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ABSTRACT: This article introduces a novel ship detection method for Synthetic Aperture Radar (SAR) images that leverages the principles
of Finsler information geometry. It employs the curvature features of a statistical manifold as a discriminative mechanism to diminish
the impact of sea clutter and augment the contrast between a target and its background. The ambiguity of the local microstructure and
statistical characteristics is partially resolved by using information theory to select metric definitions and curvature representation of non-
European space. This method models sea clutter using the Gamma Distribution Function (GDF), transforming the detection challenge
into an anomaly detection framework within the GDF space. This approach establishes a theoretical detection framework rooted in
Finsler information geometry by integrating statistical modeling with Finsler geometry. It harnesses the Finsler characteristics of GDF
space to extract the curvature feature representations for each GDF. Detection is achieved by applying one-class support vector machines
(SVMs) to a matrix of curvature values derived from these representations. The detection algorithm unfolds in two primary phases.
Initially, it utilizes a family of probability distributions to capture geometrical information. Subsequently, curved features are employed
for target detection. Through rigorous experimentation with real datasets, the method demonstrates enhanced resilience to sea clutter and
outperforms existing techniques for analyzing distribution families, validating its effectiveness and robustness.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a versatile all-weather
tool with high-resolution capabilities which uses active mi-

crowave sensors to measure electromagnetic fields scattered
back from targets [1]. This technology has attracted significant
attention for ship detection in marine remote sensing [2]. Re-
search in this area primarily focuses on twomethodologies: tra-
ditional machine learning techniques and advanced deep learn-
ing approaches. Despite its effectiveness in various fields, such
as imaging [3], speech recognition [4], and natural language
processing [5], deep learning requires extensive datasets [6].
Unfortunately, the scarcity of large high-quality datasets in cer-
tain areas leads to challenges such as overfitting, particularly
when deep learning algorithms are applied. A notable issue is
the requirement for local correlation in data samples; without
this, the reliability of these models decreases, highlighting the
need for improved detection standards and larger datasets to ef-
fectively leverage the full potential of deep learning.
Intensity threshold-based techniques are a cornerstone of

SAR target detection, aimed at identifying pixels or clusters
that stand out from their surroundings based on their intensity
values [7]. These techniques rely on the premise that targets
such as ships and background clutter exhibit statistically signif-
icant intensity differences. However, the dynamic and intricate
nature of SAR environments often undermines these detectors
because their statistical assumptions may not hold across var-
ied and complex clutter scenarios [8]. To address these chal-
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lenges, a wealth of research has been dedicated to overcoming
the limitations inherent in these traditional adaptive-threshold
detection methods. Recent advancements in exploiting the fea-
ture representation of SAR images have introduced innovative
approaches aimed at enhancing the detection and analysis of
targets, such as ships, amidst complex backgrounds. Highlight-
ing a key innovation, [9] introduces a variance weighted infor-
mation entropy method specifically crafted to quantify the lo-
cal dissimilarity between a ship target and its adjacent clutter
in SAR images. [10] achieves the extraction of robust image
features suitable for detecting targets in SAR images, even un-
der conditions of very low signal-to-noise ratio (SNR). Speckle
clutter, which is a common issue in SAR imagery, complicates
both the interpretation and practical application of these images.
To address a critical challenge in SAR image analysis, [11] con-
ducts a quantitative study on the impact of speckle clutter on
ship detection performance. To uniquely utilize the intricate in-
formation present in SAR images, [12] introduces an innovative
unsupervised ship detection method that leverages complex-
signal kurtosis and multi-scale saliency. [13] proposes a ship
detection method that capitalizes on SAR time series data, of-
fering a dynamic approach to identifying ships over time. To
address the challenges posed by the simplistic textures of tar-
gets against complex backgrounds, [14] introduces a technique
based on probabilistic inference and data fusion. This method
aims to significantly lower the false alarm rate and enhance
the reliability of detection in an inherently challenging SAR
imagery environment. [15] employs a Fisher vector encoding
strategy to encapsulate multi-stage information of superpixels
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within SAR images. [16] unveils a ship detection strategy tai-
lored for high-resolution SAR images, which clusters spatially
enhanced pixel descriptors. This approach leverages detailed
information available in high-resolution data to improve de-
tection accuracy. [17] introduces a superpixel-based coupled
folded arm resonator (CFAR) approach for ship detection in
SAR images. This method innovatively applies pixel intensity
and spatial features, either in sequence or individually, within
Euclidean space to discern targets from clutter. [18] ventures
into the domain of information geometry with the introduction
of a Riemannian metric. This advanced mathematical frame-
work was designed to markedly enhance the contrast between
ship targets and background clutter. [19] presents a ship detec-
tion method that utilizes Riemannian curvature features. This
innovative approach aimed to exploit the microstructural char-
acteristics of the parameter space and enhance the ability to
discern ship targets amidst complex backgrounds. [20] intro-
duces a comprehensive framework that integrates the Rieman-
nian metric with a statistical optimization model. This com-
bination not only boosts the target detection capabilities but
also achieves notable resilience to clutter interference. In the
rapidly evolving field of SAR image analysis, no single detec-
tion method has emerged as a universally accepted standard.
Each introduced algorithm has unique strengths in specific sce-
narios, and each technique offers distinct advantages and faces
particular limitations.
Finsler geometry, a field of growing importance in mathe-

matics and physics, plays a pivotal role in the calculus of vari-
ations and has seen rapid development across diverse applica-
tions in physics and biology [21]. The use of a family of proba-
bility distributions is central to the application of Finsler geom-
etry in practical contexts [22]. This study explores Finsler ge-
ometric structures, focusing on how these structures, based on
probability distributions, can be applied to contemporary en-
gineering problems. The key objective was to investigate the
microstructure of the Finsler manifold with a specific applica-
tion in enhancing ship detection in SAR imagery. The novelty
of this work lies in the proposition of a viable method to har-
ness Finsler geometry theory for the analysis of SAR images.
This study lays out an actionable framework for an in-depth
study and practical application of Finsler information geometry
by employing Finsler geometric analysis. This interdisciplinary
approach not only advances our understanding of Finsler geom-
etry but also opens new avenues for its application in solving
complex problems in SAR image analysis and beyond.

2. PROPOSED METHODS

In this section, the geometry of the family of Gamma distribu-
tions is studied. A class of Finsler metrics is defined by a vec-
tor field on a Riemannian space form. The model of Gamma
random variable is embedded as a submanifold in Finsler man-
ifold. In this way, the problem of detection is transformed into
a curvature problem of space. The ambiguity of the local mi-
crostructure and statistical characteristics is partially resolved
by using information theory to select metric definitions and cur-
vature representation of non-European space.

2.1. S-Curvatures
With the development of mathematics, problems in a non-
Euclidean space can be addressed. In other words, the struc-
ture focused on is a non-Euclidean metric. The essence is to
study problems in a generalized space, where there is no higher-
dimensional space for reference. The Riemannian property of
a subspace in Rn is that it can be constructed using metrics
based on the local Cartesian coordinates and intrinsic geomet-
ric properties, where there is no parametric representation for
reference. The main idea of Riemannian geometry is to regard
a surface as inherent in the universe itself, which is based on a
quadratic differential form. Compared to the Riemannian ge-
ometry, the Finsler geometry metric has no restrictions on the
quadratic form. That is, Finsler geometry has a richer geo-
metric structure than Riemannian geometry [23]. In general,
Finsler geometry provides specific theoretical bases, comput-
ing methods, and designing criteria for exploring the world of
information science with high sensitivity, variability, and ac-
curacy. The depth and scope of studies in the field of Finsler
geometry must be improved. One of the main reasons for this is
the complexity of calculations. Through continuous works of
many researchers, their efforts have paid off, and the situation
has also been gradually improved [24].
This study focuses on creating Finsler geometry structures

of data and computing selected S-curvature indices from typ-
ical real SAR imagery. Furthermore, it is shown that feature
representation — based on Finsler geometry — can improve
target detection accuracy under inhomogeneous sea state condi-
tions. One of the aims of this study is to provide useful insights
into Finsler geometric methods in the analysis of image data.
Although the application prospects of the results remain to be
evaluated, we hope that these results will provide a reference to
intelligence engineering.
Studies on Finsler geometry have focused on metrics, con-

nections, geodesics, curvature, etc. In this section, we discuss
some basic facts about Finsler spaces [24]. Let M be a mani-
fold that is locally homeomorphic to a Euclidean space, such
as a Euclidean space, sphere, manifold of probability distri-
butions, manifold of positive measures, unitary matrices, and
neural manifold. A Finsler metric F is defined as a function
F : TM → Rn with the following properties: (1) Regular-
ity property: F is ∞ on TM/ {0}; (2) Positive homogeneity
property: F (x, λy) = λF (x, y) for all λ > 0; (3) Strong con-
vexity property: The Hessian matrix (gij) := ([2−1F 2]yiyj ) is
positive-definite for all points of TM/ {0}.
In this case, (M, F ) is called the Finsler manifold. Clearly,

the restrictionFx defined on TxM is a Minkowski norm. It fol-
lows from the homogeneity and convexity of F that F (x, y) =√
gijyiyj . Take a local coordinate system (xi, yi) on the n-

dimensional manifold and let dVF = σF (x)dx
1 · · · dxn denote

the Busemann-Hausdorff F form of Finsler metric [24]; then,

σF (x) :=
V ol (Bn)

V ol {(yi) ∈ Rn |F (x, yi (∂/∂xi) |x ) < 1}
(1)

where V ol denotes the Euclidean volume, and V ol(Bn) de-
notes the volume of the unit sphere in Rn. Thus, σF (x) is a
measure function. Furthermore, if Finslerian volume is defined
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in different ways, different theoretical results are obtained. In
other words, one can choose a geometric statement depending
on the needs of different problems.
The primary content of modern Finsler geometry includes

exploring various object expressions on M, such as connec-
tion transform under different coordinate changes. For y ∈
TxM/ {0}, the distortion τ = τ(x, y) is defined as the form
τ(x, y) := 2−1 ln [det (gij(x, y))]− lnσF (x).
Let c(t) be a geodesic with (x, y) = (c(0), ċ(0)). The

S-curvature is defined as [24] S(x, y) := d
dt [τ(c(t), ċ(t))]

∣∣
t=0

which is a measure of the distortion along the manifold
geodesics. For Riemannian metrics, the S-curvature vanishes.
The S-curvature S is isotropic if and only if a function
c = c(x) exists, which is defined on M and satisfies [25]
S(x, y) = c(n+ 1)F (x, y).
For general Finsler metrics, the Busemann-Hausdorff form

dVF may be expressed hardly by elementary functions. How-
ever, this can be done for Randers metrics. Randers space was
first proposed to solve problems in general relativity. It has
since been applied in many disciplines, such as mathematics,
physics, biology, and informatics. A Randers metric is a spe-
cial Finsler metric, which is usually represented as the form
F = α + β, where α =

√
aij(x)yiyj is a Riemann metric

on M, and β = bi(x)y
i is a 1-form on M. aij(x) and bi(x)

satisfy
√
aij(x)bi(x)bj(x) < 1, where (aij) = (aij)

−1.
According to Finsler geometric theory, a Randers metric

F = α+ β can be defined as a solution of the following equa-
tion on manifold (M, h) [25], h(x, yF−1 − Vx) = 1, where
h =

√
hij(x)yiyj is the Riemannian metric onM, and Vx de-

notes a vector field of the vector field V = V i(x) ∂
∂xi , which

satisfy h(x,−Vx) =
√
hijV iV j < 1. Here, F = α+β can be

expressed as the form F = λ−1
√
λh2 + V 2

0 − λ−1V0, where
h =

√
hij(x)yiyj , V0 = hijV

iyj , and λ = 1− h(x,−Vx).
It has been proven that the S-curvature S = c(n+ 1)F of

the Randers metric F is isotropic if and only if the vector field
V satisfies [25]−4chij = Vi;j +Vj;i. Here, Vi;j are the coeffi-
cients of the covariant derivative of vector field V with respect
to h.
We assume that the 1-form V ∗ := V1dx

1 + V2dx
2 satisfies

−4chij = Vi;j + Vj;i. Let ψ =
{
η
[
(x1)

2
+ (x2)

2
]
+ 1
}
V1

and ϕ =
{
η
[
(x1)

2
+ (x2)

2
]
+ 1
}
V2. Then, ψ and ϕ satisfy

∂ψ

∂x2
+

∂ϕ

∂x1
= 4ηcx1x2

{
η
[(
x1
)2

+
(
x2
)2]

+ 1
}−1

(2)

[
η
(
x1
)2

+ 1
] ∂ψ
∂x1

=
[
η
(
x2
)2

+ 1
] ∂ϕ
∂x2

(3)

[
η
(
x1
)2

+ 1
] ∂ψ
∂x1

= −2c

[
η
(
x1
)2

+ 1
] [
η
(
x2
)2

+ 1
]

η
[
(x1)

2
+ (x2)

2
]
+ 1

(4)

We then have the following equations:

∂ψ

∂x2
+

∂ϕ

∂x1

= −ηx1x2
{

1

η(x2)
2
+ 1

∂ψ

∂x1
+

1

η(x1)
2
+ 1

∂ϕ

∂x2

}
(5)

[
η
(
x2
)2

+ 1
]−1 ∂ψ

∂x1
−
[
η
(
x1
)2

+ 1
]−1 ∂ϕ

∂x2
= 0 (6)

And

c = −1

2

[
η
(
x1
)2

+ η
(
x2
)2

+ 1
] [
η
(
x2
)2

+ 1
]−1 ∂ψ

∂x1
(7)

If η ≈ 0, we set η = 0. The Cauchy-Riemann equations are
obtained ∂ψ

∂x2 + ∂ϕ
∂x1 = 0 and ∂ψ

∂x1 − ∂ϕ
∂x2 = 0. According to

the theory of complex analysis, we analyze and work out the
solutions to the equations. An exact analytical solution to these
equations can be obtained.

ψ = C1 + C2x
1 − C3x

2 + C4

[(
x1
)2 − (x2)2]− 2C5x

1x2

+C6

[(
x1
)3 − 3x1

(
x2
)2]−C7

[
3
(
x1
)2
x2 −

(
x2
)3](8)

where Ci (i = 1, · · · , 7) are real constants.

2.2. Sectional Curvatures
Information geometry is a theoretical system developed based
on differential geometry. It is primarily used in statistical anal-
yses, control theory, neural networks, quantum mechanics, in-
formation theory, etc. This provides a way to understand proba-
bility statistics methods in geometric terms [26], which bridges
the gap between pure mathematics and information science.
The choice of probability distribution model for background

clutter in SAR image has been extensively studied. By an-
alyzing the properties of SAR imagery, many concrete SAR
statistical distributions have been developed over the past few
decades. Among them, Gamma distribution is a commonly
used statistical model for sea clutter in SAR imagery. The prob-
ability density function f(z) of Gamma random variable Z is
given by [27]

f (z) =

(
κ

γ

)κ
zκ−1

Γ (κ)
exp

(
−κ
γ
z

)
, z > 0 (9)

where γ and κ denote the scale and shape parameters, respec-
tively, and Γ is the Gamma function. Set ν = κγ−1, and we
have the logarithm of f(z), log f(z) = [(κ− 1) log z − νz]−
[logΓ(κ) − κ log ν]. Thus, the Gamma Fisher matrix can be
defined as:

h (x) = [hij ] =

(
κν−2ρ −ν−ρ

−ν−ρ d2

dκ2 lnΓ (κ)

)
(10)

where ρ = 25γ
√

Γ(1 + 2κ−1)− Γ2(1 + κ−1) and
x = (x1, x2) = (ν, κ). Hence, the set M = {f(z)} of
the Gamma probability distribution family forms a two-
dimensional manifold, where a probability density function
f(z) is a point of manifold M, and x = (x1, x2) = (ν, κ)
denotes a coordinate system. For convenience in writing, we
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let ∂i = ∂
∂xi (i = 1, 2). By a straightforward calculation, the

sectional curvature η of the Riemannian manifoldsM is given
as follows:

η =
1

4
ν−2 [ϑ′ (κ) + κϑ′′ (κ)] [1− κϑ′ (κ)]

−1 (11)

where ϑ(κ) denotes the digamma function.

2.3. One-Class SVM
One-class classification problem has been investigated in sev-
eral fields for decades [28]. Among the most effective unsuper-
vised approaches for one-class classification, one-class support
vector machines (SVMs) have been successfully used in many
applications. The concept of the one-class SVM algorithm is
simple, that is, finding a hyperplane or circle the positive ex-
amples in the samples.
We adopted one-class SVM model [29] to learn the discrim-

inative weights for the curvature features. The objective func-
tion of a one-class SVMs is described as a convex optimization
problem.

min
w,ς,ε

2−1∥w∥2 − ε+ υ−1N−1
N∑
i=1

ςi (12)

s.t
wTG (Si) ≥ ε− ςi (13)

where ε represents the soft margin which represents the hyper-
plane distance from the origin; G denotes the Gaussian ker-
nel function; ςi > 0 is training errors; and υ ∈ (0, 1] denotes
the control parameter which controls the trade-off between the
training errors and the number of support vectors. The default
value of this control parameter is set to 0.5.

2.4. Detection Algorithm
We focus on Randers metrics, which is the simplest non-
Riemannian Finsler metric. Let

α (x, y) =√
[1− hij (x)V iV j ] (hij (x) yiyj) +

(∑
i

V i (x) yi
)2

1− hij (x)V iV j
(14)

and

β (x, y) = −

∑
i

V i (x) yi

1− hij (x)V iV j
(15)

where y = (y1, y2) =
(
ν(κ2 + ν2)−

1
2 , κ(κ2 + ν2)−

1
2

)
. Let

V =
2∑
i=1

V i∂xi be defined by V 1 := [η(x1)2 + 1]ψ+ ηx1x2ϕ

and V 2 := [η(x2)2+1]ϕ+ηx1x2ψ. For the Riemannianmetric
α(x, y) and the 1-form β(x, y), F = α+β is a Randers metric.
The isotropic S-curvature of F can be obtained as follows:

S (x, y) = c (x)F (x, y) (16)

where, c(x) = − 1
2 [η(x

1)2 + η(x2)2 + 1][η(x2)2 + 1]−1 ∂ψ
∂x1 .

The implementation details are described as follows:
(1) A binary image (0-1 labels) is obtained using a CFAR de-

tector based on Weibull distribution. Experimental parameters
are set as follows: the size of target window is h1×h1; the size
of guard window is h2 × h2; the size of background window is
h3×h3; and the false alarm rate (FAR) is Pfa. The parameters
(µ, σ) of Weibull distributions are estimated by using the max-
imum likelihood estimation (MLE) method, and T denotes the
detection threshold which is computed by z(k, l) > µ+σT ⇔
target pixel and T =

√
6π−1 [log (− logPfa) + 0.576];

(2) A fixed-size sliding window (h × h pixels) is applied to
the image for extracting patches of h × h around each pixel,
which are used to estimate the parameters (ν, γ) of Gamma
distribution model by the method of maximum likelihood. Let
x = (ν, κ), y =

(
ν(κ2 + ν2)−

1
2 , κ(κ2 + ν2)−

1
2

)
, and Ci = 1

(i = 1, · · · , 7). The isotropic S-curvature value of each patch
of h× h was individually estimated;
(3) After pre-screening pair-wise features, 0-1 label and

isotropic S-curvature value, isotropic S-curvature values are
divided into two categories: background and potential target.
The one-class SVM classifier was learned and trained on back-
ground S-curvature values;
(4) The final detection is realized with respect to all such fea-

tures (isotropic S-curvature values for all pixels of SAR image)
by using the one-class SVMmethod, which, by its nature, finds
targets that are statistically distinct from background clutters.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Experimental Results
Space-borne SAR sensors are widely applied in the monitoring
and analysis of oceans. Newmodes of operation have increased
the flexibility of SAR sensors, and these sensors can now obtain
extensive spatial-temporal resolutions and microwave images
within the coverage range. Owing to the physics and geometry
of the formation process, SAR has a peculiar nature and prop-
erties, such as speckle noise, discontinuous scenes, and moving
objects. However, in practice, all of them can increase the dif-
ficulty of algorithm design and seriously affect the detection
effect of the algorithm.
To test and evaluate detection performance of proposed

method, two real SAR images are first used in experiments,
which are shown in Figs. 1(a) and (b). Figs. 2(a) and (b) show
the 3D plots of the SAR images. Sea clutter is the undesired
radar echoes from fluctuant sea surface that is generally non-
homogeneous and non-stationary. Speckle noise is an intrinsic
property of SAR imagery. Many errors in ship detection are
caused by mixed pixels and speckle noise in SAR images. The
existence of speckle noise is particularly important and con-
tributes to serious disturbances in the performance of target de-
tection in SAR images.
Owing to the characteristics of coherent imaging of SAR, sta-

tistical modeling methods are often used for target detection.
Many nonparametric, parametric, and semiparametric mod-
els for SAR imagery have been undertaken in the literatures.
As nonparametric modeling usually involves more explanatory
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(a) (b)

FIGURE 1. Original SAR images. (a) SAR image. (b) SAR image.

(a) (b)

FIGURE 2. 3D plot of the images. (a) Fig. 1(a). (b) Fig. 1(b).

(a) (b)

FIGURE 3. Histograms of two images. (a) Fig. 1(a). (b) Fig. 1(b).

variables, parametric and semiparametric models have been in-
tensively studied. As shown in Figs. 3(a) and (b), SAR imagery
has the characteristics of non-homogeneity and non-stationary.
It is difficult to guarantee the accuracy of the designed models
fitting to the real SAR image. It is expected that statistic-based
detection performance can be improved by incorporating novel
analysis techniques. This study presents a Finsler metric to-
gether with isotropic S-curvatures in a manifold of probability
distributions. These geometric structures play important roles
in wider areas of information sciences, such as signal process-

ing, machine learning, automatic control, and even quantum in-
formation.
The first step of the algorithm is to adopt a pre-screening

mechanism appropriate for target detection, which is used as
pre-detection to obtain pre-screening pair-wise features, 0-1 la-
bel and isotropic S-curvature value. Among these methods,
CFAR detectors are the most commonly used for ship detection
in SAR images. This is achieved by estimating the threshold
value based on the statistical characteristic of the pixels of the
surrounding area. Because the pixel value above the threshold
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(a) (b)

FIGURE 4. Binary classification and potential-target localization. (a) Fig. 1(a). (b) Fig. 1(b).

TABLE 1. Statistics characteristics for sectional curvatures of clutter.

Index Maximum value Minimum value Expected value Standard deviation Median Skewness
Fig. 1(a) −3.37× 10−41 −5.31× 10−17 −5.30× 10−21 3.97× 10−19 −2.10× 10−28 −116.21

Fig. 1(b) −6.78× 10−38 −2.88× 10−11 −9.87× 10−15 3.48× 10−13 −7.39× 10−28 −60.73

TABLE 2. Statistics characteristics for S curvatures of clutter.

Index Maximum value Minimum value Expected value Standard deviation Median Skewness
Fig. 1(a) 2.43× 10−9 −3.99× 10−21 5.02× 10−12 1.60× 10−10 1.91× 10−14 68.27

Fig. 1(b) 4.35× 10−5 −7.76× 10−13 7.17× 10−7 8.22× 10−6 2.61× 10−10 16.27

is declared as unusually bright, it may be a sample from the
target. Clutter statistics in SAR images are typically analyzed
using pixels in the background window around the pixel under
test.
Without loss of generality, the commonly used adaptive

threshold algorithm, namely CFAR detector under Weibull
background, was adopted to obtain an initial coarse detec-
tion of the SAR image. As shown in Figs. 4(a) and (b), the
pretreatment of SAR images is achieved using Weibull-based
CFAR detection, and the integrity of the target areas is guaran-
teed. The experimental results demonstrate the effectiveness of
CFAR for the initial coarse detection of SAR images.
The second step of the algorithm involves computing the

isotropic S-curvatures for the one-class SVM. During the ex-
periments, the two parameters (ν, γ) of the Gamma distribution
were estimated using the MLE method, which can be imple-
mented by extracting patches of h× h around each pixel under
test. The isotropic S-curvature features of the target and back-
ground lying on the Finsler manifolds were used to enhance the
performance of ship detection in SAR imagery. Subsequently,
the calculation formulas were used to calculate the isotropic S-
curvatures.
According to the theory of Finsler geometry on the statis-

tical manifold, the S-curvature is constructed to measure the
rate of change of distortion along geodesics, which is used for

analyzing the variation of a family of Gamma probability dis-
tributions. Let x = (ν, κ), y = (ν(κ2+ ν2)−1, κ(κ2+ ν2)−1),
and ν = κγ−1. As the set window is moved one pixel at a
time across the entire image, the isotropic S-curvature value of
the patch of h × h around each pixel of SAR image is calcu-
lated based on the estimated parameters (ν, γ). Table 1 lists
the statistical characteristics of the sectional curvatures η of
clutter. According to the preceding models, the isotropic S-
curvature can be estimated using the presented formula, pro-
vided that η is small. Table 2 lists the statistics characteristics
of the isotropic S-curvatures of clutter. Figs. 5(a) and (b) show
the S-curvatures for each pixel with a high contrast between
the target and background in SAR image. A comparison of the
values in Table 2 and Fig. 5 indicates that the optimum features
depend not only on the amplitude but also on the contrast with
the background.
One of the aims of this study is to explore the invariant geo-

metrical structure involved in statistical modeling using Finsler
geometry. The S-curvature plays an important role in Finsler
geometry, which interacts with the flag curvature in a very pro-
found way. The flag curvature is a Riemannian quantity. This
is a natural extension of the sectional curvature of Riemannian
geometry. Many feature extraction techniques based on sec-
tional curvature, which were developed for Riemannian space,
can be carried over to Finsler space [24].
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(a) (b)

FIGURE 5. Isotropic S-curvature values. (a) Fig. 1(a). (b) Fig. 1(b).

(a) (b)

FIGURE 6. Final ship detection results. (a) Fig. 1(a). (b) Fig. 1(b).

TABLE 3. Experiment parameters used for ship detection.

Index Modulation factor Sliding window FAR Target window Guard window Background window
Fig. 1(a) 6 9× 9 10−17 9× 9 15× 15 25× 25

Fig. 1(b) 4 15× 15 10−17 15× 15 15× 15 25× 25

In the third step, according to the CFAR detection results (0-1
labels), the isotropic S-curvature values were divided into two
categories: background and potential targets. Background S-
curvature values were used to learn and train the one-class SVM
model, which was used for anomaly detection in SAR images.
The final ship detection results were obtained using a trained

one-class SVM classifier. As shown in Figs. 6(a) and (b), the
proposed method provides a better detection performance for
ship detection in SAR images.
The experiment parameters used for ship detection are shown

in Table 3. The first parameter is the modulation factor ρ,
which can be estimated according to the parameters (ν, γ) of
the Gamma distribution model. The second parameter is the
fixed-size sliding window (h × h pixels), which is used to ex-
tract patches of h × h around each pixel under testing and to
estimate the parameters (ν, γ). The remaining parameters are
provided for Weibull-based CFAR detector, which are used to
obtain the initial coarse detection of the SAR image. In gen-

eral, with several predefined parameters, the proposed method
can be used to simultaneously detect targets of different sizes.

3.2. Experimental Analysis

For a quantitative assessment, we compared the detection re-
sults with the annotated dataset. The following measures al-
lowed us to quantitatively assess the performance of several
detection methods. DR = TP (FN + TP )−1 and FAR =
FP (FP + TP )−1, where DR is the detection rate (DR);
FAR denotes the false alarm rate (FAR);FN denotes the num-
ber of missing targets; TP denotes the number of detected tar-
gets; and FP denotes the false positive.
In the experiments, Gaofen-3 datasets [30] were used to eval-

uate the detection algorithms based on several performance
measures. Gaofen-3 (GF-3) is China’s first C-band multi-
polarization SAR imaging satellite with a resolution of 1m [31].
Its primary mission is to provide marine monitoring and ocean
remote sensing. During the experiment, 1000 SAR images, in
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TABLE 4. Comparison of performance for detection methods.

Index DC-based CFAR [7] Lognormal ρ-metric [8] Geometric optimization [20] Proposed method
DR 84.10% 84.23% 84.62% 84.97%
FAR 11.33% 4.22% 6.23% 4.13%

TABLE 5. Comparison of performance for detection methods.

Index BTS-RCFAR [8] SSMRI-based method [10] Curvature-based saliency [19] Proposed method
DR 93.33% 92.15% 90.79% 90.46%
FAR 10.24% 8.55% 4.01% 3.87%

which the land areas were masked out of the image being pro-
cessed, were used to verify the performance of the detection
methods via experiments. Morphological image processing is
used to erase some false point-targets in binary images, which
improves the quality of the binary detection image. In the ex-
periment, the parameters were set as follows. The size of the
sliding window is 15× 15 pixels (used to estimate the parame-
ters (ν, γ)); the size of the backgroundwindow is 25×25 pixels,
the size of the guard window is 15 × 15 pixels; the size of the
target window is 15× 15 pixels; and the FAR is Pfa = 10−17.
As shown in Table 4, the proposedmodel achieves a better FAR,
which demonstrates its robustness and effectiveness.
In order to further verify the effectiveness of the proposed

method, we perform experiments on Official-SSDD, which can
be found in SAR ship detection dataset (SSDD): Official release
and comprehensive data analysis. During the experiment, 1000
SAR images, in which the land areas weremasked out of the im-
age being processed, were used to verify the performance of the
detection methods via experiments. From stationary and SNR
of two aspects on clutter background, SSDD contains very high
quality samples. The detection rate of this proposed algorithm
is also very high.
CFAR-based detection algorithms are based on statistical

background modeling. They are designed to search for bright
pixel values that are also statistically unusual compared to the
pixels in the surrounding area. The CFAR detector causes false
alarms, even though the false alarm rate is especially low. Sea
clutter is the backscatter from fluctuant sea surface and is gen-
erally non-homogeneous and non-stationary. Theoretical anal-
yses and experiments indicate that the CFAR-based method has
the feature of short computation time, high detection probabil-
ity, high false alarming probability, and low anti-jamming per-
formance [32]. For the Riemannian geometry method with var-
ious geometric structures, the detection performances are also
different. Comparing the experimental results in Table 4 and
Table 5, the proposed method, the curvature feature represen-
tation based on Finsler geometry, shows better anti-jamming
performance.
The theoretical analysis and experimental results show that

the proposed curvature framework using Finsler information
geometry in the context of image analysis provides a natural

and appropriate way to represent features from SAR imagery.
The resulting information-geometry theory based on Finsler ge-
ometric structure provides a novel correspondence of statistic
and geometry.

4. CONCLUSIONS
Compared with Riemannian geometry, Finsler geometry has no
restrictions on the quadratic form, and Finsler geometry has
a richer geometric structure than Riemannian geometry. Sig-
nificant advances have been made in recent studies on Finsler
geometry. The ideas and methods of Finsler geometry not
only have an important effect on improving other mathemat-
ical branches but also possess potential applications in physics,
control theory, informatics, etc.
Speckle noise is an intrinsic property of SAR imagery. The

effects of speckle usually complicate SAR image detection and
application. To overcome this limitation, this study proposes
a curvature-based method for ship detection using SAR im-
ages. The main contribution of this work lies in the devel-
opment of Finsler geometric feature. The sensitivity and effi-
ciency of Finsler geometric feature were examined and demon-
strated. These methods are suitable for the detection of ship tar-
gets in SAR images, but not for small target detection. Based
on GaoFen-3 datasets, comparison studies validated the superi-
ority of the curvature-based method for ship detection in SAR
images.
Relying on modern differential geometry theory, this article

offers an accessible entry point to Finsler information geometry
for readers new to the area. One of the aims of this study is to
synthesize Finsler geometric and statistical methods for target
detection in SAR images. Theoretical analysis and experiments
indicate that the Finsler geometry has shown great value and vi-
tality. Future work will investigate how to use the S-curvature
to explore highly variable, highly sensitive, and highly control-
lable functions in a non-Euclidean space, which can be applied
to the deep learning models. It is a research field that uses mod-
ern mathematics theory and algorithms for deep neural network
research. It is hoped that Finsler information geometry will
build positive interactions between the methods and ideas of
different groups in the future.
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