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Quasi-Stationary Approximation of Dynamic Inductive Wireless
Power Transfer

Luiz Lisboa Cardoso1, José Alberto2, *, Andrés N. Meléndez3, and João L. Afonso1

Abstract—Dynamic Inductive Wireless Power Transfer (DIWPT), used for charging and powering
electric vehicles (EVs), has been presented lately as a solution for increasing the distance range of
electric vehicles and reducing the utilization of heavy and bulky battery systems. In most DIWPT
designs, the voltage induced by the movement of the receiving coil over a time-varying magnetic field is
neglected and never quantified. In this work, a simplified phasor expression for the total induced voltage
on a coil that is moving in a sinusoidal time-variant magnetic vector field is developed. If no rotation is
observed in the coil, a 90◦ out of phase voltage component proportional to the speed of the coil is added
to the induced voltage that would be calculated if the coil was stationary. The phase of this voltage
component is delayed or advanced with respect to the stationary induced voltage, according to whether
the coil is moving into or out of a region of higher magnetic flux. Then, under some assumptions on the
geometry of inductive coil configurations, it is possible to estimate the minimum induction frequency
for which the quasi-stationary approximation can be considered. The resulting frequency value for a
representative geometry is calculated, indicating that, for automotive applications, the relative error
in the induced voltage is actually negligible, except in the vicinity of the points of zero-crossing in the
magnetic flux, where the absolute value of the induced voltage is low anyway.

1. INTRODUCTION

Inductive Wireless Power Transfer (IWPT) has been under extensive research for the past years. Used
for several types of applications, IWPT has proven to be an interesting solution for charging and
powering electric vehicles (EVs) [1–3]. By using stationary charging in parking spaces, stop signs, red
lights, energy can be transferred to the vehicle without the need for electrical contact or user action, thus
increasing the range of EVs and reducing the necessity of large and bulky energy storage units. However,
newer applications consider the charging of the vehicle on the move, which is called Dynamic Inductive
Wireless Power Transfer (DIWPT) [4–6]. In DIWPT applications, the power is transferred between
primary and secondary coils while they are in relative movement to each other [7–10]. For the analysis
of both stationary and dynamic IWPT applications, complete theoretical support was provided in 1861
by Maxwell’s Theory of Electromagnetism and equations [11], as popularized in Heaviside’s vector
notation in 1894 [12], which consistently and precisely model all purely electromagnetic macroscopic
terrestrial phenomena so far observed [13]. In DIWPT works, the voltage induced on the secondary coil
due to the movement of the vehicle is usually neglected, only being considered the stationary coupling
of the two coils for each instant of the vehicle movement [4, 5, 14]. Although this dynamically induced
voltage is expected to be negligible at the high frequencies and the relatively low speeds involved in
vehicular applications, this component of the total induced voltage is not known to have been assessed
and quantified. In this paper, the validity of the quasi-stationary approximation to this dynamically
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induced voltage is studied and assessed. Simple and easy-to-use expressions that quantify the error of
using this approximation are developed. These expressions are expected to be of practical assistance in
the design of more general DIWPT systems.

2. VOLTAGE INDUCED IN A MOVING COIL BY A MAGNETIC FIELD VECTOR
FIELD B

The voltage induced in a receiving coil is the time derivative of the total magnetic flux crossing that
coil. It will depend not only on the variation of the magnetic flux due to the time-varying generated
magnetic field B, but also on the variation of the flux caused by the displacement of that coil in space.
Therefore, in general, the voltage induced in a moving coil, V D(t), will be potentially different from the
voltage V 0(t) induced on the same coil, by the same magnetic field B, at the same position in space, if
the coil was stationary (velocity v = 0) with respect to all the sources creating the magnetic field B, as
illustrated in Figure 1.

(a) (b)

Figure 1. Voltage induced on a coil subjected to the same magnetic field in stationary and dynamic
conditions.

Consider that the magnetic field will be uniform and invariant in space, in the reference frame of
the coil, thus resulting in equal voltages V 0(t) and V D(t), when all entities generating the vector field
B keep their relative positions to the coil, that is, when these sources move (and rotate) solidarily to
the coil in its reference frame. Intuitively, the rate of change of the magnetic field is expected to be
approximately invariant in the coil space, causing these two induced voltages to be approximately equal,
either when the sources of magnetic field are very far from the coil or, equivalently, when the dimensions
of the coil are very small, with respect to the coil speed, and the coil is keeping the angular orientation
relative to the (average) local magnetic field, i.e., it is not rotating.

However, as it will be shown in the next section, for most electric mobility application cases, the
commonly high range of induction frequencies used in inductive WPT and the relatively low speed of
vehicles with respect to the wireless transfer ground structures make it possible to approximate V D(t)
by V 0(t). For this reason, in most cases, a DIWPT system powering an EV can be designed or analyzed
as a quasi-stationary IWPT, that is, considering that the power transfer to a vehicle can be calculated
and averaged as if the vehicle’s pick-up coil in the EV was at rest at each point along all of its path.

3. DYNAMICALLY INDUCED VOLTAGE

Let us assume that a primary coil consists of a wire loop that can be modeled as a closed continuous
curve K that is continuously differentiable at all except a finite number of points — which is always
a reasonable assumption for real relatively thin wire loops that are composed of a finite number of
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“smooth” curved wire segments. If K is displaced in a region G of the three-dimensional Euclidean
space where there is a time-varying magnetic flux vector field B, then the integral of the time-varying
electric vector field E on the closed path K is well defined, and according to the Maxwell-Faraday
equation, the dynamically induced voltage V D

K on the wire loop can be expressed as:

V D
K (t) =

∮
K
E · dK = −dΦS

dt
= − d

dt

∫
S
B · dS, (1)

where S is any orientable surface delimited by the curve K, such that K = ∂S. This expression was
experimentally found truth and holds independently of the sources of the magnetic field B, which can
be permanent magnets, other loops with variable current along the path of the wire, either fixed or
moving in G, or an arbitrary combination of them. A geometrical view of this modeling of the wire
loop moving in the magnetic field is shown in Figure 2, where two different states of the wire loop, at
times t and t+∆t, are represented.

Figure 2. Modeling of the displacement of a wire loop in a magnetic flux vector field.

At each instant of time t, the wire loop has its centroid at P (t) ∈ G and defines the position of
curve K(t), for which a surface S(t) is considered. The total magnetic flux, due to B, crossing the
oriented surface S, given by ΦS , is also a function of the time and point P (t) where the primary coil
is located, and does not depend on the actual surface S, but rather on the contour curve K of S. The
time derivative of the flux of a vector field through a moving element of area, as expressed in (1), can
be calculated by applying a two-dimensional variant of the Leibniz Integral Rule theorem [15], which is
also presented in a more general form in [16], resulting in the expression:

V D
K (t) = −

∫
S

∂B

∂t
· dS +

∮
K
(v ×B) · dK −

∫
S
(∇ ·B)v · dS, (2)

However, according to Maxwell-Gauss equation, ∇ ·B = 0, then (2) becomes:

V D
K (t) = −

∫
S

∂B

∂t
· dS +

∮
K
(v ×B) · dK, (3)

The first term of the right side of Equation (3) can be promptly identified as the voltage V 0
K induced

on the wire loop as if B would depend only on t, that is, as if the wire loop K(t) were permanently “at
rest” (stationary) at position P (t):

V 0
K(t) = −

∫
S

∂B

∂t
· dS, (4)

so, we can rewrite (3) as:

V D
K (t) = V 0

K(t) +

∮
K(t)

(v ×B) · dK, (5)
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The second term on the right, in expressions (3) and (5), that we will name V v
K(t), is a component

of the induced voltage that simultaneously depends both on the velocity field v of the wire loop and on
the magnetic field B at time t along the curve K(t), so we write:

V D
K (t) = V 0

K(t) + V v
K(t) (6)

This new component V v
K(t) is not observed when the wire loop is stationary in G, and it does not

directly depend on the time-varying pattern of the magnetic field B, but rather on the instantaneous
spatial distribution of B at time t, as if it were a constant field in time with the incidental value Bt.
Noticeably, the assumptions made on the curve K(t) are general enough not to restrict the validity
of (6) if the wire loop is accelerating, rotating, bending, expanding, or contracting, or even changing
its shape with time, as long as these changes are “smooth”, and there is always a surface comprised by
K(t) that remains orientable. In order to better explain this movement-dependent term of the induced
voltage and how it will affect DIWPT analysis and design, a few special cases are considered in the
following subsections.

3.1. Dynamically Induced Voltage Due to DC Components of the Magnetic Field

Considering that B can be divided in a time-invariant component BDC and a time-variant component
BAC (u ∈ G):

B(u, t) = BDC(u) +BAC(u, t), (7)

BDC will have no effect in the “stationary” term V 0
K(t), as ∂B/∂t = ∂BAC/∂t. However, it will cause

the “dynamically” induced component V v
K(t) of V D

K (t), in (6), to split in two potentially non-zero terms,

V v,BDC
K (t) and V v,BAC

K (t), which will depend on the combination of the velocity field v and the magnetic
field B itself, as derived from (5):

V D
K (t) = V 0

K(t) +

∮
K(t)

(v ×BDC) · dK +

∮
K(t)

(v ×BAC) · dK, (8)

or equivalently:

V D
K (t) = V 0

K(t) + V v,BDC
K (t) + V v,BAC

K (t), (9)

where

V v,BDC
K (t) =

∮
K(t)

(v ×BDC) · dK (10)

and

V v,BAC
K (t) =

∮
K(t)

(v ×BAC) · dK. (11)

The term BDC can be regarded as the component of the vector field B that could result, for
instance, from a mix of stationary permanent magnets and primary loops of constant current placed
along the path of the wire loop given by K(t). The term BAC , on the other hand, is the time-varying
component, and could be, for example, the net result of moving magnets and time-varying currents in
primary loops placed in the neighborhood of the moving wire loop under consideration, which, in this
case, plays the role of a secondary coil. If the vector field v is such that the cross product v × BDC is
constant along K(t), then the term of the induced voltage on the wire loop due to BDC is zero, because
the integral of the oriented differential elements dK over curve K is also zero:

V v,BDC
K (t) =

∮
K(t)

(v ×BDC) · dK = (v ×BDC)

(∮
K(t)

dK

)
= 0. (12)

One particular case, in which v × BDC is constant, resulting in VK(v,BDC)(t) = 0 is when both
v and BDC are spatially invariant, corresponding to the situation of a rigid wire loop travelling with
constant speed on a hypothetically uniform magnetic field, a configuration where no induced voltage is
experimentally observed on the wire loop. It is worthwhile mentioning that even for a rigid body, the
velocity vector field v is not necessarily constant along K, when the centroid P (t) of K(t) is moving
with constant velocity vK : if the wire loop defined by K(t) is spinning, the velocity vector v on the
points of K(t) will be dispersed around the average velocity vK of the wire loop, what will potentially
cause a non-zero induced voltage, even while moving in a constant, uniform magnetic field.
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3.2. Dynamically Induced Voltage on a Spinning Wire Loop Moving in Space

Let us consider that the wire loop given by K(t) is spinning with angular frequency ω ̸= 0 around its
centroid at position P (t), while it moves (translation) in G with velocity vK . If at some initial time t0
the centroid is at position P0 = P (t0), then the centroid position is given by:

P (t) = P0 +

t∫
t0

vKdt (13)

Recognizing K(t) as the image of a joint function k of the time t and of an independent parameter
q ∈ R, with k continuous and differentiable in all points where the corresponding point in K(t) is also
differentiable, it is possible to write that:

K(t) =
{
k(q, t) ∈ R3|q ∈ Q = [q1, q2] ⊂ R

}
(14)

where, at any time t, k(q1, t) = k(q2, t), for K(t) is a closed path. Then, the point k(q, t) can be
expressed by its relative position r with respect to P , such that:

k(q, t) = P (t) + r(q, t), (15)

Using (13), expression (15) becomes:

k(q, t) = P0 +

∫ t

t0

vKdt+ r(q, t). (16)

The velocity v is given by:

v =
dk(q, t)

dt
= vK +

∂r(q, t)

∂t
+

∂r(q, t)

∂q
· ∂q
∂t

(17)

Because the parametric variable q, which generates K(t), is independent of time t, ∂q/∂t = 0,
then (17) is simply:

v = vK +
∂r(q, t)

∂t
(18)

In addition, because the loop is spinning about P (t) with angular velocity vector ω, ∂r(q, t)/∂t is
the radial velocity with respect to P (t), which can be expressed by the cross-product of ω and r(q, t):

∂r(q, t)

∂t
= ω × r(q, t) (19)

Then substituting (19) in (17), the velocity field on the point k(q, t) of K(t):

v(q, t) = v0 + ω × r(q, t) (20)

Because K(t) and the relative position vectors r(q, t) are spinning together and measured in the
same reference frame of vector fields B and v, it is possible to abstract the specific time t and the
specific point of K(t) associated with parameter q ∈ Q, and simply denote the velocity vector field as:

v = vK + ω × r (21)

Finally, substituting (21) in (5), an expression for computing the dynamically induced voltage on a
loop that spins around (its centroid) P (t) that is moving with velocity vK on an arbitrary time-varying
vector field B is given by:

V D
K (t) = V 0

K(t) +

∮
K(t)

(vK ×B) · dK +

∮
K(t)

((ω × r)×B) · dK, (22)

Now noticing that:

V vK ,B
K (t) =

∮
K(t)

(vK ×B) · dK (23)
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and naming:

V ω,B
K (t) =

∮
K(t)

((ω × r)×B) · dK (24)

it is possible to write:

V D
K (t) = V 0

K(t) + V vK ,B
K (t) + V ω,B

K (t) (25)

The dynamically induced voltage on the wire loop at instant t1, V
D
K (t1), is then the sum of three

terms:

(i) The first term, V 0
K(t1), is the induced voltage on the wire loop as if it were stationary at the position

P (t1), with no angular rotation, under the effect of the time-varying magnetic field B.

(ii) The second term, V vK ,B
K (t1), is the voltage that would be induced on the wire loop if it were

passing with constant velocity vK at the point P (t1), without spinning, but with the same spatial
orientation it would have at time t1 due to the spinning movement given by ω, travelling on a
time-invariant magnetic field B(t1).

(iii) The third term, V ω,B
K (t1), corresponds to the voltage that would be induced on the same wire loop

if it were spinning with angular velocity ω fixed at position P (t1), while being surrounded by a
time-invariant magnetic field B(t1).

This physical interpretation of (25) requires some abstraction, since all voltages V 0
K , V vK ,B

K (t1), and

V ω,B
K (t1) are functions of the time themselves, but the expression provides a tool for the computation

of the dynamically induced voltage V D
K (t).

It is still possible to consider (7) again and write that:

V vK ,B
K (t) = V vK ,BDC

K (t) + V vK ,BAC
K (t) (26)

and
V ω,B
K (t) = V ω,BDC

K (t) + V ω,BAC
K (t) (27)

further breaking (25) into:

V D
K (t) = V 0

K(t) + V vK ,BDC
K (t) + V vK ,BAC

K (t) + V ω,BDC
K (t) + V ω,BAC

K (t) (28)

The voltage component associated with the effect of the spinning movement in the time-invariant

magnetic field BDC , V
ω,BDC
K (t), for instance, is the prevalent term in rotative generators, mostly used

for grid and off-grid higher power level generation, while V vK ,BDC
K (t) is the prevalent term in linear

generators used in some energy harvesting devices, as in [17, 18]. The first term of the dynamically
induced voltage, V 0

K(t), on the other hand, is the only relevant term in stationary inductive WPT
applications, in which the relative position of the secondary coil is fixed with respect to the primary
coils that produces the magnetic field B.

3.3. Case of a Non-Spinning Coil Not Subjected to an External DC Magnetic Field

In a typical DIWPT configuration for electric mobility applications, the secondary coil, as given by the
curve K(t), can be assumed to be a rigid body that is neither spinning nor making turns of significant
magnitude along its path, and that implies an equivalent angular velocity of the secondary coil that can

be neglected (ω ∼= 0), and thus, the term V ω,B
K (t) will be approximately zero in (25).

In the same way, considering that no permanent magnets or primary coils carrying constant currents
are normally, by design, placed along the path of an EV (and the secondary coil), it can be assumed

that no external DC magnetic field component will act on K(t), so V vK ,BDC
K (t) = 0.

Under the above conditions, the dynamically induced voltage on secondary coil on-board of an EV,
V D
K (t), can be expressed as:

V D
K (t) ∼= V 0

K(t) + V vK ,BAC
K (t). (29)

If more than one primary coil is simultaneously inducing voltage on a secondary coil, as the case of
multi-transmitter WPT, the calculation of the total induced voltage should consider the superposition
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of the magnetic fluxes on the secondary coil, resulting from the different primary coils that are
simultaneously active. So, the total dynamically induced V D

K voltage would be the sum of as many
parcels in the form of the right side of (29) as primary coils. Then, if Q primary coils are present, (29)
would be replaced by:

V D
K (t) ∼=

Q∑
i

V 0
Ki

(t) +

Q∑
i

V
vKi

BACi
Ki

(t) (30)

Similar to the single primary coil case, the first summation in the second term of (30) can be still
recognized as the total induced voltage that would be obtained in the stationary condition, and the
second summation is the total voltage deviation that is due to the relative movement of the secondary
coil to each of the Q primary coils.

Normally, all primary coils are stationary, so the velocities vKi are all equal to vK , the velocity
of the secondary coil to ground reference. But the relative position of the secondary coil to each of
the primary coils is different. Assuming that the primary coils are synchronously excited at the same
frequency, depending on the phase excitation and relative position of the primary coils, these errors can
add up constructively or destructively, increasing or reducing the dynamically induced voltage term. On
the other hand, if the quasi-stationary approximation can be demonstrated to be valid in the frequency
range used in automotive applications for a single primary coil, this result will also be valid if a small
number N of primary coils are inducing voltage on the secondary coil, because the maximum voltage
error in this approximation will be the algebraic sum of N negligible individual voltage errors. This is
the case in most DIWPT automotive applications, where multiple primary coils are presumed, but only
the few primary coils that are closest to the single secondary coil are used as active transmitters to that
secondary coil. In this way, in the next sections, the error in the quasi-stationary approximation for the
dynamically induced voltage will just be analyzed for the case of a single primary coil.

4. DYNAMICALLY INDUCED VOLTAGE UNDER SINUSOIDAL SOURCES

The dynamically induced voltage given by expression (22), or even that in the simplified case of non-
spinning coils not subjected to DC magnetic fields, as in (29), may be difficult to calculate in a general
case, due to the interaction of the velocity vector with the magnetic field vector in the integrands of
these expressions. However, by taking into account some extra considerations, commonly found in
real-world electric mobility applications of DIWPT, the dynamically induced voltage calculation can
be simplified. In fact, in many circumstances it will be shown that it is even possible to neglect the
terms of the induction voltage due to the relative movement of the coils, allowing the approximation
of V D

K (t) by V 0
K(t) only, as if the moving coil were at rest in all points of its trajectory. So, in the

case of a non-spinning coil that moves at constant velocity vK and is not subjected to a DC magnetic
field component, let us further assume that the time-varying magnetic vector field BAC has a periodic
sinusoidal dependence on time t, with frequency f0, being expressed as:

BAC(p, t) = BG(p) cos(2πf0t+ θ0), p ∈ G (31)

where the vector field BG is not time-dependent. Without loss of generality, let us also assume that the
phase θ0 = 0; then, expanding (4):

V 0
K(t) = −

∫
S

∂BAC

∂t
· dS = 2πf0 sin(2πf0t)

∫
S
BG · dS, (32)

and expanding (5):

V vK ,BAC
K (t) =

∮
K(t)

(vK × [BG cos(2πf0t)]) · dK = cos(2πf0t)

∮
K(t)

(vK ×BG) · dK

= ||vK || cos(2πf0t)
∮
K(t)

(1vK ×BG) · dK (33)

where 1vK is the unity vector with the same orientation of the velocity vK .
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By applying Stoke’s theorem to (33), it follows that:

V vK ,BAC
K (t) = cos(2πf0t)

∫
S
∇× (vK ×BG) · dS, (34)

where the integrand ∇× (vK ×BG) can be expanded as:

∇× (vK ×BG) = vK(∇ ·BG)−BG(∇ · vK) + (BG · ∇)vK − (vK · ∇)BG (35)

In (35), the first term in null because ∇ · BG is null according to the Maxwell-Gauss equation for
magnetism, and ∇·vK is null by hypothesis (the velocity vK is constant in space). It can also be noticed
that for vector fields x and y, (x · ∇)y is the Jacobian of y, Jy, applied to x; so:

(vK · ∇)BG = JBG
(vK) = ∥vK∥JBG

(1vK ) (36)

(BG · ∇)vK = JvK (BG) (37)

Again, because vK is constant, JvK (BG) = 0, then (35) becomes:

V vK ,BAC
K (t) = −∥vK∥ cos(2πf0t)

∫
S
JBG

(1vK ) · dS, (38)

where JBG
is the Jacobian of the magnetic field BG acting on the coil. Expression (38) shows a more

intuitive notion of V vK ,BAC
K (t) than (33), meaning that this component of the induced voltage V D

K is
proportional to the integral on S of the variation of the vector BG in the direction of vK , as well as
proportional to the speed ∥vK∥ itself.

In terms of phase delays, looking at (31) and (32), it can be noticed that the phase of V 0
K is delayed

from that of the magnetic field generated by the primary coil, BAC , by an angle of π/2, while V vK ,BAC
K (t)

is either in phase or in counter-phase with BAC , respectively depending whether the variation of the
magnetic flux on S is negative or positive when K is incrementally displaced in the direction of vK .

(a) (b)

(c) (d)

Figure 3. Phasor components of the dynamically induced voltage on a secondary coil (a) for the case
when its movement is enhancing the magnetic flux on the induced coil (b). Phasor components of the
dynamically induced voltage on a secondary coil (c) for the case when its movement is decreasing the
magnetic flux on the induced coil (c).
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Figure 3(a) shows the complex plots of the associated phasors B̂AC , V̂
0
K , V̂ vK ,BAC

K and V̂ D
K at the

frequency f0, for the case in which the secondary coil is in a position of the space where the tendency for
the variation of the magnetic flux on S is positive in the direction of the velocity vK (i.e., the magnetic
flux that affects the coil is increasing), as illustrated in Figure 3(b). Conversely, if the secondary coil is
moving in a position where the tendency for the variation of the magnetic flux on S is negative in the
direction of the velocity vK (i.e., the magnetic flux that affects the coil is decreasing), as illustrated in

Figure 3(d), then V̂ vK ,BAC
K will be in phase with B̂AC , as shown in Figure 3(c). In both cases, if there

is a non-zero speed ∥vK∥, it is expected that∣∣∣V̂ D
K

∣∣∣ ≥ ∣∣∣V̂ 0
K

∣∣∣ . (39)

5. APPROXIMATING DIWPT AS QUASI-STATIONARY IWPT

The magnitude ratio δ of the root-mean-square (RMS) values of V̂ vK ,BAC
K (38) and V 0

K(t) (32) can then
be calculated as:

δ =

[
V vK ,BAC
K

]
RMS[

V 0
K

]
RMS

=
∥vK∥
2πf0

∣∣∣∣∫
S
JBG

(1vK ) · dS
∣∣∣∣∣∣∣∣∫

S
BG · dS

∣∣∣∣ , (40)

or, alternatively, according to (33) as:

δ =
∥vK∥
2πf0

∣∣∣∣∣
∮
K(t)

(1vK ×BG) · dS

∣∣∣∣∣∣∣∣∣∫
S
BG · dS

∣∣∣∣ , (41)

Since the ratio of the integrals, in either (40) or (41), does not depend on ∥vK∥ or f0, if the magnetic
net flux of BG though the coil is not null, it follows from (41) that it will be always possible to make δ
smaller than any given value by also making the ratio ∥vK∥/f0 sufficiently small. That is, in a typical
DIWPT system design, with the pick-up coil fixed on board of an EV, the higher the EV speed ∥vK∥
is, the higher the induction frequency f0 has also to be in order to make it possible to approximate
V D
K (t) by V 0

K(t), treating the design as a quasi-stationary IWPT case. In the following paragraphs, a
few more assumptions on the geometry of the problem are made to derive a criterion for checking the
applicability of this approximation.

5.1. Simplified Criterion for Approximating DIWPT as a Quasi-Stationary WPT

In order to assess whether the ratio ∥vK∥/f0 is low enough as to permit the approximation of V D
K (t) by

V 0
K(t), or, conversely, to establish the minimum frequency f0 for which this approximation is valid for

a given maximum speed vmax, a relationship among ∥vK∥, f0, and the geometry of the coil is initially
found for an specific configuration.

So, let us first assume that the magnetic field BAC(p, t), acting on the secondary coil given by
the curve K, is due to a single primary coil generating in the neighborhood of K, with both coils in
free space, and that any point of K is at a distance ∥r∥ from the primary coil much greater than the
dimensions of the primary coil itself, as illustrated in Figure 4.

Then, the time-invariant magnetic vector field BG of (31) can be approximated as if it were produced
by an equivalent magnetic dipole, m, which can be expressed as [19]:

BG(r) ∼= Bm(r) =
µ0

4π

[
3(m · r)r
∥r∥5

− m

∥r∥3

]
(42)

which can be further developed as:

BG(r) ∼= Bm(r) =
µ0∥m∥
4π∥r∥3

[3 cos θ · 1r − 1m] (43)
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Figure 4. Special case when the primary coil can be modeled by approximation as a magnetic dipole.

where µ0 is the uniform magnetic permeability of the free space; m is the magnetic dipole vector; 1r is
the unity vector in direction of the oriented distance r to the secondary coil, shown in red in Figure 4;
and 1m is the unity vector in the direction of the magnetic dipole m.

For our analysis, working in spherical coordinates (r, θ, φ), it is more convenient to reexpress 1m in
terms of 1r and 1θ, the unity vector in direction of the polar angular displacement θ, shown in green in
Figure 4:

1m = cos θ · 1r − sin θ · 1θ (44)

Then, by substituting (44) in (43) it results in that:

BG(r) ∼=
µ0∥m∥
4π∥r∥3

[cos θ · 1r − sin θ · 1θ] (45)

Under the above conditions,∮
K(t)

(1vK ×BG) · dK ≤ µ0∥m∥
∥r∥3min

ℓK ·max
θ

∥(2 cos θ · 1r + sin θ · 1θ∥ (46)

where ℓK is the total length of the curve, and ∥r∥min is the minimum distance of a point in K to the
position of the equivalent magnetic dipole m.

But since 1r and 1θ are orthogonal,

∥(2 cos θ · 1r + sin θ · 1θ∥ =
√

3 cos2 θ + 1 (47)

what implies in:
1 ≤ ∥(2 cos θ · 1r + sin θ · 1θ)∥ ≤ 2 (48)

Hence, (46) becomes: ∮
K(t)

(1vK ×BG) · dK ≤ µ0∥m∥
∥r∥3min

2ℓK . (49)

Now, for simplicity, let us further assume that K is planar and delimits an oriented area AK , and
in search for an upper bound to the magnitude ratio δ, search for a lower bound for the integral in the
denominator of (41).

In a well designed DIWPT configuration, in order to optimize the magnetic time-varying flux
through AK , the power transfer will occur with the secondary coil in a nominal relative position range
to the primary coil such that 1BG

· dA is either always positive or always negative, at all points on AK ,
thus an equivalent angle β exists, with cos(β) ̸= 0, such that:∣∣∣∣∫ 1BG

· dA
∣∣∣∣ = ∥AK∥| cos(β)| (50)
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The angle β can be seen as some mean value of the angle between the magnetic field BG and the
normal unit vector at each point of the area AK , and in good DIWPT designs, it will be as close to zero
or π as possible (i.e., the secondary coil plane will be perpendicular to the direction of the magnetic
flux density B), so that the magnetic flux from primary to secondary coil is increased.

So, linking (45) into (41):∣∣∣∣∫
S
BG · ds

∣∣∣∣ = µ0∥m∥
4π

·
∣∣∣∣∫

A

(2 cos θ · 1r + sin θ · 1θ) · dA
∥r∥3

∣∣∣∣ (51)

So, under the constructive assumption of 1BG
· dA always positive or always negative:∣∣∣∣∫

S
BG · ds

∣∣∣∣ ≥ µ0∥m∥
∥r∥3max

min
θ

∥2 cos θ · 1r + sin θ · 1θ∥
∣∣∣∣∫

A
1BG

· dA
∣∣∣∣ (52)

Looking at (48) again, ∣∣∣∣∫
S
BG · ds

∣∣∣∣ ≥ µ0∥m∥
∥r∥3max

∥AK∥ cosβ (53)

Combining (49) and (53) into (41) results in:

δ ≤ ∥vK∥
πf0

ℓKγ3

∥AK∥ |cosβ|
= δL, (54)

where γ is the ratio between ∥r∥max and ∥r∥min (the maximum and minimum distances of a point in K
to the position of the equivalent magnetic dipole m, respectively):

γ =
||r||max

||r||min
(55)

The relative error ε in approximating V D
K (t) by V 0

K(t) is then given by:

ε =
|V̂ D

K | − |V̂ 0
K |

|V̂ 0
K |

=
|V̂ D

K |
|V̂ 0

K |
− 1 =

√∣∣∣V̂ 0
K

∣∣∣2 + ∣∣∣V̂ vK ,BAC
K

∣∣∣2∣∣∣V̂ 0
K

∣∣∣ − 1 =
√

1 + δ2 − 1 (56)

In the regions where V̂ vK ,BAC
K is to be neglected relatively to

∣∣∣V̂ 0
K

∣∣∣, it is expectable that 0 < δ < 1,

so it is possible to use the inequality: √
(1 + δ2) ≤ 1 +

δ2

2
(57)

from:

ϵ ≤ δ2

2
≤

δ2L
2

(58)

Then, by forcing the limit value δL to be less than
√
2ε, for some desired small enough ε, it will

be possible to establish a condition in which the dynamically induced voltage component V vK ,BAC
K can

be neglected relatively to V 0
K , and the induced voltage, V D

K , approximated by its purely stationary
component.

It is emphasized that this theoretical result was derived and holds, among other assumptions,
provided that the primary coil geometry and distance to the secondary coil are such that the magnetic
field of the primary coil can be satisfactorily modeled as that of an ideal magnetic dipole, at least in the
neighborhood of the secondary coil. On the other hand, by the superposition principle, (54) would as
well hold individually for each primary coil that is sourcing the magnetic field to the secondary coil (and
the associated induced voltage component), if more than one primary coil is present and close enough
to influence the induced voltage on the secondary coil.
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5.2. Quasi-Stationary Approximation in DIWPT Design for Automotive Applications

The speed of 140 km/h and a secondary coil diameter of 0.5m can be considered within typical ranges
for respectively the maximum speed and typical coil pick-up size, for an EV.

In order to analyze the situation whereas an EV is close to the lane, it would be necessary to look
back to Equations (30) and (38), and notice that:

V D
K (t) ∼= V 0

K(t)− ∥vK∥ cos(2πf0t)
∫
S
JBG

(1vK ) · dS, (59)

Let us assume that the secondary and primary coils are flat, parallel to the ground and located
at distance h to each other. The differential element dS of the secondary coil will be perpendicular
to the ground plane, which is also the plane on which the vehicle can move. Also, the ISO 4130 [20]
three-dimensional reference system is equivalent to having the x and y components of dS equal to zero
(z is the vertical axis), that is dS = (0, 0, dA). Also, since the vehicle only moves parallel to the ground
plane:

1vK =
(vx, vy, 0)

||vK ||
, (60)

where vx is the speed of the vehicle in the direction of the road, and vy is its speed of lateral movement
with respect to the center of the road.

So, expression (59) becomes equivalent to:

V D
K (t) ∼= V 0

K(t)− cos(2πf0t)

∫
S

(
∂Bz

∂x
vx +

∂Bz

∂y
vy

)
dA (61)

In these conditions, expression (32) can also be simplified to:

V 0
K(t) = −

∫
S

∂BAC

∂t
· dS = 2πf0 sin(2πf0t)

∫
S
BzdA (62)

Considering that the vehicle is moving in the direction of the road, meaning that vy = 0 and
assuming that the vehicle speed vx is constant, with the voltages expressed in terms of phasors, the
relative complex error in approximating V̂ D

K by V̂ 0
K , δc will be given for ∥V̂ 0

K∥ > 0, by:

δc =
V̂ D
K

V̂ 0
K

− 1 = −j
vx

2πf0

∫
S

∂Bz

∂x
dA∫

S
BzdA

(63)

The value of δ = ∥δc∥ tends to increase as the secondary coil approaches a position in space where∫
S BxdA = 0, that is, where the induced voltage, if the vehicle were stationary, V̂ 0

K , is zero. But this is
not a matter of concern, because, by design, these positions are clearly not where DIWPT operation is
normally expected.

So, when the secondary coil is positioned in such a way that the primary coil is inducing non-zero
voltage on it, it is possible to write:

δc = −j
vx

2πf0

¯∂Bz

∂x
(S)

B̄z(S)
(64)

where B̄z(S) and (∂Bz/δx)(S) are respectively the average vertical component of the magnetic field and
the average derivative of the vertical component of the magnetic field with respect to x, on the area S
enclosed by the secondary coil, for any given position of the vehicle.

When the area of the secondary coil is very small, it is possible to approximate (64) by taking the
limit condition S → 0, so, where the amplitude of the magnetic field Bz(x, y, z) > 0:

δc = −j
vx

2πf0

1

Bz

∂Bz

∂x
= −j

vx
2πf0

∂ logBz

∂x
(65)
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Figure 5. Rectangular primary coil in quasi-static approximation of DIWPT.

To address a popular case in automotive DIWPT applications, let us further assume that the
primary coil is an oblong rectangular horizontal coil. Then, still considering that secondary coil is very
small, compared to the primary coil, let us assume that it is travelling over the horizontal primary coil
in center-alignment with it, at a constant height h, as shown in Figure 5.

The components of Bz respectively due to the transversal (dark red in Figure 5) and axial (blue in
Figure 5) segments of the primary coil can be calculated using the Biot-Savart Law by:

Bz,transversal

(µÎ1)/4π
=

∫ D/2

−D/2

[
−(L/2− x)

((L/2− x)2 + y2 + h2)3/2
+

(L/2 + x)

((L/2 + x)2 + y2 + h2)3/2

]
dy (66)

and
Bz,axial

(µÎ1)/4π
=

∫ L/2

−L/2

[
D

((x · u)2 + y2 + h2)3/2

]
du (67)

Exemplifying with primary coil dimensions L = 2m and D = 0.5m, and h = 0.2m, and plotting
the magnetic field and its gradient along the direction x, both normalized to (µÎ1)/4π, it is possible to
plot the graphs in Figure 6(a) and Figure 6(b). The plot in Figure 6(c) is obtained by calculating the
ratio of the plot values in Figure 6(b) by the corresponding value of the magnetic field in Figure 6(a),
where these latter are not zero. The points of the resulting curve in the plot of Figure 6(c) will yield
the relative error under the quasi-stationary approximation to the dynamically induced voltage, when
being multiplied by the ratio |vx|/2πf0.

Visibly, the magnitude of the normalized relative error ε is only high where the magnetic field Bz

is very small (close to zero), at the transitions into and out of the main design zone for wireless power
transfer. However, in automotive DIWPT applications, near these transitions, the transferred power is
expected to be negligible. In this example, the value of the normalized relative error, on the approach
of the primary coil, is limited by the local maximum δm, except very close to the zero crossings of Bz,
where the relative error is not important, because the power is close to zero. The relative value of the
additional term observed in the dynamically induced voltage within the most relevant harvest zone of
the primary coil (pink shaded) will then be limited to:

δ =
|vx|
2πf0

δm (68)

Using the given dimensions of the coils for this example, δm can be numerically calculated as 2.71.
So, when the vehicle travels at a speed vx = 140 km/h, if we require that ε < 1%, then a sufficient
condition for approximating V D

K (t) by V 0
K(t), as if the secondary coil were at rest with respect to the

primary coil (except very close to the zero crossing point of Bz), is that:

f0 ≥
2.71vx

2π
√
2× 1%

⇔ f0 ≥ 119Hz (69)
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(a)

(b)

(c)

Figure 6. Error in quasi-static approximation of DIWPT using a primary rectangular coil.

Along most of the central section of the primary coil, the requirement in (67) is conservative, as
it can be derived from the depressed central section of the curve of normalized error, in color red in
Figure 6. On the other hand, transient elevations on the induced voltage will be expected when the
secondary is transitioning into or out of the primary main power harvest zone.

In today’s WPT and DIWPT applications, in order to to achieve higher levels of transferred power,
the induction frequency f0 is commonly tens of kilohertz, which is significantly higher than that required
by (68). As an example, the proposed frequency band, recommended by Society of Automotive Engineers
(SAE) for stationary automotive recharging, is centered at 85 kHz [21], and this band is also used in
new DIWPT transfer systems for road vehicles. In these circumstances, no relevant error in the quasi-
stationary approximation will be noticed. However, the actual minimum required frequency for a
negligible error in the quasi-stationary approximation of the induced voltage will vary according to the
specific geometry and the acceptable error epsilon defined for the design. If required, precise values
for the discrepancy term of the dynamic voltage with respect to the stationary approximation can be
calculated by numerically integrating (38) under the actual conditions of each DIWPT configuration.

6. CONCLUSIONS

In this paper, expressions are developed to assess the approximation of the dynamically induced voltage
by the voltage that would be induced under stationary conditions, in DIWPT applications for electric
vehicles. In a numeric example, it was found that at the commonly expected working frequencies and the
typical maximum speed of vehicles, it can be assumed that the quasi-stationary approximation holds.
The only effect unique to DIWPT, which is an expected discrepancy to this approximation, is the
appearance of transient peaks in the induced voltage, when the secondary coil passes over the points of
zero crossing in the magnetic field generated by the primary coil. However, since the transferred power
is close to zero in the neighborhood of these points, the overall dynamic induced power is not affected.
The expressions developed can also give some insight in the design of wireless power transfer systems
where other higher speed applications should be considered.
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