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General Electromagnetic Simulation of Radar Signals Backscattered
from Metallic Wind Turbines

Victoria Sgardoni* and Nikolaos Uzunoglu

Abstract—The backscattering of electromagnetic waves incident on a rotating metallic wind turbine
(WT) is analyzed by using the Physical Optics method. The model developed is general and allows the
computation of the spectral Doppler shift of the backscattered waves. All the parameters involved are
taken into account, relative to incident wave direction, wind horizontal direction, WT geometric and
electromagnetic properties. Numerical computations are carried out for various cases and presented
relative to a search radar.

1. INTRODUCTION

The introduction of electrical energy generation technology by wind turbines (WTs) has demonstrated
severe detrimental effects on ground detection radars of flying targets and, particularly, on airspace
surveillance radars. These radars, making use of the Doppler phenomenon, are naturally affected by
scattering from the wind turbines blades. The fact that radars based on Moving Target Indicator (MTI)
or Moving Target Detection (MTD) technologies operate on the principle of rejecting stationary targets
— mainly the scattering from the earth surface with zero or near-zero Doppler frequency shift — while
taking advantage of the Doppler frequency shift from moving or flying vehicles (airplanes) in order to
detect and track targets results in these radars being severely affected by a rotating object such as the
WT blades.

The fact that each rotating blade of length L and angular rotational speed Ω rad/sec develops a
linear speed ranging from vmin = 0 (at the rotation axis “root”) to vmax = ΩL (at the blade tip) will
create a continuous signal “curtain” with Doppler shift fd, depending on the radiation incidence angle.
If the propagation direction of an incident wave to the WT lies on the same plane of the blades’ rotation
(usually there are three turbine blades at an angle of 120◦ from each other), the full range of Doppler
frequencies will occur:

−fd,max < fd < fd,max (1)

where fd,max = 2vmaxf0/c, c = 3 · 108m/sec is the speed of EM radiation in vacuum, and f0 is the
carrier frequency of the radar signal, being usually in the microwaves zone (1–40GHz).

The other extreme case is when the blades rotation plane is perpendicular to the incident radiation,
in which case it can be deduced easily, theoretically, that the Doppler frequency shift will be zeroed.

It was quickly ascertained that this phenomenon has severe effects not only on the radars used by
the defense forces of a country, but on the civil aviation radars as well, since they use similar types of
radars that are based on the same physical principles.

Initially, the relevant Departments in charge from the Ministries of Defense set out a strict set
of rules for the installation of WTs, attempting to place them in the “shadows” of radars. However,

Received 5 February 2023, Accepted 6 April 2023, Scheduled 24 May 2023
* Corresponding author: Nikolaos Uzunoglu (nikolaos.uzunoglu@gmail.com).
The authors are with the Microwave Laboratory, Institute of Communication and Computer Systems (ML-ICCS) — National
Technical University of Athens, Greece.



92 Sgardoni and Uzunoglu

later it transpired that it was impossible to implement this policy, because the maximization of electric
energy production from wind potential requires the installation of WTs on mountains and, indeed, on
the boundary lines of mountain ranges. Under these circumstances new principles were adopted for
“milder” radar disruption. For example, a radar signal ray should not be completely interrupted by the
WT “rotation disk”, in the worst case. Also, the WTs distance from a radar should be greater than
a minimum limit, so that scattering from the WT stable parts does not cause signal saturation at the
input stages of the radar receivers.

This issue has been the subject of research papers from a number of authors since 2005.
Nevertheless, taking into account the importance of the matter in national defense issues, as well as
civil aviation security issues, there is not enough bibliography and publications on the subject. In a
report by RTO NATO titled The Effects of Wind Farms on NATO Radar Systems (SET 128/RTG-07)
(23/8/2016), a program of inter-state collaboration was proposed in order to study the phenomenon.
In the last 5 years a number of publications were presented in international conferences (mostly) that
address the issue from a measurements’ perspective mainly [1–5].

The USA Congress has been concerned about this issue, at a political level, as early as 2006 [6].
Several researchers have addressed the issue studying the radar cross section of WTs, attempting to
reduce the effects of WTs on radars [7]. Some proposals have been made to use methods based on signal
processing in radars, in order to encounter the phenomenon described to a lesser extent [8–10].

To the best of our knowledge the scattering phenomenon of incident waves has not been analyzed
by electromagnetic analysis so far, and it is not possible to make a quantitative comparison with results
from other methods. In this article an electromagnetic analysis based on Physical Optics (P.O.) method
is presented, and numerical results are reported for various indicative cases.

2. ELECTROMAGNETIC ANALYSIS OF THE BACKSCATTERING OF WAVES BY
WIND TURBINE ROTATING BLADES

The characteristic WT structure is shown in Fig. 1. The structure consists of the rotating 3-metallic
blades and a vertical tower supporting the axis of the blades. The following analysis is focused only on
the rotating part of WT, as only this will generate reflected signals with a Doppler frequency shift.

Figure 1. General geometry of a wind turbine (courtesy of Hellenic Wind Energy Association).



Progress In Electromagnetics Research B, Vol. 100, 2023 93

Given that the radiation from a radar has a wavelength ranging from tens of centimeters up to a
few centimeters (1–20GHz), while the blades are tens of meters in length and tens of centimeters in
diameter, in the electromagnetics problem addressed, the dimensions of the scatterer are much larger
than the wavelength. Therefore, in such a case it is appropriate to use high frequency methods, as,
practically, it is very difficult to apply numerical analysis methods. In this work the Physical Optics
(P.O.) method is used.

The P.O. method is based on the following principles:

a) It is assumed that the electromagnetic waves are scattered only on the surfaces where the radiation
rays are directly incident considering them as geometric rays. Thus, the edge diffraction phenomena
are ignored.

b) On the surfaces that are directly illuminated, the current induced by the incident EM wave, Js

(A/m), is computed by the equation:

Js = 2n̂× Ĥinc (2)

where n̂ is a unit vector perpendicular to the surface, towards the outer side, and Ĥinc is the
magnetic component of the incident magnetic field, which is known and defined as:

Ĥinc = ĥC0e
(−jkoRo)e(−jkok̂i·r̂) (3)

where

C0 =

√
PtGt
60π

(4πR0)

PtGt is the effective radiated power from the radar antenna beam, with Gt the gain of the radar
antenna in the direction of the WT and Pt the transmitted power of the radar; ĥ is the unit vector of
the magnetic field that is perpendicular to the incidence direction and the associated electric field;
R0 is the distance of the radar antenna center O′ from the reference point O on the WT rotation
axis, defined as the coordinates’ origin for the WT, as shown in Fig. 2; k̂i is the unit vector defining
the direction of incidence of the EM wave from the radar to the WT; r̂ is the position vector of
a random point on the turbine blade, and ko = ω/c is the propagation constant (wavenumber) in
free space; ω is the angular frequency of the electromagnetic radiation.†

Figure 2. Definition of distance between WT and radar, R0, and of the angles θi, φi.

Knowing the value of H0 the surface current can be computed on the surface current Js (A/m) on
the blade surface that is illuminated directly from the incident wave.

c) For the schematic modelling of each blade, it is assumed that a blade consists of coaxial cylinders
of finite length, where each part has a radius as shown in Fig. 3(a). Scattering is affected by the
curvature radius. The choice of cylindrical geometry to model the blade is justifiable, since the local

† The angular frequency must be considered as the spectral variable that would be used for Fourier analysis.
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radar cross section at each point on the blade is determined principally by the curvature radius,
and therefore selecting an equal radius cylinder is expected to be a good approximation. In this
work, it is assumed that the radii of the finite cylinders are equal for the calculations. Nevertheless,
the method proposed can be generalized easily.

3. FORMULATION OF THE ELECTROMAGNETICS PROBLEM

The geometry of a WT is defined in Figs. 2 and 3(b), taking into account the descriptions of the previous
sections. Axis y is local vertical and remains unchanged. When the wind direction changes, the rotation
axis of the blades, z, will change direction in the horizontal plane, as well as the axis x.

(a) (b)

Figure 3. (a) Schematic model of a blade, (b) Geometry of a wind turbine with 3 blades at 120◦ to
each other.

The incident wave properties with respect to the direction of the incident wave k̂i (locally as a
plane wave) and the magnetic field polarization vector are both defined in the same rotating coordinates
system.

Following the above hypotheses, it is assumed that a radar radiates EM energy on a WT. The
electric and magnetic fields, effective values, which are incident on the WT from the radar, are defined
by the following equations:

Einc = ê

√
2PtGtZo
4πRo

e(−jkoRo)e(−jkok̂i·r̂) (2a)

Hinc = ĥ

√
2P tGt

4πRo
√
Zo
e(−jkoRo)e(−jkok̂i·r̂) (2b)

where Z0 = 120π (Ω) is the wave resistance of free space.
In this work, the time dependency term, expressed as exp (jωt), is not shown in the whole analysis.
The terms PtGt, Ro, ko were defined for Eq. (1b).
The remaining terms are:
k̂i is the incidence radiation unit vector, which is defined as

k̂i = −x̂ sin θi cosφi − ŷ sin θi sinφi − ẑ cos θi (3)
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and θi, φi are the angles in the Cartesian system of Fig. 2 related to the spherical coordinates. θi is
defined as the angle between line OO′ and the z axis. φi is the angle between the projection of line OO′

on the xOy plane and x axis. x̂, ŷ, ẑ are the unitary vectors of the cartesian system of Fig. 3(b).

The unitary vectors ê, ĥ are the polarization vectors of the E and H fields, respectively. Especially
for vertical polarisation of the electric field, the electrical polarization vector is defined as:

êv = −x̂ cos θi cosφi − ŷ cos θi sinφi + ẑ sin θi (4)

while for horizontal polarization of the electric field:

êh = −x̂ sinφi + ŷcosφi (5)

A random point on the surface is described by the position vector r:

r = (x̂ cos (Θ (t)) + ŷ sin (Θ (t))) ζ+αn̂ (6)

where n̂ is the unitary vector vertical to the surface of the cylindrical blade, ζ the distance of r from
point O along the blade, and α the blade radius, as shown in Fig. 4. Θ(t) is the rotation angle of the
blade around the z axis, defined as Θ(t) = Ωt, where Ω is the angular rotational speed of the blades,
and t is time.

Figure 4. Geometry of a WT blade.

In carrying out the calculations the prime interested in the unitary polarization vector of the
magnetic field ĥ. Since for air surveillance and detection radars, horizontal electric polarization is
usually used, the vector of the magnetic field ĥ = êv will lie in the vertical plane; it is defined as follows.

Vector n̂ is the unitary vector vertical to the cylindrical blade and is given by the following formula,
when the angle ψ is defined for a cross-section of the cylindrical blade.

n̂ = (x̂ sin (Θ (t))− ŷ cos (Θ (t))) cosψ + ẑ sinψ (7)

Θ(t) is the rotation angle of the blade around the z axis, defined as Θ(t) = Ωt as above.
According to the above:

ĥv = −x̂ cos θi cosφi − ŷ cos θi sinφi + ẑ sin θi (8)

and

ĥh·k̂i = 0

k̂i = êv×ĥv = êh × ĥh (9)

where × denotes the cross product of vectors, and k̂i is defined in Eq. (3).
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4. CALCULATION OF THE DOPPLER FREQUENCY SHIFT

Given that the blades are solid and rotate around the z axis, all points of the cylindrical blade move
for the same distance ζ with the same linear velocity v, defined by the formula:

v =
dr

dt
= ζΩ(− sinΘ (t) x̂+ cosΘ (t) ŷ) (10)

because the term αn̂ in Eq. (6) does not change in time.
According to the well-known formula for the Doppler frequency shift fd:

fd = −2v.ki

c
f0 (11)

where f0 =
ω0
2π is the radar carrier (central) radiation frequency, in Hz.

Substituting Eqs. (3), (10), and (11), the following Doppler shift relation is obtained:

fd = 2Ωζ
f0
c
(sin θi sin (φi −Θ(t)) (12)

which takes its maximum value for ζ = L, θi = 90◦, as |fD,MAX | = 2ΩLf0c .

5. PHYSICAL OPTICS

Realizing that the Doppler shift increases linearly with distance ζ, the scattering by a small strip of the
blade (ζ, ζ + dζ) is computed. The length dζ is determined by the spectral resolution of the Doppler
filters. It should be noted that the P.O. method is independent from the polarization of the incident
wave.

In order to implement the P.O. method, it is necessary find the angle ψ∗ at which the radiation
strikes meridionally the surface of the cylindrical blade. This is achieved by calculating the inner product
n̂ · k̂i and finding the angle ψ at which the product gets its maximum value.

n̂ · k̂i = − sinΘ (t) cosψ sin θi cosφi + cosΘ (t) cosψ sin θi sinφi − cos θi sinψ

By computing the derivative of the above relation with respect to ψ and finding the value of ψ = ψ∗

for which the derivative is zero, it is found that:

sinΘ(t) sinψ sin θi cosφi − cosΘ(t) sinψ sin θi sinφi − cos θi cosψ = 0 =⇒

tanψ∗ =
1/tan θi

sinΘ(t) cosφi − cosΘ(t) sinφi
=

1

tan θi

1

sin (Θ (t)− φi)
(13)

In computing the ψ∗ angle by Eq. (13) always the n̂ · k̂i < 0 is selected considering the two valued
arctan(ψ) function. This is because the incident wave propagation vector should in opposite direction
with the unit vector on the cylindrical surface at the meridionally line.

On the partition of the blade surface (ζ, ζ + dζ) along the axis and at angle αdψ, a flow of electric
current is developed on the surface:

Js (ψ, ζ) = 2n̂×Hinc (14)

where Hinc is the magnetic field defined in Eq. (2b). Considering that an elementary current from a
surface islet (dζ, αdψ) generates an electrical field at a distance from it, it is found that:

dEs = −jωµ0(1− k̂sk̂s)) · Js (ψ, ζ)
e(−jk0R0)

4πR0
e(jk0k̂s·r)dζαdψ (15)

where k̂s is the unit vector parallel to scattering direction and µ0 = 4π10−7 (H/m) the free space
magnetic permeability.

The term (1−k̂sk̂s) refers to the “transversal dyadic” since 1 is the unitary dyadic (1 ·A = A), and

the term k̂sk̂s refers to the lengthways component. The unitary vector k̂s = −k̂i is in the direction of
backscattering, which, in our case, is in the opposite direction to the incident wave, since a monostatic
radar is assumed (with a common antenna for emission and reception).
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Combining Eqs. (14) and (15):

dEs = −jωµo
(
I−k̂sk̂s

)
· Js (ψ, ζ) e(−jk̂i.{(x̂ cosΘ(t)+ŷ sinΘ(t))ζ+n̂a})e(j2πfdt)

e(−jkoRo)

4πRo
adψdζ

and after integration on the blade strip (ζ, ζ + dζ), from ψ = ψ∗ − π/2 to ψ = ψ∗ + π/2 (assuming that
a finite half cylinder receives radiation), the following relation is derived:

∆Es,fd = −jωµo

ζ+∆ζ∫
ζ

dζ

∫ ψ∗+π
2

ψ∗−π
2

αdψ
(
1−k̂ik̂i

)
.
(
n̂ (ψ)×ĥh

)
· 2

√
2P tGt

(4πRo)
2
√
Zo

e−2jk̂i·{(x̂ cosΘ(t)+ŷ sinΘ(t))ζ+n̂A}e−2jkoRoej(ω+fd)t (16)

where the factor ej(ω+fd)t reintroduces the time dependency.
Assuming that the receiver has Doppler resolution ∆fd it is found that:

∆fd = 2Ωdζ
f0
c
sin θi sin (φi −Θ(t)) (17)

After resolving the integral with respect to ζ, it is derived that:

∆Efd = Co (Θ(t)) e2jkoζ
sin(ko∆ζ sin θicos(φi −Θ(t))

sin θicos(φi −Θ(t))
Λ (Θ (t) ,θi,φi) · êh (18)

where

Co = −2jωµo

(
Î−k̂sk̂s

) √
2P tGt

(4πRo)
2
√
120π

aej(ω+fd)t

Co is a function of Θ(t) because of fd, and êh is the horizontal polarization vector.
From Eq. (18) it is observed that when cos(φι − Θ(t)) = 0, the reflection is maximum, i.e.,

φι −Θ(t) = ±π/2.
The vector function Λ is defined as:

Λ (Θ (t) , θi, φi) =

∫ ψ∗+π
2

ψ∗−π
2

dψ{x̂ sinψ (cos θi sinφi − cosΘ (t) sin θi)− ŷ (cosψ sinΘ (t) sin θi

+cos θi cosφi sinψ)− ẑ(cos θi sinφi sinΘ (t) cosψ − cosΘ (t) sinψ cos θi cosφi)}

e2koaj(sinΘ(t) cosψ sin θi cosφi+cosΘ(t) cosψ sin θi sinφi−cos θi sinψ) (19)

The term Λ will be evaluated numerically as a complex vector along the three components x, y, z, for
each value of Θ(t), θi, and φi. The values of θi and φi are determined by the incidence angle of the
radar EM wave on the WT blade.

Equation (18) for ∆E fd has the form of a sinc(·) function that is maximized for maximum reflection,
when

cos (φi −Θ(t)) = 0 =⇒ φi −Θ(t)= ±π
2

Given that there are three blades with instantaneous positions determined by Θ(t), Θ(t) + 120◦,
Θ(t) − 120◦, the signals reflected to the radar from the WT must be calculated independently at any
given time t.

It should be noted that shadowing between the blades is ignored, as it is a secondary minor
phenomenon.

Calculations are performed for each blade independently, but in the end the results are presented
in terms of two independent variables in the time domain, relative to the blades rotation angle and
the Doppler shift. The addition of the waves scattered by the corresponding blades can be performed
for the same time instant and the same Doppler shift (as the central frequency of the relevant Doppler
filter):

∆Efd,TOTAL = ∆Efd (Θ (t)) +∆Efd (Θ (t) + 120◦) +∆Efd (Θ (t)− 120◦) (20)
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The present computational method calculates the radar cross-section (RCS) of the WT corresponding
to the specific Doppler bin ∆fd, which is relative to the spectral resolution of the radar receiver. The
related RCS is computed easily by the equation

σ(∆fd) = 4πR2
o|∆Efd,TOTAL|2/|Einc|2

when Ro goes to infinity. In the case of a real target with a near Doppler frequency shift, having an
RCS of value σo, the ratio σ(∆fd)/σo determines the detectability of the target when it is close to the
WT and inside the same delay time bin.

6. NUMERICAL CALCULATIONS AND SIMULATIONS

Implementing the analysis of Sections 2 to 5, a simulation software program calculating the electric field
E has been developed, due to radar radiation scattered by the rotating blades of a WT. The WT model
used is based on a WT with 3 blades at 120◦ angles between them, as shown in Fig. 5. The simulation
software was written in MATLAB‡.

Figure 5. Wind turbine dimensions [11].

The simulator computer program calculates the electric field component along the incident
polarization ∆E due to scattering at each surface islet (dζ, αdψ) of each blade. After the integration
of ∆E with respect to dζ, the electric field generated on each blade is evaluated according to Eqs. (18)
and (19). The calculation of the frequency Doppler shift is based on Eq. (12).

Realistic parameters have been used for the modelling of a WT and the radiation from an MTI
radar. Specifically, a WT with blade length L = 34m (≈ 113 ft) is taken, representative of numerous
WTs [11]. Two values were considered for the angular rotational speed Ω rad/sec when there is wind, a)
7 rpm corresponding to Ω = 0.23π rad/sec, a low rotation speed for low intensity wind, and b) 19 rpm
corresponding to Ω = 0.633π rad/sec, a very high rotation speed for high-speed winds (considering that
the wind speed varies between 0 and tens of km/h in extreme conditions). The angular speed is expected
in the range 9–19 rpm [12], for modern WTs of 2MW power.

The blade radius is assumed α = 0.5m, on average, as the radius is considered constant along the
whole length of the blade, in order to simplify the modelling, although in reality blades are thinner at
the tip and larger near the root, as shown in Fig. 6 [12]. In general, the blade diameter is less than
2.5m.

Regarding the radar parameters to evaluate the radiation from an MTI/MTD radar, it is assumed
the radar transmitted power Pt = 104W, the antenna gain Gt = 33dBi, and the carrier frequency

‡ https://www.mathworks.com/academia/tah-portal/ntua-31572547.html
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Figure 6. Design of a modern WT blade [12].

f0 = 2.7GHz. It is assumed that the radar is located at a distance R0 = 20 km from the WT (distance
considered between the WT rotation centre and the radar antenna centre).

The electric field strength on each blade, ∆E, is evaluated from each surface islet dζ of the blade,
with step dζ = 0.33m, every ∆t = 0.01 sec, for a full rotation of the blade. It is evaluated as a function
of Doppler frequency shift, due to the angular rotational speed Ω according to Eqs. (17), (18), (19),
assuming that the Doppler frequency resolution is ∆fd = 5Hz at the radar receiver. After evaluating
the electric field strength ∆E along each blade (as a vector) at the position it has, at each time t, the
total electric field, ETOT, is computed according to Eq. (20).

The simulation for the evaluation of the electric field and the Doppler frequency shifts during a
complete rotation was performed assuming horizontal polarization (based on the polarization vectors in
Eqs. (4) and (5)), for different values of the angles θi and φi.

Simulation results for the electric field of each blade, ∆E, and the total electric field by taking
into account the contribution of three blades (rotating with 120◦ angular spatial difference), ETOT, are
presented in the following sections, for different sets of angles θi and φi, as noted in each section. In
the following subsections A, B, C, the corresponding results are given in Figs. 7–10 which are obtained
for angular rotation speed Ω =0.23π rad/sec, i.e., 7 rpm. In section D and Figs. 11 to 13, results are
given for angular rotation speed Ω = 0.633π rad/sec, i.e., 19 rpm. Section E presents the results for the
evaluation of the total electric field, ETOT.

A) Assuming that the rotation plane of the blades is perpendicular to the ground, the following
graphs show the magnitude of the electric field, ∆E, generated on each of the three blades for angles
θi = 89◦, and φi = 0, 10◦, and 45◦.

The magnitude of the electric field ∆E is calculated as a function of the rotation angle Θ(t) at time
t, and the Doppler shift fd produced at that time t, at each point of the blade (at distance ζ from its
root). Thus, the electric field magnitude, ∆E, is shown as a 3D plot, where the independent axes are
the rotation angle Θ(t) and Doppler shift fd.

From the graphs in Figs. 7 and 8, showing the electric field magnitude ∆E on each blade with
respect to Doppler shift fd and the rotation position in time Θ(t), the following observations can be
done:

• The electric field magnitude ∆E is symmetrical with respect to Θ(t) and Doppler frequency fd in
all cases.

• The graphs of ∆E for each of the three blades, at angles Θ(t), Θ(t)+120◦, Θ(t)−120◦ respectively,
have the same form but with a phase difference corresponding to the rotation angle difference Θ(t).

• The electric field magnitude ∆E is periodic and resembles the shape of a sine wave (on the plane
of axis Θ(t) and fd). This is expected due to the blades’ rotation at a constant speed.

• The range of values that ∆E takes differs according to the angles θi and φi considered. In Figs. 7,
8, it is assumed that θi = 89◦ and φi = 0, 10◦, 45◦.

• In the graph for each blade, the fluctuation of the electric field magnitude ∆E between minimum
and maximum values is small (values in the order of 10−4).

• In Fig. 8 the sidelobes of ∆E are attenuated for larger angles φi, as it increases from 0◦ and 10◦ to
45◦, while the central lobe is accentuated respectively (to 2× 10−3).

• The range of Doppler shifts fd in the above graphs, for θi = 89◦, is similar, [−442, 442]Hz.
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(a)

(c)

(b)

Figure 7. (a), (b), (c) EM field strength ∆E(fd, Θ(t)) on each blade, for θi = 89◦, φi = 0◦,
Ω = 0.23π rad/sec.

Figures 7 and 8 show clearly that the backscattered signals spread as a sinusoidal in time, Θ(t).
Since the graph of the electric field ∆E on each blade has the same form but shifted by Θ, in the
following sets of results only graphs of one blade will be shown.

B) Next, results are shown for the magnitude of the electric field ∆E generated on one blade for
small angles θi, when θi = 20◦, and for φi = 0◦, 10◦. The rotation plane of the blades is assumed
perpendicular to the ground plane.

In the graphs of Fig. 9, for θi = 20◦ it can be observed that:

• When φi = 0◦ the variation of ∆E during a full rotation is smoother than that for the bigger angle
θi considered previously in Figs. 7 and 8. The field ∆E is of the same order of magnitude as when
θi = 89◦, in Figs. 7 and 8.

• The periodicity of the electric field magnitude ∆E can be clearly observed.

• The range of Doppler shifts is smaller than that in Figs. 7, 8, in the range of [−150, 150]Hz. This
is obvious for small values of θi, from formula (12) for the calculation of Doppler shift.
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(a) (b)

Figure 8. (a), (b) EM field strength ∆E(fd,Θ(t)) on one blade, for θi = 89◦, φi = 10◦, 45◦,
Ω = 0.23π rad/s.

(a) (b)

Figure 9. (a), (b) EM field strength ∆E(fd, Θ(t)) on one blade, for θi = 20◦ and φi = 0, 10◦,
Ω = 0.23π rad/sec.

C) Next, the case when angle θi = 0◦ and 3◦ is examined, i.e., values close to zero.
In the graphs of Fig. 10, it can be observed that:

• For θi = 0◦ (and φi = 10◦) the electrical field is zero, which is justified from Eqs. (18) and (19).
That is, when the blades rotation plane is perpendicular to the incident wave direction (ki) zero
backscattering energy is observed.

• In Fig. 10(b) for θi = 3◦, the graph of the electrical field ∆E has very few variations in time (with
respect to bigger angles θi), it is periodic and smooth, of similar magnitude as that for bigger angles
θi (in the order of 10−4).

• The range of Doppler shifts is even smaller than that in Fig. 9, with range [−23, 23]Hz, so it is
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(a) (b)

Figure 10. (a), (b) EM field strength ∆E (fd, Θ(t)) on one blade, θi = 0◦ and 3◦, φi = 10◦,
Ω = 0.23π rad/sec.

obvious that the smaller the angle θi is, the smaller the Doppler shifts fD are, reaching 0 when
θi =0.

D) The following simulations were carried out for angular rotational speed Ω = 0.633π rad/sec, or
19 rpm, showing representative graphs for θi = 3◦, 20◦, 89◦ and φi = 0, 10◦.

In Figs. 11, 12, 13, it is observed that the field magnitude ∆E is of similar form and characteristics
as for the field ∆E evaluated when Ω = 0.23π rad/sec, for the same angles (Figs. 7, 8, 9 and 10b
respectively), with ∆E taking values of the same order of magnitude and with similar periodicity.

However, it is shown clearly that the range of Doppler shifts is greater for the increased angular
rotational speed Ω studied here, for similar angles θi and φi. The Doppler spread increases linearly
with the angular speed Ω, as shown by Eq. (12). Specifically, in Figs. 11(a), (b), when θi = 89◦, the
Doppler shift range is [−1215, 1215]Hz, while in Figs. 7, 8 for Ω = 0.23π rad/sec and the same θi, the

(a) (b)

Figure 11. (a), (b) EM field ∆E (fd, Θ(t)) on one blade, Ω = 0.633π rad/sec, for θi = 89◦, φi = 0,
10◦.
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(a) (b)

Figure 12. (a), (b) EM field ∆E (fd, Θ(t)) on one blade, Ω = 0.633π rad/sec, for θi = 20◦, φi = 0, 10◦.

Figure 13. EM field ∆E (fd, Θ(t)) on one blade, Ω = 0.633π rad/sec, for θi = 3◦, φi = 10◦.

Doppler shift range is [−442, 442]Hz. Similarly, for θi = 20◦ in Figs. 12(a), (b), the Doppler shift range
is [−415, 415]Hz, while in Fig. 9, for Ω = 0.23π rad/sec, it is [−150, 150]Hz. For θi = 3◦ in Fig. 13, the
Doppler shift range is [−64, 64]Hz, whereas for Ω = 0.23π rad/sec, in Fig. 10(b), it is [−23, 23]Hz. The
Doppler spread can vary from 20Hz to 1200Hz depending on the blades’ rotation conditions, as shown
below in Table 1.

E) After the computation of the electric field magnitude ∆E(Θ(t), ζ) generated by each WT blade,
the total electric field, ETOT , is computed by a three-wing rotating WT illuminated by a radar. ETOT
will be received by the radar receiver as clutter, as described in Sections 1 and 2.

The total electric field ETOT is evaluated, based on equation (20), as the vector sum of the fields
∆E(Θ(t), ζ) generated by sections (ζ, ζ + dζ) of each blade that present the same Doppler frequency
shift at the same moment in time. The Doppler shifts that occur during a full blade rotation take
the same range of values for all three blades; however, it is observed that at a specific time t, on each
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Table 1. Results of the Doppler shift range in case of a single blade.

Ω 0.23πrad/sec or 7 rpm 0.633πrad/sec or 19 rpm

θi 890 200 00 30 890 200 30

φi 00 100 00 100 100 100 00 100 00 100 100

∆fDHz ±442 ±150 - ±23 ±1215 ±415 ±64

(a)

(c)

(b)

Figure 14. (a), (b), (c) Total Electric field ETOT for θi = 89◦ and φi = 0◦, 10◦, 45◦, Ω = 0.23π rad/s.

blade the Doppler shifts that are generated by the various strips (ζ, ζ + dζ) of the blade take different
values. This means that on each blade different points create the same Doppler shift at the same time t,
depending on the instantaneous angle of the three blades. Thus, the various Doppler shifts occurring at
the same moment in time by each blade are allocated to Doppler frequency bins of a small size. Then,
the vector sum of the electric fields is calculated from the electric field vectors ∆E that belong to the
same Doppler frequency bin at the same time t, on each blade. So, at time t, the total field strength,
which is associated with the same Doppler shift fd, is computed. This is based on the assumption that
these electric fields, at the same time t, will have an additive (detrimental) effect on the signal detection
by the radar, taking into account the different spatial phases of the EM wave. The Doppler frequency
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(a) (b)

Figure 15. (a), (b) Total Electric field ETOT for θi = 20◦ and φi = 0◦, 10◦, Ω = 0.23π rad/s.

Figure 16. Total Electric field ETOT for θi = 3◦ and φi = 10◦, Ω = 0.23π rad/s.

bin size depends on the range of Doppler shifts in each case studied, and when about 100 bins are used
the bin size ranges from 5 to 20Hz.

The following graphs demonstrate the total electric field ETOT evaluated for different cases of θi,
φi and Ω, as studied in the previous sections.

It should be noted that the total electric field, around 0Hz Doppler frequency, is omitted from the
graphs (i.e., the bin containing the 0Hz Doppler and the neighbouring one or two bins, depending on
the bin range). This is because there are cases of Θ(t) where the electric field ETOT is concentrated
around 0Hz Doppler only, creating an apparent surge of electric field, particularly for small angles θi.
Moving Target Detection/Indicator Radars suppress the near zero Doppler frequencies.

Examining Figs. 14–17 it is observed that the total electric field magnitude ETOT is symmetric,
with a number of higher and lower magnitude peaks, which depend on angle θi. When θi is very
small (3◦) there are times (Θ(t)) and Doppler frequencies, and when the total electric field magnitude
ETOT appears strong, mostly, at other times and frequencies fd, the field strength ETOT is attenuated.
This is particularly evident in Figs. 16 and 17(c). In Fig. 17, for the increased angular rotation speed
Ω = 0.633π rad/sec, the total electric field magnitude is of similar form, characteristics, and magnitude
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(a)

(c)

(b)

Figure 17. (a), (b), (c) Total Electric field ETOT for θi = 89◦, 20◦, 3◦ and φi = 10◦, Ω = 0.633π rad/s.

as that for the total electric field evaluated when Ω = 0.233π rad/sec, for the same angles (Figs. 14, 15,
16).

7. CONCLUSIONS

In this work a generalised method of computation of Electromagnetic wave scattering from rotating
wind turbines is presented. To that end, the method of Physical Optics was implemented. Based on the
approximative numerical theory developed, a simulation program was designed in MATLAB to evaluate
the electric field strength and the Doppler frequency shifts generated from scattering on the blades of a
wind turbine, and the results were presented. The reflections caused by the rotating WT blades generate
complex Doppler patterns in coherent radars. The computed results show strong fluctuations with the
change of WT rotation axis, as a result of wind direction and also relative elevation of the radar and
WT rotation axis. It is observed that more than 30 dB signal fluctuations are present during a period
of rotation of WT blades. Taking into account the high degree of complexity of spectral distribution
it seems that a reasonable mitigation approach is in the time axis rather than a matched filter type
approach. Placing time negation gates on the returning signals around the WT position seems to be
the most effective method to mitigate the effect of backscattering from rotating blades. The results
obtained are in agreement qualitatively with measurements presented in [4, 5].
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Finally, it should be mentioned that the computational model presented could be useful for
both radar developers and WT designers and manufactures (i.e., using microwave absorbers in the
construction of blades), to use the simulation tool presented to mitigate or alleviate the undesired
effects of WT echoes to Radars which use Doppler signal processing.
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