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Abstract—In this paper, a low-profile miniaturized microstrip monopole antenna with an overall size of
15mm×20mm×1.6mm is developed and analyzed for Ultra-Wide Band (UWB) services. The proposed
antenna is carefully designed, optimized, and analyzed using HFSS 15 simulation software. A prototype
of the design is realized and experimentally tested as proof of concept. The results are discussed and
compared with literature. They show attractive radiating features for UWB applications. The proposed
antenna consists of an elliptical patch printed on a low-cost FR-4 epoxy substrate with a modified ground
plane. To achieve UWB characteristics, elliptical rings are etched on the conducting patch, and the
ground plane is modified by adding an inverted L shaped strip and creating a semi-elliptical slot in the
partial ground opposite to the feed line. The achieved ultra-wide band ranges from 3.1 to 18.1GHz
(141.51%).

1. INTRODUCTION

Antenna technology has recently contributed to making huge leaps in the field of wireless
communications. Microstrip antennas have been one of the most important pillars of antenna technology
due to their attractive features, such as being low profile, conformable to planar and nonplanar surfaces,
simple, inexpensive, easy to fabricate, mechanically robust, compatible with MMIC designs, and very
versatile in terms of resonant frequency, polarization, and pattern. However, microstrip antennas have
some operational drawbacks such as low radiation efficiencies and quite narrow bandwidths [1–3], which
limits their use in UWB applications.

In some applications, such as in government security systems [1], digital still cameras, industrial
colorimetric measurements, and spectral biological imaging, the use of narrow bandwidths is
desirable [4, 5]. However, narrowband antennas are unable to handle quick pulses of nanosecond duration
throughout the wider band of frequencies leading to dispersion and distorted signals [3]. Because UWB
technology makes use of a broad range of frequencies typically between 3.1 and 10.6GHz and their ability
to support higher data transmission and multi-channel connectivity [2, 3, 6], it has been increasingly
popular over the past few years.

UWB has expanded the operational frequency band to a broader range of applications by using
signals of nanosecond or picosecond pulses. It provides an extremely wideband spectrum for existing
radio technologies such as Wi-Fi, WLAN, WiMAX, and other cellular wide area communications
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replacing short-wired links [7–9]. Moreover, Internet of Things [10], health care [11], remote sensing [12],
wearable applications [13], and microwave imaging [14] have all made use of UWB technology.

Recently, radar systems, detection of unexploded mines, health check of civil engineering
structures and positioning location are other UWB applications that have also received significant
attention [3, 15, 16].

The most influential challenges in UWB antenna design, particularly, are: realizing wideband with
a satisfactory radiation efficiency and achieving a compact size at the lower operational frequency
band. In this context, to achieve these specifications, a variety of designs of different shapes have been
proposed in the literature. These include circular discs [17–19], rings [20–22], elliptical forms [23–25],
and fractal patches [26–28]. Various techniques have been exploited to enhance the bandwidth such as
the defected ground structure (DGS) [18, 23, 29–32], use of parasitic elements [29, 33, 34], introducing
slits in the patch [34–39], loading stubs and shorting pins [40–42], and use of metamaterials that exhibit
many special properties [7, 43, 44]. On the other hand, the UWB-based devices, when exploiting the full
potential of the wide frequency band benefits, should not emit excessive energy to interfere with other
narrower band systems nearby, while maintaining miniaturized sizes of antennas, which has become
a very crucial requirement in the development of modern communication systems. This makes the
design of UWB antennas a difficult challenge, since it must be capable of providing an extremely wide
frequency band and still obey the Federal Communications Commission (FCC) standards.

Many small size UWB antenna designs with different structures operating in the 3.1 and 10.6GHz
range have been introduced; however, there is still a lot to be done regarding the design miniaturization
and impedance bandwidth enhancement. The present work aims to further contribute to this subject
and brings it forward. In this optic, a new UWB antenna design with more attractive compact size and
radiation features, compared to recent works, is proposed.

For the last decade, researchers have approached the subject area in a number of different ways.
Many studies have adopted circular or elliptical patches in antenna designs, due to their advantages to
give suitable UWB features over the operating frequency range [20, 23–25, 45, 46]. Several previous
studies have illustrated the advantage of using concentric slots for size reduction of the radiating
structure and split ring resonators techniques to enhance the antenna impedance bandwidth [19, 47].

The design presented in this paper combines selected conventional techniques to meet the
requirements of a practical UWB system, along with the use of elliptical concentric open rings (CORs).
These latter are adopted as an alternative to split ring resonators (SRRs) that suffer from narrow
bandwidth operation [48, 49]. The procedure introduces elliptical CORs on the patch resulting in a
multitude of current paths. This helps to enhance the slow wave effect which effectively increases the
length of the current path and the effective electrical length of the patch. Consequently, new resonating
modes are created at lower frequencies which helps to reduce the design size.

2. ANTENNA CONFIGURATION

The design is based on an elliptical-patch monopole planar structure. To achieve UWB and
miniaturization features, some alterations are brought to the basic structure. The ground plane is
defected, and the patch is tilted 45◦. The patch is modified by cutting elliptical thin slots resulting
in six open concentric elliptical ring-shaped strips. Miniature dimensions are achieved with further
improvement and other radiation characteristics. The designed antenna is printed on an FR-4 substrate
having a compact size of W × L = 15 × 20mm2, with a dielectric constant εr = 4.4, tan δ = 0.02, and
thickness h = 1.6mm (Fig. 1). The antenna is optimized using Ansys HFSS 15 and experimentally
realized to validate the simulation results.

Initially, as shown in Fig. 1, the antenna consists of an elliptical copper patch of thickness
t = 0.035mm tilted 45◦ clockwise, with six elliptical open rings with equal openings (splits) of
W1−6 = 1.2mm. Their positions (ϕ1−6) are carefully optimized, and optimal values are adopted.
Every two successive rings of width ti are separated by a certain distance Si.

The antenna is fed by a microstrip line crossed by a perpendicular strip as a matching stub to
help achieve the required results. The modified ground plane consists of an inverted L strip with a
semi-elliptical slot. All geometrical parameter dimensions are presented in Table 1.

A step by step design process of the proposed UWB antenna is described from the beginning to
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Figure 1. Proposed UWB antenna, (a) top view (b) bottom view and (c) detailed geometrical
parameters.

Table 1. Geometrical parameters of the proposed antenna.

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)

W 15 Ld 0.3 t3 0.24

L 20 Wd 1.38 t4 0.24

Lg 6.5 Rp 5.46 t5 0.22

Wg1 3.05 Rp1 4.2 t6 0.18

Lg2 0.3 S1 0.38 h 1.6

Wg2 4 S2 0.28 t 0.035

Rs 3.2 S3 0.33 φ1 33◦

Rts 2 S4 0.24 φ2 25◦

Wf 2.31 S5 0.26 φ3 61◦

Lf 11 S6 0.26 φ4 50◦

Lf1 6.475 t1 0.24 φ5 21◦

Lf2 1.5 t2 0.24 φ6 28◦

the final model along with an evaluation of the antenna parameters (S11 and gain) of each step until
the desired results are reached.

As shown in Fig. 2, we start with a tilted elliptical patch and a regular rectangular ground plane
(Ant.1), and some modifications and adjustments are brought to the structure, namely, cutting an
elliptical slot (Ant.2) and adding an inverted L strip in the partial ground plane.

The S11 parameter of these first three structures is presented by Fig. 3. The rings are introduced
to the radiating patch one by one (Fig. 4).

Improvements can be noticed in the antenna bandwidth due to the rings insertion (Fig. 5). After
introducing 6 rings a lower frequency of 3.3GHz is reached as a better result. This antenna shows a
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Figure 2. Modification steps of the ground plane.
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Figure 3. Effects of the ground plane on the S11 coefficient.
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Figure 4. Rings introduction.
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Figure 5. Effect of the rings on the S11

coefficient.
Figure 6. Loading of the strip.

2 4 6 8 10 12 14 16 18 20

-40

-30

-20

-10

0

 with strip 

 without strip 

S
1
1
(d

B
)

Freq [GHz]  

Figure 7. S11 coefficient of the final design.

resonance at around 2.5GHz which is suitable also for 2.45GHz ISM band applications.
The last step consists of loading the feed line with a crossing strip (Fig. 6). This shows an

improvement in the impedance bandwidth (Fig. 7), where it can be noticed that the new bandwidth
ranges from 3.1 to 18.1GHz.

3. RESULTS AND DISCUSSIONS

To validate the proposed concept and HFSS simulated results, a prototype antenna is fabricated
and measured. Fig. 8 shows photographs of the design fabricated according to the aforementioned
parameters.

The surface current distributions describing the radiation operation for different operating
frequencies are presented in Fig. 9. The relationship between the current path along the rings lengths
and the resonance frequency is critical because it determines the antenna physical dimensions, which in
turn determine the antenna’s performance characteristics such as radiation pattern, gain, and impedance
matching.



84 Sayad et al.

The proposed structure works in the frequency range 3.1–18.1GHz realizing an impedance fractional
bandwidth (FBW) of 141.51%. The L shaped strip in the ground plane shows a considerable effect at
frequencies less than 6GHz (Figs. 9(a)–9(h)). As the length of the current path in the antenna decreases,
the operating frequency increases. This is because a shorter current path is required to achieve resonance

  
(a) (b)

Figure 8. Prototype of fabricated UWB antenna (a) top view and (b) bottom view.

   
(a)    (b)    (c) 
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Figure 9. Surface current distributions at (a) 3.1GHz, (b) 3.5GHz, (c) 3.7GHz, (d) 3.8GHz, (e)
4.2GHz, (f) 4.5GHz, (g) 5GHz and (h) 6GHz.
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at higher frequencies. Conversely, at lower frequencies, a longer current path is required. The current
path lengths along different rings are about quarter wavelengths at corresponding resonance frequencies.
Therefore, the use of multiple rings created multiple resonance frequencies and widened the antenna
bandwidth considerably.

Figure 10 shows the simulated and measured S-parameters of the proposed antenna. Though
some differences in peak values can be noticed between simulations and measurements, which may be
attributed to human errors introduced during the measurement process in the anechoic chamber, good
agreement is observed, and both satisfy the bandwidth requirements (< −10 dB).
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Figure 10. Simulated and measured S11 results of the final design.
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Figure 11. Simulated and measured antenna parameters, (a) total gain and (b) efficiency.

Figure 11 shows the gain and efficiency of the proposed UWB antenna. We notice that the
measured gain varies between 0.75 and 5.4 dBi in the operating frequency band and tends to increase
with frequency; this may be due to high order modes having higher values of gain proportional to
frequency squared (G ∝ f2) [50, 51]. The efficiency fluctuates between 50% and 90% in the operating
band and tends to decrease at higher frequencies. This can be explained by the fact that the efficiency
is affected by losses in the conducting patch and the dielectric substrate which increase with frequency.
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(a) XZ plane at 3.1 GHz (b) YZ plane at 3.1 GHz 
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(a) XZ plane at 10.5 GHz (b) YZ plane at 10.5 GHz 
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Figure 12. Simulated and measured radiation patterns at different frequencies in XZ and Y Z planes.
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Figure 13. Input impedance of the design steps.
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Some mismatch between simulations and experiments is observed due to experimental inaccuracies and
simulation assumptions. However, this mismatch is bound and lies within admissible margins.

The simulated radiation patterns, in the XZ and Y Z planes, for 3.1GHz, 10.5GHz, and 18GHz
compared with measurements, show a quasi-omnidirectional pattern in both planes (Fig. 12).

The rings shape allows the creation of 3 radiating modes with impedance of the order of 100, 75,
and 72Ohms, respectively. The loading of the stub allows these radiating modes to be well matched
(Fig. 13).

Table 2 summarizes the results of a comparative study with previous works (all structures are planar
monopoles). The proposed UWB monopole antenna shows clear advantages in terms of compactness,
gain, and frequency bandwidth.

Table 2. Comparison with recently published UWB monopole antennas (λ0 is the free space wavelength
at the lower frequency).

Year Ref Bandwidth (GHz) FBW (%) Area (mm2) Max Gain (dBi) Area (λ2
0)

2020 [30] 3–11 114.29 24×30 4.5 0.24×0.3

2020 [7] 2.2–9.8 126.67 31×45 5.5 0.23×0.33

2020 [53] 2.19–13.95 145.72 26×27 5 0.19×0.2

2020 [54] 1.98–10.54 136.74 31.3×34.9 4 0.21×0.23

2020 [23] 3.42–11.79 110.06 24×28 4.08 0.27×0.32

2020 [56] 3.05–11.9 118.39 61×61 9.68 0.62×0.62

2021 [35] 3.19–15.32 131.06 18×26 4.5 0.19×0.28

2021 [52] 2.95–11.82 120.11 20×28 3.89 0.20×0.28

2021 [18] 2.5–10.6 123.66 38×48 8.4 0.32×0.40

2021 [20] 3.1–10.6 109.49 32×38 5.75 0.33×0.39

2021 [39] 2.4-10.5 125.58 20×26 7 0.16×0.21

2022 [19] 3.2–11.7 114.09 23×28 9.8 0.25×0.30

2022 [37] 3–12.7 123.57 24×30 3.6 0.24×0.30

2022 [38] 2.8–10.6 116.42 17×23 4.9 0.16×0.21

2022 [53] 3–11 114.29 22×25 4.1 0.22×0.25

2023 [57] 3.5–10.4 99.28 30×35 NR 0.35×0.41

2023 [58] 3.63–21.94 143.21 16×22 6.0 0.19×0.27

Proposed antenna 3.1–18.1 141.51 15×20 5.4 0.16×0.21

NR: not reported

4. CONCLUSION

A novel low-profile miniaturized UWB microstrip antenna is presented. The proposed antenna is
designed and simulated using HFSS 15 and experimentally validated. The proposed design has been
fabricated and tested as proof of concept. The proposed low-profile UWB antenna structure achieves
a wide impedance bandwidth (141.51%), stable gain, and omnidirectional patterns using six concentric
open rings.

The antenna shows convincing results that are suitable for UWB applications and advantages in
comparison with other designs for the same applications in terms of overall size and some parameters
such as high gain and high efficiency that achieved a peak of 5.4 dBi and 90%, respectively.
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