− ·U† ·

(
0 I2
0 Z−1

r,b

)]
(55)

A special case of interest is when the thickness of the slab is zero, i.e., d = 0 (D+ = D− = I), then the
above equation becomes

S =

(
S11 S12

S21 S22

)
=

(
−I2 I2
−Z−1

r,a −Z−1
r,b

)−1

·
(

I2 −I2
−Z−1

r,a −Z−1
r,b

)
(56)

which is considered as an interface scattering matrix that describes layers with zero thickness.
In the case of PEC backing, we use −η0JS = g+ ·F+

a and F−
a = r+ ·F+

a to rewrite (18) as a matrix
equation (

0
g+

)
= P ·

(
I2 I2

−Z−1
r,a Z−1

r,a

)
·
(
I2
r+

)
(57)

Writing (
0
g+

)
=

(
0 0
0 I2

)
·
(
r+

g+

)
and

(
I2
r+

)
=

(
I2
0

)
+

(
0 0
I2 0

)
·
(
r+

g+

)
(58)

and applying the same spectral decomposition and dividing by exponential factors larger than unity,
we find (

r+

g+

)
=

[
D− ·U† ·

(
0 0
0 I2

)
−D+ ·U† ·

(
I2 0
Z−1
r,a 0

)]−1

·D+ ·U† ·
(

I2
−Z−1

r,a

)
(59)

From these equations the reflection dyadic r+ and conductance dyadic g+ can be computed in a
numerically stable manner.

5. COMPOSITION OF SLABS AND THE STAR PRODUCT

The technique in Section 4.3 enables the computation of scattering matrices in a stable and numerically
robust manner in all layers even where evanescent wave fields are present. The composition of a given
stack of materials in terms of given scattering matrices is then made by use of the Redheffer star
product [27]. This is in contrast to the transfer matrix formulation where the composition of slabs is
made by ordinary matrix multiplication. The star product is a cascading technique by which several
substructures that have been analyzed individually can be connected together [31].

The star product combines the individual scattering matrices S(1) and S(2) of two material slabs,
both assumed embedded in a reference background material with relative wave impedance Zr,0, by

S = S(1)⋆S(2) (60)

where the combined scattering matrix S is defined by

S =

(
S11 S12

S21 S22

)
(61)
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whit the block dyadics 

S11 = S
(1)
11 + S

(1)
12 ·

[
I2 − S

(2)
11 · S(1)

22

]−1 · S(2)
11 · S(1)

21

S12 = S
(1)
12 ·

[
I2 − S

(2)
11 · S(1)

22

]−1 · S(2)
12

S21 = S
(2)
21 ·

[
I2 − S

(1)
22 · S(2)

11

]−1 · S(1)
21

S22 = S
(2)
22 + S

(2)
21 ·

[
I2 − S

(1)
22 · S(2)

11

]−1 · S(1)
22 · S(2)

12

(62)

assuming that [I2 −S
(2)
11 ·S(1)

22 ] and [I2 −S
(1)
22 ·S(2)

11 ] are invertible, see e.g., [27, 31]. The product has the
property of being dissipative which is fundamental in order to keep the scattering matrix formulation
numerical stable when composition of slabs is considered, see Appendix E for details.

Compositions consisting of more than two slabs are performed by recursively evaluating the star
products

S(tot) = S(1)⋆S(2)⋆ . . .⋆S(N) (63)

where N denotes the number of slabs. Equation (63) assumes the star product being associative.

Having computed a scattering matrix S(tot) for a material stack with respect to a reference
background material impedance Zr,0, we get the final and so called global scattering matrix with respect
to the embedding materials a and b as

S(global) = S(a)⋆S(tot)⋆S(b) (64)

where S(a) is the interface scattering matrix with material a on the left and reference material 0 on the
right, whereas S(b) is the interface scattering matrix with reference material 0 on the left and material
b on the right. The additional scattering matrices, see (56), are made to describe layers with zero
thickness, in order to keep the phase of the total scattering matrix correct [31].

6. NUMERICAL EXAMPLES

The reformulated propagator formulation, according to Section 4, is verified in this section. The
examples in Section 3.2 have been recomputed by use of the stabilized formulation of this paper, and
the results are presented in Figure 12 through 17.

10- 4 10- 3 10- 2 10- 1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k0d

R
+
/T

+
at

q
i
=
3
5
o
,
(c

=
p
/2
)

Reflectance

Transmittance

Figure 12. The reflectance and transmittance by use of the stabilized propagator formulation cf.
Figure 2 in Section 3.2.3.
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Figure 13. The reflectance and transmittance by use of the stabilized propagator formulation cf.
Figure 3 in Section 3.2.4.
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Figure 14. The reflectance and transmittance by use of the stabilized propagator formulation cf.
Figure 4 in Section 3.2.5.

As shown in Figure 12, are the strong oscillations and above-unity results associated with attenuated
fields due to absorption in lossy layers with high thickness/wavelength ratio eliminated by use of
the stabilized formulation. Similarly, it is seen in Figure 13 that the new scheme avoids numerical
instabilities in the example of tunneling, where strongly attenuated evanescent fields are present.

The exponentially decreasing and increasing wave propagation factors that are present in the
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Figure 16. Reflectance by use of the stabilized propagator formulation cf. Figure 8 in Section 3.2.6.

examples of the non-magnetic lossless gyrotropic slab are handled appropriately by the stabilized
propagator formulation even for high thickness/wavelength ratios as seen in Figure 14 for the case
of a slab enclosed by air and Figure 15, in case of a PEC backed slab.

Figure 16, furthermore, illustrates that the new formulation can treat more complicated structures
having strong dispersion in certain frequency bands.

Finally, Figure 17 shows that the new scheme is numerically stable even around the center frequency
in the stopband of the earlier considered bandgap structure.

The presented examples illustrate that the reformulation of the propagator method in Section 4
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Figure 17. Reflectance and transmittance by use of the stabilized propagator formulation cf. Figure 9
in Section 3.2.7.

yields stable numerical results in all considered cases of the present paper. However, there is an added
numerical cost in the stabilized algorithm from the computation of an eigenvalue problem for the 4× 4
matrix M. In most cases, this cost is negligible.

7. CONCLUSIONS

This paper has presented a stabilized scheme that solves the wave propagation problem in a general
linear, bianisotropic, stratified media. The method utilizes the concept of propagators, i.e., the wave
propagation operators that map the total tangential electric and magnetic fields from one plane in the
slab to another. The new scheme transformed the propagator approach into a scattering matrix form,
where spectral decomposition of the propagator enabled separation of the exponentially growing and
decaying terms in order to obtain a well-conditioned formulation. It was further outlined how multilayer
structures can be treated in a stable manner based on the dissipative property of the Redheffer star
product for cascading scattering matrices.

The reflection and transmission dyadics for a general bianisotropic medium with an isotropic half
space on both sides of the slab were presented in a coordinate-independent dyadic notation, as well as
the reflection dyadic for a bianisotropic slab with perfect electric conductor backing (PEC).

Several numerical examples have been shown with the purpose of motivating the need for
stabilization of the propagator formalism as well as for the illustration of the performance of the
stabilized algorithm. All considered numerical examples could be computed in a numerically stable
manner by the stabilized propagator formulation.
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APPENDIX A. LATERAL FOURIER TRANSFORM OF THE FIELDS

In a geometry where the medium is laterally homogeneous in the variables x and y, it is natural to
decompose the electric and magnetic fields and flux densities in a spectrum of plane waves [2]. The
fields are decomposed into a spectrum of plane waves by use of the Fourier transform with respect to
the lateral position vector ρ = x̂x+ ŷy defined by

E(kt, z) =

∞∫∫
−∞

E(r)e−ikt·ρ dx dy (A1)

where the tangential wave vector kt = x̂kx + ŷky is real-valued and fixed but arbitrary. The inverse is

E(r) =
1

4π2

∞∫∫
−∞

E(kt, z)e
ikt·ρ dkx dky (A2)

and the argument of the field indicates whether the field itself E(r) or its Fourier transform E(kt, z)
with respect to ρ is intended.

APPENDIX B. BASIC EQUATIONS

B.1. Maxwell Source Free Equations

The dynamics of the fields in a source free region is modeled by time-harmonic Maxwell equations,
where time dependence e−iωt is assumed throughout the paper, i.e.,{

∇×E (r, w) = ik0c0B (r, w)

η0∇×H (r, w) = −ik0c0η0D (r, w)
(B1)

where c0 = 1/
√
ϵ0µ0 is the speed of light in vacuum, k0 = ω/c0 the vacuum wave number, and

η0 =
√

µ0/ϵ0 the intrinsic impedance of vacuum, where ϵ0 and µ0 denote the vacuum permittivity
and permeability, respectively. The normalization factor η0 introduced in Ampere’s law makes the field
quantities having the same order of magnitude.

B.2. Time Harmonic Constitutive Relations

The Maxwell equations (B1) are usually combined with the constitutive relations, relating the magnetic
flux vector B(r, w) and displacement field D(r, w) to the electric and magnetic field E(r, w) and
H(r, w).

The time harmonic constitutive relations of a general bianisotropic medium [14] is given by
D = ϵ0 {ϵ ·E + η0ξ ·H}

B =
1

c0
{ζ ·E + η0µ ·H}

(B2)

The bianisotropic medium is the most general linear complex medium fully described by 36 scalar
constitutive parameters or functions i.e., the bianisotropic slabs are not restricted to be homogeneous,
which means that the slabs may be functions of depth z and/or angular frequency ω (dispersive media).
In the lateral directions, x- and y-directions, it is assumed that the material parameters are constant.

B.3. Decomposition of Dyadics

For the purpose of studying wave propagation problems in layered bianisotropic structures by the
concept of propagators, it is appropriate to decompose each three-dimensional constitutive dyadic into
components parallel and perpendicular to the normal of the planar structure [30, 9]. In general, each
three-dimensional constitutive dyadic is decomposed according to

A = A⊥⊥ + ẑAz +A⊥ẑ + ẑAzzẑ (B3)
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where {
A⊥⊥ = I2 ·A · I2
Azz = ẑ ·A · ẑ

{
Az = ẑ ·A · I2
A⊥ = I2 ·A · ẑ (B4)

The dyadic A⊥⊥ is a two-dimensional dyadic in the x-y plane, and the vectors Az and A⊥ are two
two-dimensional vectors in this plane. Azz is a scalar. Thus, the four dyadics ϵ, ξ, ζ, and µ in the
constitutive relations (B2) for a general bianisotropic medium can be decomposed in tangential and
normal parts according to (B3), i.e.,

ϵ = ϵ⊥⊥ + ẑϵz + ϵ⊥ẑ + ẑϵzzẑ

ξ = ξ⊥⊥ + ẑξz + ξ⊥ẑ + ẑξzzẑ

ζ = ζ⊥⊥ + ẑζz + ζ⊥ẑ + ẑζzzẑ

µ = µ⊥⊥ + ẑµz + µ⊥ẑ + ẑµzzẑ

(B5)

Using these decompositions, a structured decomposition of the Maxwell equations in components parallel
and perpendicular to the normal of the planar structure can be made.

APPENDIX C. THE FUNDAMENTAL DYADIC

The fundamental dyadic M(kt, z) is a 4× 4 complex-valued dyadic. In a bianisotropic media modelled
by the constitutive relations (B2) the map M(kt, z) is explicitly given by [9]

M(kt, z) =

(
M11(kt, z) M12(kt, z)
M21(kt, z) M22(kt, z)

)
(C1)

with the block dyadics

M11(kt, z) = −J · ζ⊥⊥ + a

(
kt

k0
− J · ζ⊥

)(
−µzzϵz − ξzzJ · kt

k0
+ ξzzζz

)
− a (J · µ⊥)

(
ζzzϵz + ϵzzJ · kt

k0
− ϵzzζz

)
M12(kt, z) = J · µ⊥⊥ · J+ a

(
kt

k0
− J · ζ⊥

)(
µzz

kt

k0
− µzzJ · ξz + ξzzJ · µz

)
− a (J · µ⊥)

(
−ζzz

kt

k0
+ ζzzJ · ξz − ϵzzJ · µz

)
M21(kt, z) = −ϵ⊥⊥ − aϵ⊥

(
−µzzϵz − ξzzJ · kt

k0
+ ξzzζz

)
+ a

(
J · kt

k0
− ξ⊥

)(
ζzzϵz + ϵzzJ · kt

k0
− ϵzzζz

)
M22(kt, z) = ξ⊥⊥ · J− aϵ⊥

(
µzz

kt

k0
− µzzJ · ξz + ξzzJ · µz

)
+ a

(
J · kt

k0
− ξ⊥

)(
−ζzz

kt

k0
+ ζzzJ · ξz − ϵzzJ · µz

)

(C2)

where a−1 = ϵzzµzz − ξzzζzz, J = ẑ × I2 represents a rotation of π/2 around the z-axis, and
I2 = ê∥ê∥ + ê⊥ê⊥ is the identity dyadic in R2 for lateral vectors. Notice that the four dyadics ϵ,
ξ, ζ, and µ depend on z for materials that are stratified in the z direction. In homogeneous regions,
the map M is independent of z, and, specifically, in an isotropic region the fundamental dyadic is

M(kt) =

 0 −µI2 +
1

ϵk20
ktkt

−ϵI2 −
1

µk20
kt × (kt × I2) 0

 (C3)

More explicit examples of the fundamental dyadic M are found in [30, 9], and for an alternative
representation, see [34].
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APPENDIX D. THE RELATIVE WAVE IMPEDANCE OPERATOR

The relation between electric and magnetic fields propagating in the ±z-direction in a simple media are
related through the relative wave impedance operator Zr by

η0J ·Ht(kt, z) = ∓Z−1
r (kt) ·Et(kt, z)

where (the operator Z−1
r is commonly referred to as the relative wave admittance operator Yr)

Z−1
r (kt) =

1

η

(
k

kz
ê∥ê∥ +

kz
k
ê⊥ê⊥

)
(D1)

and

Zr(kt) = η

(
kz
k
ê∥ê∥ +

k

kz
ê⊥ê⊥

)
(D2)

Here k = k0
√
ϵµ is the wavenumber, kz = (k2 − k2t )

1/2 the normal wave number, and kt = |kt| =√
k2x + k2y the lateral wave number which is a non-negative real number, and η =

√
µ/ϵ the relative

wave impedance. Finally, ê∥ = kt/kt and ê⊥ = ẑ× ê∥ are orthogonal basis vectors corresponding to the

TM and TE polarizations, respectively. The branch of the square root for kz = (k2−k2t )
1/2 is chosen so

that Im(kz) ≥ 0 for Im(k) ≥ 0 (for time convention eiωt, simply replace i → −i, and choose branch for
kz as Im(kz) ≤ 0 for Im(k) ≤ 0). For kt = 0, i.e., at normal incidence, we have Z−1

r = I/η and Zr = ηI.

APPENDIX E. DISSIPATION PROPERTY STAR PRODUCT

The scattering matrix S for a given slab can be written in terms of the reflection and transmission
dyadics r± and t±, respectively, i.e.,

S(i) =

(
S
(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

)
=

(
r+ t−

t+ r−

)
(E1)

A passive structure is characterized by the property ∥S∥ ≤ 1, where ∥ · ∥ denotes the operator norm [27,
p. 21]. This can be written as inequalities for the reflection and transmission dyadics as

|r+|2 + |t+|2 ≤ 1 and |r−|2 + |t−|2 ≤ 1 (E2)

with equality for lossless media. Details on the characterization of passive and lossless media can be
found in [9, pp. 57–65].

Consider two scattering matrices S(1) and S(2) defined by(
F−
1

F+

)
= S(1) ·

(
F+
1

F−

)
and

(
F−

F+
2

)
= S(2) ·

(
F+

F−
2

)
(E3)

and illustrated in Figure E1. If both matrices satisfy ∥S(1,2)∥ ≤ 1, we have the dissipation relations

|F−
1 |2 + |F+|2 ≤ |F+

1 |2 + |F−|2 and |F−|2 + |F+
2 |2 ≤ |F+|2 + |F−

2 |2 (E4)

The composition of scattering matrices in terms of the star product(
F−
1

F+
2

)
= S(1)⋆S(2) ·

(
F+
1

F−
2

)
(E5)

preserves the dissipation property, i.e.,

|F−
1 |2 + |F+

2 |2 ≤ |F+
1 |2 + |F−

2 |2 (E6)

which is easily found by adding the inequalities above. This result can be extended to any number of
slabs, see [27, pp. 22–24].
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Figure E1. Composition of scattering matrices.
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