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Concentric Circular Antenna Array Synthesis Using Advanced
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Abstract—In antenna design, the low side lobe level (SLL) of the antenna radiation pattern plays a
crucial role in communication systems as it reduces signal interference along the entire side lobes of the
radiation pattern. This paper presents an effective technique to minimize the SLL and thus improve the
radiation pattern of the concentric circular antenna array (CCAA) using an advanced marine predator
algorithm (AMPA). The AMPA is inspired by the predator-prey relationship in aquatic ecosystems, and
it incorporates an improved adaptive velocity update strategy and a chaotic sequence parameter. In this
work, the AMPA is applied to synthesize two examples of CCAA (4,6,8-CCAA elements and 8,10,12-
CCAA elements) under two different instances (without and with a centre element). The simulation
results achieved a significant improvement in SLL minimization as compared to the uniform array,
standard marine predator algorithm (MPA), and some other nature-inspired metaheuristic algorithms.

1. INTRODUCTION

Designing antennas with relatively high directional properties is important in addressing the requirement
of antennas used for long-distance communication. In addition, to effectively achieve improved
directional properties such as high gains and enlarged electrical size, radiating elements are assembled
in an electrical and geometrical configuration such that their field patterns in the desired direction are
constructive and destructive in the other directions [1, 2]. Some of the benefits of this configuration
include lower side lobe level (SLL) with a very high directive pattern. Another benefit is the efficient
control over the direction of steer of the array radiation pattern towards the best signal path, and this is
accomplished by varying the number of elements, excitation coefficients, inter-element spacing, relative
phases, and overall array geometrical arrangement (linear, rectangular, circular, elliptical ones, etc.)

Linear arrays, which are popular for their simplicity of design and high directivity of the main
lobe in a specific direction [2], have the drawback of inefficient radiation across 360-degree azimuthal
directions. In circular arrays, the absence of edge elements allows for the electronic rotation of the
array without deforming the radiation pattern, and its main lobe can be channeled and focused in
any direction throughout the entire space by rotating 360 degrees [3]. The concentric circular rings
of different radii, known as concentric circular antenna array (CCAA), find extensive applications in
modern communications systems because of their strength compared to the linear and rectangular array.
Some notable merits of the CCAA include 360-degree-azimuth scanning, coverage of invariant angle,
ease of pattern synthesis, effective spectrum utilization, low mutual coupling sensitivity, etc.

The optimal design of the antenna array, which usually involves minimizing the SLL, is vital
in reducing unwanted radiation beams from the electromagnetic transmission [4]. A low SLL and
a narrow first null beamwidth (FNBW) are some of the main parameters of interest when antenna
arrays are designed. Generally, many synthesis techniques focus on suppressing unwanted signals by
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minimizing the SLL [5–8]. The application of evolutionary optimization algorithms in solving complex
engineering problems, especially in array synthesis, is widely explored in the literature. These include
genetic algorithm (GA), simulated annealing (SA), gravitational search algorithm (GSA), particle swarm
optimization (PSO), etc. To optimize CCAAs, Mandal et al. developed a particle swarm optimization
(PSO) with a constriction factor (PSOCFA) [9]. The backtracking search optimization method (BSA)
was used by Guney et al. [10] to synthesize CCAAs with minimized SLLs at a constant beamwidth.
Hybrid Antlion and Grasshopper Optimization Algorithms have been used by Amaireh et al. to lower
the SLL of circular antenna arrays [3]. Circular and concentric circular antenna arrays are designed
using cat swarm optimization (CSO) [11]. Hybrid adaptive differential evolution and particle swarm
optimization (ADEPSO) was put out by Ram et al. to enhance the directivity of time-modulated
CCAAs [12].

An opposition-based Bat method was suggested by Ram et al. to create the best CCAA with
enhanced radiation properties [13]. CCAAs are designed using a nature-inspired optimization method
known as the dragonfly algorithm (DA), which yields reduced side lobes [14]. A moth flame optimization
(MFO) technique was suggested by Das et al. to enhance the CCAAs’ radiation pattern [15]. The SLL of
CCAA radiation patterns was decreased by using the Symbiotic Organisms Search (SOS) method [16],
and also Bera et al. adopted a hybrid GSA and PSO for the same purpose [2]. A Cuckoo search-based
hybrid technique was used by Sun et al. to synthesize the radiation beam patterns of CCAAs [17].
High-altitude platform CCAAs have been given a performance boost using comprehensive learning
PSO [18]. To reduce the SLL of CCAAs considering mutual coupling, ant lion optimization (ALO) has
been suggested [19]. For the optimization of phase-only reconfigurable CCAA, SOS is employed [20].

Recently, a new metaheuristic technique called advanced marine predator algorithm (AMPA), which
is an improvement of the standard marine predator algorithm (MPA) has been proposed for several kinds
of solving optimization problems [8]. The standard MPA, though efficient in solving some engineering
problems [8, 21, 22], fails to generate a diversified initial population with good efficiency, escapes from the
local optimum slowly, and explores a limited search space [23, 24]. The AMPA proposed by Owoola et
al. [8] incorporates an improved velocity and position update into the MPA to improve its exploration
ability and mitigate the MPA’s stagnancy problem. The Chebyshev map is also included to help with
the velocity and thus improve the algorithm’s exploitation capacity. The AMPA has been used to
synthesize the circular antenna array (CAA), and it outperforms some other metaheuristic algorithms
in suppressing the CAA’s SLL with an enhanced convergence rate [8]. However, it is yet to be applied
to CCAA pattern synthesis.

In this paper, the AMPA is applied for the SLL minimization of CCAA for the first time. The goal
of this work is to investigate and observe the efficacy of the AMPA technique, as well as to determine the
excitations of the ring elements that satisfy the radiation pattern constraints. The AMPA’s effectiveness
and stability are tested on four different examples of CCAA, and the results obtained by AMPA are
compared to those gotten by existing methods such as MPA, non-linear MPA, invasive weed optimization
(IWO), moth flame optimization (MFO) algorithm, arithmetic optimization algorithm (AOA), and grey
wolf optimization (GWO).

The arrangement of this paper is as follows. Section 2 describes the array factor formulation of
the CCAA and also the objective function of the CCAA synthesis. In Section 3, a brief description of
the AMPA is presented. The performance analysis of AMPA and the comparison with several existing
optimization algorithms for the synthesis of CCAAs are provided in Section 4. Finally, Section 5
concludes the paper.

2. THE GEOMETRY AND PROBLEM FORMULATION

2.1. The CCAA Model

Figure 1 depicts the configuration of a concentric circular antenna array (CCAA), with X concentric
rings of antenna and radius rX having NX number of isotropic elements in ring X. The radiation
pattern of the CCAA can be written in terms of the array factor:

F (θ, φ) = IC +

X∑
x=1

Nx∑
i=1

Ixi exp [jkrx sin θ cos(φ− φxi) + αxi] . (1)
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Figure 1. The CCAA structure.

φxi =
2πi

Nx
. (2)

αxi = −kr sin(θ0) cos(φ0 − φxi). (3)

where F , Ic, Ixi, and αm are the array factor, the excitation of the centre element, the excitation of the
ith element in the xth ring, and the phase of the ith element in the xth ring. θ and φ are the azimuth
and elevation angles, respectively.

2.2. The Problem Formulation

The goal of this work is to suppress the CCAA’s SLL by optimizing its excitation amplitude at specific
inter-element spacing. Therefore, the cost function is written as [8]:

f = w ×
(
max

(
F (θR1

PSL)
)
+max

(
F (θR2

PSL)
))

(4)

where w is the weight, and θR1
PSL and θR2

PSL are the peak SLL minimization angles. The equation minimizes
the SLL of the CCAA’s radiation pattern; thus, the optimization problem is expressed as:

min f(I1, I2, I3, ......, In). (5)

s.t. θRPSL =∈ max ([−π, θR1] ∪ [θR2, π]) . (6)

0 ≤ In < 1, n = 1, 2, 3, ......, N (7)

where [−π, θR1] and [θR2, π] represent the sections of the SLL minimization.

3. THE METAHEURISTIC ALGORITHM EMPLOYED

3.1. The Marine Predators Algorithm (MPA)

The marine predator algorithm (MPA) is governed by different foraging strategies among aquatic
predators and prey, as well as their optimal encounter rates procedure in biological interaction. The
optimal foraging strategies used in this algorithm are based on the Lévy flight and Brownian motion.
The standard MPA optimization stage is divided into three phases based on predator and prey movement
strategies and velocity. The prey’s update velocity in each phase is determined based on the following
three conditions. The first instance is when the predator moves faster than the prey; the second case
is when the prey moves faster than the predator; and the last condition is when the prey and predator
move at almost the same pace. The full description of MPA is described in [21].
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3.2. The Advanced Marine Predator Algorithm (AMPA)

In the initialization phase, a population of the random solution (Prey) is generated, and the best-
obtained solution named ‘top predator’ is considered for the optimization phase. The top predator is
used to construct a matrix called Elite as shown in Equation (8).

Elite =


X1,1 X1,2 ...... X1,d

X2,1 X2,2 ...... X2,d

...
...

...
...

Xn,1 Xn,2 ...... Xn,d


n×d

(8)

where n and d represent the search-number agent or population size and the dimension, respectively. X
is the top predator. The Elite is updated based on the optimal solution gotten during the optimization
phase in each iteration. The initialization stages of the MPA and AMPA are similar. The major
difference between the two algorithms lies in the optimization procedure.

3.2.1. Optimization Stage

The optimization process of AMPA explores the search area randomly on several areas and approaches
to find a better solution based on the exploration and exploitation approach. This process has two
phases which are decided by a “pass” value set within the algorithm. The pass value in this work is set
to 0.6, and the algorithm executes the optimization process as stated in Equation (9).

Optimization process =

{
Phase 1 if rand < pass

Phase 2 if rand > pass
(9)

Phase 1: In the first phase, the formula for the prey’s velocity update with respect to the predator
is described in Equation (12). This equation takes the place of the first three phases of the standard
MPA, and it proffers a better solution because it considers both the personal best solution of each prey
and their global best solution. The global best solution is constructed into a matrix form called Elite.
This enables the algorithm’s exploration capacity to be expanded. The velocity update employed in
this technic is expressed as:

−→
Vi,j = A×−→

Vi,j + b1e
−βr2p(pbesti,j − Preyi,j) + b2e

−βr2g(gbesti,j − Preyi,j) (10)

rp = norm(pbesti,j − Preyi,j) (11)

rg = norm(EliteP − Preyi,j) (12)

where V, β, and A represent the velocity, distance sight coefficient, and adaptive weight, respectively.
b1 and b2 symbolize the learning coefficients. gbest and pbest are the global best position and personal
best position, respectively. EliteP is the same as the global best position or Elite position.

The updated Prey is consequently stated as:
−−−→
Preyi,j =

−−−→
Preyi,j + P × C ×−→

V i,j (13)

where P is a constant value that equals 0.4 in this work. The chaotic map adopted in this research is
the Chebyshev map, and its coefficient is represented as C.

The Chebyshev map: This is a one-dimensional chaos map with a straightforward iterative equation.
It has pseudo-random output sequences, a high stochastic property, and is parameter-sensitive and initial
value sensitive [25]. It is expressed mathematically as [25]:

xs+1 = cos(k cos−1(xs)) (14)

The Chebyshev map is used in this work to create chaotic orders that can enhance the velocity and
thus the exploitation capability and convergence of the technique. For the Chebyshev map, the starting
value is 0.7, and the number of iterations is 100.

Phase 2: This next phase of AMPA is similar to the final phase of the standard MPA. This scenario
occurs when the predator moves faster than the prey with high exploitation capability. The equation
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for the updated velocity and prey is given as:

−→
V i,j =

−→r l ⊗
(−→r l ⊗

−−−→
Elitei,j −

−−−→
Preyi,j

)
−−−→
Preyi,j =

−−−→
Elitei,j +

(
P ×AP ⊗

−→
V i,j

) (15)

The movement of the predator is Lévy, and it can be expressed mathematically as:

−→r l = 0.05 ∗

(
Nrandn × δ

[abs(Nrandn)]
1
β

)
(16)

δ =


Γ(1 + β)× sin

(π
2
× β

)
[
Γ

(
1 + β

2

)
× β × 2(

β−1
2 )
]


1
β

(17)

where Nrandn, Γ, β, and δ denote the random number, gamma function, spatial exponent, and random
value, respectively.

The effect of Fish Aggregating Devices (FADs) or eddy formation can influence the behaviors of the
predators. The FADs function as local optimum that can easily trap the predators. To avoid stagnation
and escape the influence of FADs, the predator or prey must take a long jump. Otherwise, it will get
trapped in the local optimum. The effect of FADs is stated as:

−−−→
Preyj =


−−−→
Preyj +A [−→x min +

−→r ⊗ (−→x max −−→x min)]⊗−→u if r ≤ FADs
−−−→
Preyj +

[
FADs(1− r1) + r1

] (−−−→
Preyr1 −

−−−→
Preyr2

)
if r > FADs

(18)

where r1 is a random number, and −→x min and −→x max denote the vectors containing the lower bound and
upper bound of the dimensions. r1 and r2 are random indexes of the prey matrix. −→u is a range random
vector that is less than the FAD coefficient probability value which is 0.2. The basic steps of the AMPA
are summarized in the flowchart shown in Figure 2.

4. RESULT AND DISCUSSION

AMPA has been implemented extensively to find the optimal excitation amplitude among the array
elements of the nonuniform 3-ring CCAA design. The results obtained by AMPA are benchmarked
with six other metaheuristic algorithms namely, arithmetic optimization algorithm (AOA), moth flame

Table 1. The algorithms’ parameter setting.

Algorithm Parameters Values

AOA α, µ, and Spiral constant [5, 0.499, 1]

Maximum MOP and minimum MOP [1, 0.2]

MFO Convergence constant [−1,−2]

Random number range [−1, 1]

IWO Minimum and Maximum seeds [0, 5]

Initial and Final standard deviation [0.01, 0.1]

GWO Control parameter [2, 0]

NMPA FADs and C [0.2, 0.5]

MPA FADs and C [0.2, 0.5]

AMPA learning coefficients b1 and b2 1.7

FADs and C [0.2, 0.4]
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Figure 2. Flowchart for AMPA.

optimization (MFO) algorithm, invasive weed optimization (IWO) algorithm, grey wolf optimization
(GWO), nonlinear marine predator algorithm (NMPA), and marine predator algorithm (MPA), and
their control parameters are shown in Table 1. The population size, maximum iteration, and number
of runs for each algorithm are set as 50, 100, and 50, respectively. The simulations are performed
on MATLAB 2020a version with 16GB RAM 11th Gen Intel(R) Core (TM) i7-11370H @ 3.30GHz
computer, and the best results are reported in this work.
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4.1. CASE 1 — Optimization of Nonuniform CCAA with No Centre Element

In the first instance, the amplitude optimization of two different examples of three-ring CCAA with
no centre element was performed using Equation (4). The first example is when N1 = 4, N2 = 6,
N3 = 8, and the second example is when N1 = 8, N2 = 10, and N3 = 12. The inter-element spacing
for the first example was set to 0.50λ, 0.58λ, and 0.77λ, respectively, while for the second example, it
was set to 0.55λ, 0.615λ, and 0.75λ. The obtained SLL and FNBW for the first and second examples
are presented in Table 2. Their radiation patterns and convergence curves are shown in Figures 3
and 4. Also, the excitation current that yields the SLL result for the AMPA is presented in Table 3.
For the first example, AMPA attained a minimum SLL of 37.60 dB and FNBW of 80.40◦. It obtained
the best SLL value amongst the algorithms adopted with an FNBW which is much narrower than the
uniform array. The SLL result of −28.7889◦C obtained by AMPA for the second example shows that it
outperformed MPA, NMPA, AOA, MFO, GWO, IWO, and the uniform array by 2.9554 dB, 1.5430 dB,
8.1043 dB, 3.0197 dB, 10.8445 dB, 4.3284 dB, and 19.2271 dB, respectively. Based on the optimization
results of AMPA obtained for the first case, AMPA effectively reduces the SLL and obtains a very
narrow FNBW, though it has the highest computational time which is due to the complexity of the
algorithm. This outstanding result achieved by AMPA is due to its ability to escape local optima and
explore larger search space.

Table 2. Optimization result obtained for Case-1 examples.

4,6,8-ELEMENT 8,10,12-ELEMENT

Algorithm
Peak SLL

(dB)

FNBW

(◦)

Time

(s)
Algorithm

Peak SLL

(dB)

FNBW

(◦)

Time

(s)

Uniform −11.2332 90.40 Uniform −9.5593 55.20

IWO −31.8575 83.60 1.73 IWO −24.4580 53.20 2.37

GWO −18.7121 76.80 1.81 GWO −17.9419 46.40 2.51

MFO −35.1021 90.40 1.75 MFO −25.7667 51.60 2.47

AOA −23.3269 85.60 1.77 AOA −20.6821 52.80 2.49

NMPA −35.6456 80.80 3.47 NMPA −27.2434 52.40 4.79

MPA −36.9822 82.40 2.98 MPA −25.8310 50.80 4.79

AMPA −37.6000 80.40 3.65 AMPA −28.7864 52.80 4.89

(a) (b)

Figure 3. Plots showing the (a) radiation pattern and (b) convergence curve of 4,6,8 CCAA without
centre element.
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(a) (b)

Figure 4. Plots showing the (a) radiation pattern and (b) convergence curve of 8,10,12 CCAA without
centre element.

Table 3. Current excitations obtained by AMPA for Case-1.

CASE-1 Amplitude

Example 1 0.9972 0.9163 1.0000 0.8866 0.7871 0.7970 0.9822 0.8010 0.7854

0.9970 0.6033 0.9974 0.6122 0.3243 0.6076 0.9933 0.5980 0.3487

Example 2 0.6987 0.5741 0.6805 0.9809 0.8986 0.3516 0.9340 0.9885 0.7252 0.1838

0.1738 0.6313 0.5275 0.7817 0.0307 0.0308 0.7911 0.5600 0.4677 0.2990

1.0000 0.2240 0.4854 0.5400 0.4064 0.4519 0.9873 0.4597 0.3823 0.4920

4.2. CASE 2 — Optimization of Nonuniform CCAA with a Centre Element

The second instance considered in this work is the amplitude optimization of N1 = 4, N2 = 6, N3 = 8
and N1 = 8, N2 = 10, N3 = 10 three-ring CCAA with a centre element using Equation (4). The 4,6,8
CCAA is named as example 3 while the 8,10,12 CCAA is named as example 4. For example 3, the inter-
element spacing is set to 0.52λ, 0.53λ, and 0.68λ, respectively. The SLL of −44.4602 dB, −38.3823 dB,
−39.6563 dB, −25.1988 dB, −33.3612 dB, −20.7311 dB, −29.5781 dB was achieved by AMPA, MPA,
NMPA, AOA, MFO, GWO, and IWO, respectively, as shown in Table 4 and Figure 5. In the fourth

Table 4. Optimization result obtained for Case-2 examples.

4,6,8-ELEMENT 8,10,12-ELEMENT

Algorithm
Peak SLL

(dB)

FNBW

(◦)

Time

(s)
Algorithm

Peak SLL

(dB)

FNBW

(◦)

Time

(s)

Uniform −12.3146 95.20 – Uniform −10.7612 56.80 –

IWO −29.5781 102.00 1.48 IWO −28.4066 58.80 2.88

GWO −20.7311 96.80 1.56 GWO −18.9455 53.60 2.84

MFO −33.3612 98.80 1.48 MFO −26.7529 60.00 2.81

AOA −25.1988 112.40 1.51 AOA −22.6324 65.20 2.83

NMPA −39.6563 103.60 3.34 NMPA −30.3387 58.80 5.48

MPA −38.3823 105.20 3.31 MPA −30.1900 57.20 5.45

AMPA −44.3602 101.60 3.38 AMPA −34.0188 60.80 5.55
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example, the inter-element spacing is set to 0.54λ, 0.606λ, and 0.72λ, respectively, and it attained an SLL
of −34.0188 dB, −30.1900 dB, −30.3387 dB, −22.6324 dB, −26.7529 dB, −18.9455 dB, −28.4066 dB for
AMPA, MPA, NMPA, AOA, MFO, GWO, and IWO, respectively, as shown in Table 4. The radiation
pattern and convergence curve of the third and fourth examples are shown in Figures 5 and 6. It
is obvious that the improvements made to the standard MPA make the AMPA outperform all other
algorithms in these examples. It is also observed that the FNBWs acquired by most of the algorithms
in the Case-2 examples are a bit larger than that of the uniform array. This is due to the tradeoff
between the SLL suppression and FNBW, and the lower the SLL is, the wider the FNBW is. However,

Table 5. Current excitations obtained by AMPA for Case-2.

CASE-1 Amplitude

Example 3 0.9002 0.3168 0.6194 0.3110 0.6320 0.9993 0.9992 0.9534 0.9981 1.0000

0.9290 0.4938 0.4404 0.5082 0.0171 0.5096 0.4353 0.4954 0.0029

Example 4 0.9751 0.3876 0.9823 0.4022 0.9800 0.3728 0.9939 0.3208 1.0000 0.8972 0.0702

0.0981 0.8879 0.9807 1.0000 0.0987 0.0860 0.9826 0.9972 0.4397 0.4076 0.7150

0.3956 0.4410 0.3791 0.4516 0.4303 0.7967 0.3868 0.4906 0.3943

(a) (b)

Figure 5. Plots showing the (a) radiation pattern and (b) convergence curve of 4,6,8 CCAA with the
centre element.

(a) (b)

Figure 6. Plots showing the (a) radiation pattern and (b) convergence curve of 8,10,12 CCAA with
the centre element.
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the FNBW is just a few degrees more than the uniform array, which is still considerable. The amplitude
currents attained by AMPA for examples 3 and 4 are shown in Table 5.

4.3. Stability Test

The stochastic nature of metaheuristic algorithms warrants different optimization results in each
independent run when the mathematical problems are solved; therefore, it is essential to conduct
statistical tests to compare the efficacy of these algorithms. In this work, the stability performances of
the AMPA and other algorithms adopted for the optimization of the CCAAs are tested. The stability
test is conducted on the results (best costs) obtained during the optimization of the four examples of
the CCAA considered in this work. Since the optimization is carried out for 50 independent runs, and
100 iterations are conducted in each run, each algorithm has 50 results used to estimate the best cost,
worst cost, mean cost, and standard deviation of the results obtained. The estimated results are shown
in Figures 7(a), 7(b), 7(c), and 7(d), for example 1, example 2, example 3, and example 4, respectively.
Tables 6 and 7 further give the breakdown of the statistical result.

In terms of the best costs and average cost, AMPA has the top score among the algorithms for all
four CCAA examples, and its standard deviation compares favourably with other algorithms. According
to the figures and tables, the proposed AMPA algorithm achieves the overall best performance.

(a) (b)

(c) (d)

Figure 7. Plots showing the stability test (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4.
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Table 6. Statistical result for case 1 (Example 1 and Example 2).

Algorithms

4,6,8-ELEMENT (Example 1) 8,10,12-ELEMENT (Example 2)

Best cost Worst cost
Average

cost

Standard

deviation
Best cost Worst cost

Average

cost

Standard

deviation

IWO −6.48E+04 −5.58E+04 −6.02E+04 2.09E+03 −5.09E+04 −4.62E+04 −4.90E+04 1.16E+03

GWO −4.40E+04 −3.81E+04 −4.11E+04 1.47E+03 −3.68E+04 −3.30E+04 −3.46E+04 8.81E+02

MFO −7.04E+04 −5.21E+04 −6.15E+04 4.29E+03 −5.17E+04 −4.18E+04 −4.73E+04 2.48E+03

AOA −5.10E+04 −3.83E+04 −4.33E+04 3.12E+03 −4.17E+04 −3.43E+04 −3.70E+04 1.63E+03

NMPA −7.23E+04 −6.69E+04 −6.98E+04 1.39E+03 −5.55E+04 −4.67E+04 −5.16E+04 2.13E+03

MPA −7.40E+04 −6.50E+04 −6.93E+04 2.26E+03 −5.29E+04 −4.63E+04 −4.86E+04 1.49E+03

AMPA −7.52E+04 −7.08E+04 −7.42E+04 8.27E+02 −5.80E+04 −5.22E+04 −5.57E+04 1.26E+03

Table 7. Statistical result for case 2 (Example 3 and Example 4).

Algorithms

4,6,8-ELEMENT (Example 3) 8,10,12-ELEMENT (Example 4)

Best cost Worst cost
Average

cost

Standard

deviation
Best cost Worst cost

Average

cost

Standard

deviation

IWO −6.60E+04 −5.30E+04 −6.15E+04 2.83E+03 −5.68E+04 −4.79E+04 −5.12E+04 1.71E+03

GWO −4.33E+04 −3.49E+04 −3.81E+04 1.54E+03 −3.79E+04 −3.35E+04 −3.56E+04 9.13E+02

MFO −6.96E+04 −4.60E+04 −5.97E+04 5.81E+03 −5.35E+04 −4.15E+04 −4.78E+04 3.12E+03

AOA −5.06E+04 −3.89E+04 −4.45E+04 2.55E+03 −4.53E+04 −3.14E+04 −3.69E+04 2.39E+03

NMPA −7.99E+04 −5.93E+04 −6.83E+04 4.75E+03 −6.07E+04 −4.98E+04 −5.55E+04 2.28E+03

MPA −7.90E+04 −5.86E+04 −6.72E+04 4.68E+03 −6.04E+04 −4.53E+04 −5.07E+04 2.80E+03

AMPA −8.89E+04 −7.13E+04 −8.24E+04 3.80E+03 −6.81E+04 −5.72E+04 −6.18E+04 2.39E+03

5. CONCLUSION

In this paper, the advanced marine predator algorithm (AMPA) is implemented to determine the
optimal radiation pattern of the non-uniform 3-ring CCAA in the presence and absence of a centre
element. AMPA introduces two unique factors to enhance the exploration and exploitation capability
of the conventional MPA and improve the convergence rate: an improved velocity update strategy
and a chaotic sequence parameter. This makes it especially suitable for solving the CCAA optimization
problem. For the synthesis of the nonuniform 3-ring CCAA without a centre element, AMPA obtained an
SLL result of −37.6000 dB and −28.7864 dB for 4,6,8-element CCAA and 8,10,12-element CCAA. Also,
in the presence of a centre element, it obtained an SLL of −44.3602 dB and −34.0188 dB for the 4,6,8-
element CCAA and 8,10,12-element CCAA, respectively. The stability test likewise proves that AMPA
has a good level of stability as compared with other algorithms. The overall simulation results show
that the AMPA performs better than MPA, NMPA, AOA, MFO, GWO, and IWO. This outstanding
performance shows that AMPA can be employed effectively for the design of a 3-ring CCAA structure.
A practical antenna array design can be made and fabricated based on the information provided in this
work to meet optimal communication system needs.
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