
Progress In Electromagnetics Research C, Vol. 133, 135–149, 2023

A Shape-Based Approach for Recognition of Hidden Objects Using
Microwave Radar Imaging System

Akhilendra Pratap Singh1, 2, *

Abstract—Microwave imaging radar systems are often required for the recognition of hidden objects
at various job sites. Most existing imaging methods that these systems employ, such as beamforming,
diffraction tomography, and compressed sensing, which operate on synthetic aperture radar, produce
highly distorted radar images due to the limitation of the frequency range, size of the array, and
attenuation during the propagation, and thereby become hard to interpret the description of the object.
Several methods explored for the recognition of hidden objects are based on deep neural network models
with millions of parameters and high computational costs that render them unusable in portable devices.
Moreover, most methods have been evaluated on datasets of microwave radar images of hidden objects
with the same relative permittivity, orientation, size, and position. In real-time scenarios, objects may
not have similar relative permittivity, orientation, size, and position. Due to variation in the object’s
relative permittivity, orientation, size, and position, there will also be variation in the reflectivity.
Consequently, it is hard to say if those algorithms will be robust in real-world conditions. This paper
presents a novel shape-based approach for recognizing hidden objects which combines delay-and-sum
beamforming with an artificial neural network. The merit of this proposed method is its ability to
simultaneously recognize and reconstruct the object’s actual shape from distorted microwave radar
images irrespective of any variation in relative permittivity, orientation, size, and position of hidden
object. The performance of the developed technique was tested on a dataset of microwave radar images
of various hidden objects having different relative permittivities, sizes, orientations, and positions.
The proposed method yielded an average reconstruction rate of 91.6%. The proposed method is
appropriate for evaluating occluded objects such as utility infrastructure, assets, and weapons detection
and interpretation, which have regular shapes and sizes of the cross-section at various construction,
archaeological and forensic sites.

1. INTRODUCTION

Nondestructive evaluation of hidden objects using a microwave imaging system is very appealing at
various sites. This technology is used for a number of reasons. The first and foremost reason is the
ability of microwaves to permeate through the majority of opaque materials. The second reason is the
occurrence of dangerous plastic explosives devices that X-ray scanners cannot easily detect because they
are essentially devised for metal detection. Due to each object’s different permittivity values, microwaves
can detect various plastic explosives [1]. The third reason for microwave imaging technology gaining
much attention is due to the safety concerns brought on by the non-ionizing nature of microwaves.
The reasons mentioned above draw the attention of researchers and lead to exploring the scope of
microwave imaging technologies for concealed weapon detection [2], human posture recognition [3],
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landmine detection [4], mapping building layout [5], static and moving objects detection behind the
scene [6, 7], and breast tumor detection [8]. Nowadays, there is much interest among researchers in using
microwave imaging technology for exploring hidden objects at various constructions, archaeological and
forensic sites [9].

Synthetic aperture radar (SAR) and multiple inputs multiple outputs (MIMO) are the most
commonly used microwave imaging system [10–13]. SAR is a cost effect portable microwave imaging
system for searching hidden objects [14]. Researchers have presented several imaging methods, such as
beamforming, diffraction tomography, and compressed sensing, which operate on synthetic aperture
radar [15–18]. However, these imaging algorithms produce highly distorted radar images. Such
distortion is caused by the limitation of the frequency range, array size, and attenuation during the
propagation in the wall. The radar image formed shows little resemblance to optimal image, making
it hard to interpret the object’s description. Much work has been done in radar image enhancement;
moreover, many developed algorithms still need to consider the real-world constraints faced by operating
the hardware devices that run these algorithms. In general, portable microwave imaging systems
are lightweight and limited-size devices. These portable hardware devices will have limited memory,
computational, and battery power. Many state-of-art algorithms are based on deep neural network
(DNN) models with millions of parameters and high computational costs [19, 20]. Applying these
methods alleviates insufficient computational power in portable microwave imaging systems that render
them unusable in portable devices.

Moreover, most of these algorithms are evaluated on datasets of microwave radar images of
objects with similar relative permittivity, orientation, size, and position. Objects in real-time scenarios
may not have similar relative permittivity, orientation, size, and position. At various constructions,
archaeological and forensic sites, objects of different relative permittivities with variation in orientation,
size, and position are present. Due to variations in relative permittivity, orientation, size, and position,
there will also be variations in the reflectivity. Consequently, it is hard to say if those algorithms will be
robust in real-world conditions. Therefore, there is a need for a technique for the recognition of hidden
object irrespective of any change in relative permittivity, orientation, size, and position of hidden objects.
For this purpose, a novel shape-based robust approach for recognizing hidden objects which combines
delay-and-sum beamforming with an artificial neural network has been proposed that recognizes the
actual shape of hidden objects from distorted microwave radar images irrespective of any change in
relative permittivity, orientation, size, and object position. Simpler neural network architecture, like
single hidden layer dense neural network, can also be explored for hidden object image reconstruction as
it can perform as well as deep neural network in terms of image reconstruction fidelity while requiring less
computational power and training time [21]. This paper uses a multilayered feedforward neural network
incorporating prior information using synthetic training samples. By combining it with delay-and-sum
beamforming imaging algorithm, a new possibility of simultaneously recognizing and reconstructing
the actual shape of the hidden object has been proposed. The performance of the proposed method
was tested on a dataset of microwave images of many basic objects through a brick wall. Compared
to the imaging algorithm presented in [16–18], this study suggests a more promising technique to
visualize the actual shape of the occluded object with the help of an artificial neural network (ANN) to
improve the imaging quality. The developed method accurately recognized the shape of hidden objects of
different relative permittivities, orientations, sizes, and positions. The proposed method is appropriate
for evaluating hidden or embedded objects such as utility infrastructure detection and interpretation,
assets, and weapons with regular cross-section shapes at various construction, archaeological and forensic
sites. The structure of the paper is as follows. Section 2 describes the proposed methodology for
image reconstruction. Section 3 presents the discussion of experiment results, and Section 4 presents
conclusions.

2. PROPOSED METHODOLOGY

This section presents a detailed description of the flowchart as shown in Fig. 1 and the implementation of
the proposed framework. The proposed methodology consists of the following stages: data acquisition,
image formation by delay-and-sum beamforming, image thresholding, and image improvement using
the neural network. The various stages are described further in more detail.
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Figure 1. The whole flowchart of the proposed framework.

2.1. Data Acquisition

Figure 1 shows the arrangement of the RF measurement system used for data acquisition placed 220 cm
in front of the wall. The measurement system consists of a Vector Network Analyzer (VNA) connected
to a horn antenna mounted on a field scanner through a coaxial cable. Fig. 2 shows an actual photograph
of the RF measurement setup. The images scene consists of various shapes and sizes of the object with
orientations 0◦, 45◦, and 135◦ (as described in Table 2) placed on a wooden stand. The data acquisition
process involves moving the antenna across 21 × 21 scan points (M = 21, N = 21) and measuring

Figure 2. Experimental setup of SAR microwave imaging system.
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scattering parameter S11 for 201 frequency points (L = 201) in the frequency band of 3.5–5.5GHz.
The number of frequency steps was set to 201 to retain the 10MHz frequency step size in order to get
the maximum unambiguous range of 15m. The frequency band of 3.5–5.5GHz was chosen for imaging
as attenuation due to the wall being within the acceptable limit. The acceptable limit for the wall
loss is the threshold below which occluded objects cannot be detected. Scattering parameter S11 was
measured using a 10 kHz intermediate frequency bandwidth (IFBW). Based on the specifications of
Anritsu MS2037 VNA, the noise floor level at 10 kHz IFBW is −157 dB. In order to detect the object
beyond the wall, the power received must be greater than the noise floor level. The power received can
be calculated by radar equation [22]

Pr =
PtGtGrλ

2σt

(4π)3R4LcLw

≈ −124.46 (dB)− Lw (dB) at 3.42m range and center frequency f = 4.5GHz (1)

where,

Pt (Transmitted power) = −33 dBW,

Gt = Gr (Gain of antenna) = 12 dB,

σt (Radar cross-section) = −20 dBsm,

λ2 = −33.6 dBsm,

(4π)3 = 33dB,

R4 = 21.36 dBm4 at 3.22m,

Lc = 2.5 dB (2-way cable loss),

Lw = wall loss.

Though this equation is a rough approximation, after comparing this equation with noise floor
level, the wall loss obtained was Lw = 32.54 dB. Thus, 32.54 dB is the maximum attenuation limit of
the wall loss, which can be tolerated to detect the object of minimum radar cross-section −20 dBsm.
The wall loss of the building wall was measured by the method described in [23] and was found to be
2.3 dB at centre frequency 4.5GHz, which is less than the maximum attenuation limit of the wall.

2.2. Image Formation Using Delay-and-Sum Beamforming

The image formation consists of the following two stages. The first stage requires wall parameter
estimation. The second stage involves the implementation of a delay-and-sum beamforming imaging
algorithm with the estimated wall parameters to obtain a focused image of objects.

One of the several significant challenges is to estimate the wall parameters a priori which are
essential for compensating the effects of the wall. Researchers have presented several methods to
compensate for the effect of the wall. These methods require complex measurement procedures and
iterative optimization schemes, which are very computationally intensive [24–26]. In general, portable
microwave imaging systems are lightweight and limited-size devices. Applying these methods alleviates
insufficient computational power in portable microwave imaging systems [27]. These systems usually
form images by using the delay-and-sum beamforming method. The delay-and-sum beamforming
method works well with known wall parameters. Ambiguities in wall parameters can smear, blur,
and shift away the image of the object from its actual position [27]. Therefore, a time-domain based
wall parameter technique has been adopted that works in real-time [28]. The time domain plot of a real
building wall, typically constructed with bricks covered by a fine layer of plaster, is shown in Fig. 3.
The wall’s effective relative permittivity and thickness are estimated using the first two prominent
echoes produced by the front and rear walls. The wall’s effective relative permittivity and electrical
conductivity were estimated by formulating a proper fitness function and minimizing it using an efficient
searching technique, a genetic algorithm. Once the wall’s effective relative permittivity was estimated,
the wall thickness was obtained by Equation (3).

F (εw, σ) = min

M∑
K=1

PR2K

PR1K

−

(
1−

(√
εw − 1

√
εw + 1

)2
)2

exp−
σηc∆τ

εw

2

(2)
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Figure 3. Time domain plot at spatial position X = 10, Y = 10.

dw =
c∆τ

2×√
εw

(3)

where,

PR2K = Power observed at time t2 due to reflection from the wall-air interface at the backside of
the wall at scan point K,

PR1K = Power observed at time t1 due to reflection from the air-wall interface at the front side of
the wall at scan point K,

εw = is the relative permittivity of the dielectric wall,

σ = is the electrical conductivity of the dielectric wall,

σ = is free space intrinsic impedance,

c = is the speed of light,

∆τ = is difference between time t1 and t2,

dw = is the thickness of the dielectric wall,

M = is the number of scan points.

The wall parameters have been computed using the following steps. Step 1: The measured
scattering data are converted into equivalent time domain signal using inverse fourier transform. Step 2:
Extraction of various parameters, such as PR2, PR1, and ∆τ , from the time domain signal at each scan
point. Step 3: Finally, with the help of Equations (2)–(3), the values of the relative permittivity (εw)
and the thickness (dw) of the wall are determined.

After the wall parameters were estimated, acquired frequency domain data in the presence of
various objects were processed to produce a 2D-focused radar image of the object at the object plane
by applying the delay-and-sum beamforming method. Let the signal in the frequency domain received
at each scan point be given as [29]

S11 (xt, yt, fk) = a (xb, yb, zb) exp (− (j2πfkτb)) (4)

where a(xb, yb, zb) is the strength of the scattered electric field reflected from the point object, xb, yb, zb
the object’s location, (xt, yt) the scan point location, and τb the propagation delay that occurred during
signal propagation from the antenna location to the pixel location.

The value of each pixel is estimated by applying propagation phase delays to the acquired frequency
domain data for synchronizing the received signal at different antenna positions and summed to compute
the value of a pixel at position using Equation (5) [29]

I(xb, yb, zb) =

M∑
xt=1

N∑
yt=1

L∑
k=1

S11(xt, yt, fk) exp (j2πfkτb) (5)



140 Singh

The object plane was selected by observing the range profile obtained using Equation (6) [23].

S(z) =

L∑
k=1

S11 (fk) exp (j2πfk(2z +Rdelay + 2dw(
√
εw))) (6)

where,

Rdelay is a delay due to the antenna system;

dw is the wall thickness;

εw is the relative permittivity of wall;

fk is frequency.

Figure 4 shows the range profile plot of a specific scan point at which reflection due to an object
appears. The range profile plot determines the position of z at which reflection due to the object appears
as the peak. Fig. 5(a) shows the 2D image of the wooden triangular object (size: 50 cm×50 cm×50 cm,
orientation: 135◦) formed using the delay-and-sum beamform (DS) imaging method.

Figure 4. Range profile with and without the object.

(a) (b) (c)

Figure 5. (a) 2D image of a wooden triangular object formed using delay-and-sum beamform imaging
method. (b) Interpolated image. (c) Thresholded image.

2.3. Image Thresholding

The 2D radar image shown in Fig. 5(a) is a low-resolution image of 50× 50 pixels. Therefore, the size
of the images was scaled up to a reasonable size of 250× 250 pixels using bicubic interpolations, which
several authors have used for a long time [30]. The bicubic interpolations method increases the image’s
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size, as shown in Fig. 5(b). The merit of this method is that it preserved the object’s shape in the
radar image. After that, thresholding is applied to highlight certain image information and remove any
unnecessary information, such as the background. The threshold value is computed based on image
statistics without histogramming the grey-level values of the image according to a given formula [31]

T = µ+ g × sd (7)

where µ is the mean, sd the standard deviation, and g the variable whose value is obtained empirically.

2.4. Image Improvement Using Neural Network

The thresholded radar image shown in Fig. 5(c) is highly distorted and has little resemblance to an
optical image; thereby, it is hard to interpret it. To overcome this problem, the aim has been to design
an ANN-based orientation and scale-invariant image recognition technique that can simultaneously
recognize objects and reconstruct the actual shape of objects that appear distorted, irrespective of any
variation in orientation, size, and position of the object. The merit of devising an orientation and scale-
invariant model is to counter the distortion caused by variations in the orientation, size, and position
of the object. The ANN enables us to improve imaging quality by incorporating prior information
using training samples. This section first discusses the synthetic data generation and feature extraction
process used to create an input data set for training the neural network. It later discusses the neural
network model used to recognize and reconstruct the object’s actual shape.

2.4.1. Synthetic Data Generation

For study, objects of regular shapes such as rectangle, triangle, and square were considered. Synthetic
binary images of objects of size 250× 250 pixels were made according to the object’s original shape and
size as training samples. Devising a rotation and size invariant model requires many training samples of
different sizes and orientations to train the ANN. The synthetic images of objects of different orientations
and sizes were created with rotation and scaling data augmentation techniques. Like, synthetic data
of rectangular shapes of size (50 cm× 30 cm), square shapes of size (30 cm× 30 cm), and the triangular
shape of size (35 cm× 35 cm) at orientation 0–330 degrees at the step of 30 degrees have been produced
using rotation transformation matrix which is given as [32][

x′

y′

]
=

[
cosβ sinβ

− sinβ cosβ

] [
x

y

]
(8)

Further, to create the synthetic data samples of various sizes, a morphological dilation technique is used
to produce synthetic images of multiple sizes with a structuring matrix [0 1 0; 1 1 1; 0 1 0]. Let C and
D be sets of Z2, the dilation of C by D given as [33]

C ⊕D =
{
z|(D̂)z ∩ C ̸= ϕ

}
(9)

where C is a binary image, and D is the structuring element.

2.4.2. Feature Extraction

The most popular features for recognizing an object’s shape are Fourier descriptors. The main idea
is to apply a one-dimensional discrete Fourier transform to the boundary of a two-dimensional shape
to extract features from synthetic images. The boundary of each shape denoted by coordinate pair
(x(u), y(u)) can be treated as complex number which is represented as

b (u) = x (u) + jy (u) (10)

Equation (11) is the result of applying the discrete Fourier transform to the boundary coordinate
pair [34]

F (v) =

G−1∑
g=0

b (u) exp (−j2πvg/G) (11)
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for v = 0, 1, 2, ..., V − 1. The complex coefficient F (v) denotes the Fourier descriptor of the boundary.
The only features employed are the magnitudes of the Fourier coefficients. Further, the first 100
coefficients of the Fourier descriptor have been considered, giving relevant information about the object
to form a compact feature vector. After extracting the entire feature, it is fed to the artificial neural
network for training.

2.4.3. Artificial Neural Network Modelling

For object recognition and its image reconstruction, a three-layer fully connected feedforward neural
network is used, which consists of input units, hidden units, and output units [35]. Each synthetic data
sample feature vector is first converted into a column vector (100, 1). Accordingly, the feature vectors
of all the C training samples is arranged as column vectors to create 2-D input data (100, C). This input
data is fed to the input layer for training. Since the aim is to recognize the object and reconstruct its
precise image, binary values have been used as the teaching data for the output pattern. These teaching
data were 50 × 50 pixels in size and were created based on the shape of their object. After reviewing
the input and teaching data, the neural network configured for image reconstruction consists of

Input Units: consist of 100× 1 nodes equal to the dimension of the feature vector.

Hidden Units: consist of 30 hidden nodes.

Output Units: consist of 50× 50 output nodes.

2.4.3.1. Training ANN Model

For training, the input data set was randomly divided into training, validation, and testing data in the
proportion of 80%, 15%, and 5%, respectively. Fig. 6 shows the structure of the neural network used
for training. The output at each node of hidden and output units is defined as [35]

ok = f

∑
j

wjkhi + θk

 (12)

hj = f

(∑
i

wijxi + θj

)
(13)

where ok is the output of unit k; hj is the output of unit j; wjk is the weight of the connection between
unit j and unit k; wij is the weight of the connection between unit i unit j; θk is the bias on unit k; θj
is the bias on unit j;

∑
j

is the summation of every unit j whose output flows from unit j into unit k;

Figure 6. Structure of artificial neural network.



Progress In Electromagnetics Research C, Vol. 133, 2023 143∑
i

is the summation of every unit i whose output flows from unit i into unit j; and f(n) is a sigmoid

function which is given by

f (n) =
1

1 + e−n
(14)

In order to solve the image reconstruction problem, the network’s output values must be limited to
values between 0 and 1. It was accomplished through the sigmoid transfer function.

The neural network is trained to provide an optimal output when given a collection ofm dimensional
input patterns {xp = (xp1, xp2, ..., xpm); p ∈ P} and a set of n-dimensional desired output patterns
{op = (op1, op2, ..., opn); p ∈ P}, where P denotes the set of patterns. The network training function
Trainscg in Matlab uses a backpropagation learning technique to train the neural network that updates
weight and bias values in the path of the steepest descent direction (negative of gradient). Here, the
input vector first generates an output vector that is compared to the target vector’s output values to
determine the value of a predetermined error function that is provided by [35]

E =

P∑
p=1

Ep (15)

where

Ep =
1

2

∑
k∈output layer

(opk − xpk)
2 (16)

If the error is smaller than a predefined value, then it stops; otherwise adjusts, and the weights and
bias of each link lower the error function value based on the steepest descent gradient method, which is
given as [35]

∆wjk = −ηGjk, ∆θ (k) = −ηG (k) (for output layer) (17)

∆wij = −ηGij , ∆θ (j) = −ηG (j) (for hidden layer) (18)

Here, η is the small positive constant (learning rate), and G is the gradient which is defined as

G =
∂E

∂w
(19)

By evaluating the right-hand side of Equations (16) and (17), it follows that

∆wjk = ηδkhj , ∆θ (k) = ηδk (for output layer) (20)

∆wij = ηδjxi, ∆θ (j) = ηδj (for hidden layer) (21)

where

δk = f ′ (netk) (opk − xpk) (22)

δj = f ′ (netk)
∑
k

wjkδk (23)

To speed up the computation, the momentum terms are introduced. This means [35]

∆w (n+ 1) = −ηG+ α∆w (n) (24)

∆θ (n+ 1) = −ηG+ α∆θ (n) (25)

where n denotes the nnumber of the learning cycle, and α denotes a small positive value. This process
is repeated until the network typically converges to a state where the error is small, which happens after
sufficient training cycles.

2.4.3.2. ANN Training Sample Size Requirements

Based on the learning curve, the correct number of image data needed for accurate learning was
determined [36]. Additionally, the gradient of the learning curve was observed, which shows how much
prediction accuracy improves with more training data sets. The basic principle underlying an ANN’s
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learning curve is that greater prediction performance is attained when more samples are used to train the
network. This process continues till the learning curve gets to the point of saturation. At this point, the
learning rate slows, and the gradient approaches zero, indicating that the training sample amount was
sufficient for the ANN to learn. If the learning curve’s gradient is less than 10−5, the ANN is thought
to have learned the training set. Based on the learning curve, 72 synthetic images of different sizes
and orientations, generated with the help of data augmentation techniques, were considered training
samples.

3. EXPERIMENTAL RESULTS AND DISCUSSION

This section discusses the performance of combining delay-and-sum beamforming imaging algorithms
with trained artificial neural networks and its comparison with different imaging algorithms.

3.1. Result of Combining Delay-and-Sum Beamforming Imaging Algorithm with Trained
Artificial Neural Network

The performance of the combining delay-and-sum beamforming imaging algorithm with a trained ANN
needs to be tested and evaluated with microwave radar images of various basic shapes of real objects
of low and high dielectric constant values. Therefore, an experiment was conducted, and measurement
was performed by keeping various shapes and sizes of objects at different orientations and positions
(as described in Table 1). The wall was scanned in the XY plane parallel to the wall’s surface along
the x-axis and y-axis by measuring the back-scattered signals. The data acquired was processed with
delay-and-sum beamforming algorithm for 2D radar image formation. Table 2 shows the plot of the 2D
radar image of some test samples. The low-resolution 2D radar image of the object is increased using
shape-preserving interpolation. The interpolated image is thresholded using Equation (7) to separate
the background, and then Fourier feature vectors are extracted from the thresholded image of the object.
The extracted feature vector is fed to a trained artificial neural network to reconstruct the actual image
of the object. As an example, the result of distorted microwave radar images and their reconstructed
images by ANN of some test samples, such as T1 (metallic triangular object, size 50 cm×50 cm×50 cm,
orientation 0◦), T2 (metallic square object, size 30 cm × 30 cm, orientation 0◦) placed at 60 cm on the
other side of the wall, and T3 (wooden triangular object, size 50 cm× 50 cm× 50 cm, orientation 135◦),
T4 (wooden rectangular object, size 55 cm× 35 cm, orientation 45◦) placed at 120 cm on the other side
of the wall, are shown in Table 2. Figs. 7(a)–(d) show actual images of test samples.

The performance of the proposed trained neural network was validated with completely different

Table 1. Detailed information of test objects considered for evaluation.

Shape of Object Size of Object Material

Triangle 35 cm× 35 cm× 35 cm Wood

Triangle 50 cm× 50 cm× 50 cm Wood

Square 30 cm× 30 cm Wood

Square 35 cm× 35 cm Wood

Rectangle 30 cm× 50 cm Wood

Rectangle 35 cm× 55 cm Wood

Triangle 35 cm× 35 cm× 35 cm Metal

Triangle 50 cm× 50 cm× 50 cm Metal

Square 30 cm× 30 cm Metal

Square 35 cm× 35 cm Metal

Rectangle 30 cm× 50 cm Metal

Rectangle 35 cm× 55 cm Metal
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Table 2. Reconstructed image of occluded objects by trained artificial neural network.

2D DS image of hidden 

object 

Interpolated Image Thresholded Image ANN Output 

OBJECT ID:T1 

OBJECT ID:T2 

OBJECT ID:T3 

OBJECT ID:T4 

Table 3. Reconstruction rate of ANN for different test samples.

Input Output Triangle Square Rectangle Total Accuracy (%)

Triangle 11 1 0 12 91.6

Square 2 10 0 12 83.3

Rectangle 0 0 12 12 100

Overall Accuracy 91.6%

test samples (as given in Table 1), which had never before been utilized as input to the network. A
confusion matrix for several test samples is shown in Table 3 based on the experimental findings. With
these test samples, a 91.6 percent average reconstruction rate was attained. The trained neural network
reconstructed the actual shape of concealed objects of different dielectric against any variation in its
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(a) (b)

(c) (d)

Figure 7. Actual image of test samples (a) T1, (b) T2, (c) T3, (d) T4.

orientation, size, and position. The 2D radar images reconstructed by the artificial neural network agree
with the object’s original shapes. Thus, the outcome of trained ANN with distorted radar images of
object samples gives satisfactory results with reasonably good performance.

In this paper, experimental results are presented which demonstrate that the proposed method
is sufficiently robust in the face of real-world conditions. The majority of real building materials are
inhomogeneous. However, if the inhomogeneities are smaller than the range resolution, the wall can be
assumed to be homogeneous with effective permittivity [27]. The signal backscattered by such a wall
will be similar to that of a homogeneous wall. Furthermore, negligible material dispersion and constant
effective permittivity have been assumed in the frequency range of interest. The wall can be lossless
or weakly lossy. According to [27], for loss tangent, the real component of the material permittivity
dominates in determining the propagation velocity, and the dependency on the loss tangent is minimal.
It is obvious that with uniform homogeneous walls best results can be obtained. However, it has been
demonstrated that the method can deal with real building walls. Obviously, the proposed method is
not appropriate for all possible practical scenarios (e.g., with multilayered or strongly inhomogeneous
wall structures).

3.2. Comparison with Different Imaging Algorithms

A comparison analysis is presented in this section to emphasize the importance of the proposed scheme
over conventional approaches. The experimental result of the microwave radar image of object T2
produced using the proposed method, along with other imaging algorithms such as synthetic aperture
radar [16], diffraction tomography [17], and compressed sensing [18], are shown in Figs. 8(a)–(d). It can
be observed that imaging methods proposed in [16–18] produce highly distorted reconstructed images.
The radar image formed using these previous methods showed little resemblance to optimal, making it
difficult to interpret the object. The neural network approach designed allows us to visualize the original
object shape irrespective of any variation in relative permittivity, orientation, size, and position. The
experimental result demonstrates the capability of the neural network approach to visualize considered
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(a) (b)

(c) (d)

Figure 8. (a) Synthetic aperture radar imaging [16]. (b) Diffraction tomography imaging [17]. (c)
Compressed sensing imaging [18]. (d) Proposed method.

regular shape objects. The proposed approach is only appropriate for some possible practical shapes of
objects. However, the proposed method can be utilized to evaluate hidden or embedded objects such
as utility infrastructure detection and interpretation, assets, and weapons with regular shapes and sizes
of the cross-section at various constructions, archaeological and forensic sites, thereby improving the
performance of radar systems.

4. CONCLUSION

This paper presents a SAR-based microwave imaging radar system that combines delay-and-sum
beamforming imaging method and neural network for recognition of the shape of a hidden object
irrespective of any variation in relative permittivity, orientation, size, and position of the hidden object.
The performance of the developed technique was evaluated on a dataset of microwave radar images
of real hidden objects of various shapes having different relative permittivities, orientations, sizes,
and positions. The experimental results show that the proposed technique successfully recognizes and
reconstructs actual object’s shapes in a heavily cluttered environment. The success rate of reconstruction
of distorted radar images was 91.6%. Further, the proposed methodology does not require a separate
measurement for estimating wall parameters for image formation. Therefore, it can be used in real-time
with different types of walls, such as plywood, brick, and concrete.
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14. Laviada, J., A. Arboleya, F. López-Gayarre, and F. Las-Heras, “Broadband synthetic aperture
scanning system for three-dimensional through-the-wall inspection,” IEEE Geoscience and Remote
Sensing Letters, Vol. 13, 97–101, 2015.

15. Ahmad, F., Y. Zhang, and M. G. Amin, “Three-dimensional wideband beamforming for imaging
through a single wall,” IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176–179, 2008.

16. Zhang, W. and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through
multilayered walls,” IEEE Transactions on Antennas and Propagation, Vol. 62, 459–462, 2013.

17. Zhang, W. and A. Hoorfar, “Three-dimensional real-time through-the-wall radar imaging with
diffraction tomographic algorithm,” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 51, 4155–4163, 2012.

18. Yoon, Y. S. and M. G. Amin, “Compressed sensing technique for high-resolution radar imaging,”
Signal Processing, Sensor Fusion, and Target Recognition XVII, International Society for Optics
and Photonics, Vol. 6968, 69681A, 2008.

19. Song, Y., T. Jin, Y. Dai, Y. Song, and X. Zhou, “Through-wall human pose reconstruction via
UWB MIMO radar and 3D CNN,” Remote Sens., Vol. 13, 241, 2021.



Progress In Electromagnetics Research C, Vol. 133, 2023 149
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