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Active Disturbance Rejection Sensorless Control of Permanent
Magnet Synchronous Motor Based on the Fuzzy Neural

Network Left Inverse System
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Abstract—A sensorless control method based on active disturbance rejection control (ADRC) and left
inverse of a fuzzy neural network is proposed to realize the sensorless control of permanent magnet
synchronous motor (PMSM) for machine tools. Firstly, on the basis of analyzing the mathematical
model of PMSM and the theory of left inverse system, a left inverse system observer is constructed.
Secondly, after verifying the left reversibility of the PMSM control system, the fuzzy neural network is
used to construct the left inverse system, and the left inverse system is connected with the PMSM control
system in series to realize the sensorless control of the PMSM. Thirdly, according to the mathematical
model of PMSM and the sensorless speed observation results, an ADRCmethod to improve the sensorless
control effect is proposed. Finally, the experimental platform of the sensorless control method based on
ADRC fuzzy neural network left inverse is built. The experimental results show that the method can
estimate the speed and position well.

1. INTRODUCTION

The permanent magnet synchronous motor (PMSM) is widely used in machine tools because of its simple
structure, wide speed range, small size, high power density, and high efficiency. The encoder can detect
the speed and position signals of PMSM in real time. However, the actual environment and operating
conditions are complex and harsh during the machining process of the machine tool [1,2]. Therefore, if
the encoder fails, the machining process will be seriously affected. In recent years, sensorless control has
grown quickly. High-performance sensorless control is lacking, though. The sensorless control algorithm
of the high-speed PMSM control system needs to be studied.

At present, the back extended electromotive force (EMF) [3–5], high-frequency injection method [6,
7], extended Kalman filter [8,9], and model reference adaptive system [10,11] are the primary approaches
used for common sensorless control of permanent magnet synchronous motors. Sensorless control based
on the back EMF model has the advantages of simple structure, low computation, good dynamic
response, etc., but requires accurate motor parameters. In the actual operation process of the motor,
the motor parameters are easy to change, resulting in poor sensorless control performance. Especially
in zero speed and low speed operation, the back EMF of the motor is small, and it is difficult to obtain
effective position and speed information from the back EMF at this time [12]. According to the back
EMF model, many different observers can be constructed to observe the rotor position and speed.
Among them, sliding mode observer is a common method, which is robust and easy to implement.
However, this method is a special nonlinear control system with discontinuity. Once sliding mode
state is entered, the observer will chatter, which will reduce the overall stability of the system [3–5].
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Because of the salient pole characteristic of permanent magnet motor, the rotor position can be obtained
by applying additional high-frequency signals. The method needs to inject additional high-frequency
signal, which has a certain adverse effect on the motor performance. At the same time, this method
has a strong dependence on the salient pole characteristics of the rotor [6, 7]. Extended Kalman filter
can effectively suppress various noises and accurately obtain rotor position and speed by configuring
corresponding covariance matrix. However, this method is greatly affected by external factors, and
the change of motor parameters will also greatly affect the observation performance [8, 9]. The model
reference adaptive method can gradually converge the estimated parameters to a stable state. At the
same time, the method is simple in operation and has strong anti-interference ability, but it is sensitive
to changes in motor parameters, so the parameter robustness is poor [10,11].

Compared with the traditional sensorless control, the left inverse soft measurement method has
strict mathematical theoretical derivation. It clearly gives the mathematical relationship and physical
significance between the estimated quantity and the known quantity. This method has opened up a
field for indirect measurement [13]. Based on the left inverse system theory, the left inverse model of
PMSM is established, and the fuzzy neural network algorithm is used to solve the problem that the left
inverse model is difficult to obtain. At the same time, the ADRC is used as the regulator of the speed
loop, so that the performance of the sensorless algorithm control is significantly improved.

This paper is mainly divided into five sections, and the specific arrangements are as follows. In
Section 2, the mathematical model of PMSM and the algorithm structure of ADRC are constructed.
In Section 3, the basic left inverse system and the sensorless control algorithm based on fuzzy neural
network left inverse system structure are given. In Section 4, the proposed algorithm is tested and
analyzed. Finally, the full text is summarized in Section 5.

2. MATHEMATICAL MODEL AND ADRC SYSTEM OF PERMANENT MAGNET
SYNCHRONOUS MOTOR

2.1. Mathematical Model of the PMSM

The mathematical model [1, 2] of PMSM in d- and q-axis coordinate system is
pid = −Rs
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where p is the differential operator; ud, uq, id, and iq are voltages and currents in d- and q-axis,
respectively; Rs is the stator resistance; λf is the flux linkage of permanent magnet; Ld and Lq are
inductances in d- and q-axis, respectively; ωe is the electrical angular velocity.

The expression of electromagnetic torque and mechanical motion equation [2] is
Te = 1.5np[λf iq + (Ld − Lq)idiq]

dωe

dt
=

np(Te − TL −Bωm)

J

(2)

where ωm is the mechanical angular velocity of motor, Te the electromagnetic torque, TL the load torque,
B the viscous damping, J the moment of inertia, and np the number of pole pairs.

2.2. Establishment of PMSM Active Disturbance Rejection Control System

The ADRC can simplify the controlled object and extended state observer (ESO) into an integral series
system by reasonably configuring the parameters of the ESO. At this time, the state error feedback
(SEF) is designed to make the system have a good control effect.

According to (2), the electromagnetic torque is substituted into the motor speed expression, and
the mechanical motion expression can be rewritten as

dωe

dt
=

1

J

[
1.5n2

p (λf iq + (Ld − Lq) idiq)− npTL −Bωe

]
(3)



Progress In Electromagnetics Research C, Vol. 130, 2023 59

It can be seen from (3) that the motor speed is affected by id, iq, and TL. According to the ADRC
principle, 1

J

[
1.5n2

p (Ld − Lq) idiq − npTL −Bωe

]
in (3) is regarded as the disturbance fw; iq is selected

as the input signal u,
1.5n2

pλf

J as the coefficient b. The mechanical motion expression can be rewritten
as

dωe

dt
=

1

J
1.5n2

pλf iq + fw = bu+ fw (4)

The structure of the designed PMSM sensorless ADRC system is shown in Figure 1. It can be seen
from Figure 1 that the ADRC of speed loop consists of two links, namely linear extended electromotive
force (LESO) and linear state error feedback (LSEF). ADRC uses LESO to estimate the controlled
object. In this process, it can not only obtain the estimated values of various state variables, but also
estimate the total disturbance of the system and use the estimated total disturbance to compensate the
LSEF control system [2].
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Figure 1. Sensorless ADRC control system for PMSM.

The calculation process [2] inside LESO can be expressed as
e0 = z21 − ω̂e

ż21 = z22 − β1e0 + bu

ż22 = −β2e0

(5)

where z21 is the speed signal observed by LESO; ω̂e is the motor speed observed by fuzzy neural
network left inverse (FNNLI) algorithm; z22 is the total disturbance observed by LESO; β1 and β2 are
the observer coefficients of LESO.

The calculation process [2] inside LSEF can be expressed as{
e1 = ω∗

e − z21
u0 = β3e1

(6)

where β3 is the coefficient of LSEF, and u0 is the output of LSEF controller.
The compensation output [2] of the disturbance is

u = u0 −
z22
b

(7)

FNNLI algorithm sends the observed motor speed to ADRC control algorithm for closed-loop speed
control, and the total disturbance of the system is observed through LESO to achieve high-performance
control effect. FNNLI will be analyzed in detail in the following sections.

3. SPEED SENSORLESS CONTROL METHOD OF THE PMSM BASED ON THE
FUZZY NEURAL NETWORK LEFT INVERSE

3.1. Left Inverse System Theory of the PMSM

Both the left inverse system and right inverse system belong to different applications in inverse system
theory. This strategy is comparable to observability in control theory since the right inverse system
can implement system compensation while the left inverse system focuses more on reproducing system
input signals. In view of this, the left inverse system theory can realize the estimation of PMSM speed.
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The principle of the left inverse system is given as below. For a nonlinear system as follows

ẋ = f(x,u) (8)

where x = [x1, x2, . . . , xn]
T is the n-dimensional state variable.

If the nonlinear system contains an internal sensor subsystem, the unobservable variable of the
original system serves as the internal sensor subsystem’s input, while the observable variable of the
original system serves as its output. After that, the internal sensor subsystem may be expressed as

xl = f(xm, ẋl, ẍl, . . . ,u) (9)

where xm = [x1, x2, . . . , xm]T is the m-dimensional state variable, and xl = [xm+1, xm+2, . . . , xm+n]
T is

the (n−m)-dimensional state observable variable.
For such a subsystem, if the left inverse system of the system exists, the expression of the left

inverse system can be written as follows

xm = f(xl, ẋl, ẍl, . . . ,u, u̇, ü, . . .) (10)

The left inverse system can be characterized in general as follows. Assume that the mapping
relationship u → y is present in the nonlinear system. There is a system like this one whose mapping
relationship is v → w. If v(t) = y(t), then w(t) = u(t). Then this system is called the left inverse system
of the original system, that is, the original system is left reversible.

The observation schematic diagram of the left inverse system is shown in Figure 2. The structure
connects the left inverse system of the internal sensor subsystem to the right side of the nonlinear
system on the basis of proving that the subsystem is left reversible. The left inverse system structure
can observe the unobservable variables in the nonlinear system. However, because the analytic left
inverse system of the speed subsystem is difficult to obtain, the fuzzy neural network and differentiator
are used to construct the left inverse system of the PMSM speed subsystem.
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Figure 2. Observation principle of the left inverse system.

3.2. Analysis of the Fuzzy Neural Network Left Inverse System

Equation (1) and Equation (2) can be represented by the following state variables.
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where the observable variables are xm = (x1, x2)
T = (id, iq)

T , and the unobservable variables are
xum = x3 = ωe.

According to (2) to (5), the following equation can be obtained
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The correlation can be determined by calculating the partial derivative of the unobservable variable
x3 and the rank of the corresponding matrix. The matrix composed of these ranks is called the Jacobian
matrix, which can be written as
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The rank(A) = 1 is calculated according to (13). In order to estimate xm, it is necessary to establish
the left inverse system model of the speed subsystem. Therefore, the following form is established.

Zm = [ẋ1] (14)

After taking the partial derivative of the system in (14) with respect to the rotational speed
component, its rank is

det

(
∂Zm

∂x3

)
=

Lq

Ld
npx2 ̸= 0 (15)

The speed inner sensor model is therefore kept invertible. The left inverse system can be
theoretically stated as follows.

xum = f(xm,Zm,u) = f(id, iq, i̇d, ud, uq) (16)

3.3. Establishment of the Fuzzy Neural Network Left Inverse System

3.3.1. Control Principle of Fuzzy Neural Network

As two components of intelligent control field, fuzzy control and neural network have obvious advantages
and disadvantages. For example, the former has excellent self-learning and adaptive ability, but due
to the use of a black box, it cannot directly reveal the calculation process. The latter can select
relevant fuzzy rules and membership functions according to their own requirements, but this method
lacks adaptability. Fuzzy rules and membership functions are artificially set according to knowledge and
experience, which is subjective. The fusion of the two is the only way for the development of intelligent
control field, and fuzzy neural network came into being.

At present, scholars have proposed various types of fuzzy neural networks, and each type has
its own characteristics. A adaptive neural fuzzy inference system (ANFIS) is used in this section.
By implementing the Takagi-Sugeno (T-S) fuzzy reasoning model into practice, ANFIS is produced.
Researchers have conducted extensive study and produced a number of discoveries because ANFIS can
approximate nonlinear systems with arbitrary precision and is more practical and efficient than other
kinds of fuzzy neural networks. The ANFIS structure with five inputs and one output is depicted in
Figure 3. The ANFIS structure with five inputs and one output is depicted in Figure 3. Assume that
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there are two membership functions — one for the front network and one for the back network —
for each input. The fuzzy rule is generated by the back network, while the front network is utilized
to match the fuzzy rule’s antecedent. In Figure 3, (h1, h2, h3, h4, h5) are the inputs of ANFIS; b1 is
the output of ANFIS; and (A1, A2, b1, . . . , E2) are fuzzy sets. According to T-S fuzzy inference model,
ANFIS IF-THEN fuzzy rule base can be written as

Rule 1: IF h1 is A1 and h2 is B1 and . . . and h5 is E1, THEN f1 = P1,1h1+P1,2h2+ . . .+P1,5h5+P1;
Rule 2: IF h1 is A2 and h2 is B1 and . . . and h5 is E1, THEN f2 = P2,1h1+P2,2h2+ . . .+P2,5h5+P2;
. . .
Rule 32: IF h1 is A2 and h2 is B2 and . . . and h5 is E2, THEN f32 = P32,1h1 + P32,2h2 + . . . +

P32,5h5 + P32;
Layer 1: The membership function value of each input in the related fuzzy set is determined by

this layer, which is a fuzzy layer. This layer has 10 nodes, and the output of each node can be expressed
as 

O1
1 = µA1(h1)

O1
2 = µA2(h1)

O1
3 = µB1(h2)

· · ·
O1

10 = µE2(h5)

(17)

where (µA1 , µA2 , µB1 , . . . , µE2) is the membership function.
Gauss function is used as the membership function, and the specific form is

µ(h) = e
−(h−c)2

σ2 (18)

where (c, σ) is the parameters of the former piece of network, which need to be identified in the training
session.

Layer 2: Each node in this layer corresponds to a distinct fuzzy rule, and the AND algorithm is
used to determine how adaptable the fuzzy rule is. The output of each of the 32 nodes, which there are
in total, is as follows.

O2
l = εl = µAl1

(h1)µBl2
(h2)µCl3

(h3)µDl4
(h4)µEl5

(h5) (19)

where l1, l2, l3, l4, l5 ∈ {1, 2}, l = 1, 2, . . . , 32.
Layer 3: This layer has the purpose of standardizing the fitness of the fuzzy rules produced in layer

2. There are 32 nodes in this layer, and the output of each node is as follows

O3
l = ε̄l = εl/

32∑
i=1

εi (20)

Layer 4: The function of this layer is to find fuzzy rules and output fuzzy solutions according to
corresponding rules. The number of nodes in this layer is also 32, and the output of each node is as
follows

O4
l = ε̄lfl = ε̄l(Pl,1h1 + Pl,2h2 + . . .+ Pl,5h5 +Rl) (21)

where (Pl,1, Pl,2, Pl,3, Pl,4, Pl,5) and Rl are the parameters of the back piece of network, and it also needs
to be identified in the training session.

Layer 5: The computation algorithm for this layer, which is utilized to determine the ANFIS’s
ultimate output, is

O5 = b1 =
32∑
i=1

O4
i =

32∑
i=1

ε̄ifi (22)

3.3.2. Fuzzy Neural Network Left Inverse System

The PMSM is easily affected by the uncertainties of the changing parameters, so it is difficult to
obtain the analytical left inverse system of the speed subsystem. To solve this problem, fuzzy neural
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networks with excellent approximation ability are introduced into the left inverse system. The fuzzy
neural network and differentiators are combined to construct the left inverse system of the PMSM speed
subsystem. Because the PMSM is easily affected by the uncertainty of parameter changes, it is difficult
to generate the analytical left inverse system of the speed subsystem. A fuzzy neural network with high
approximation capabilities is added to the left inverse system to address this problem. The fuzzy neural
network and differentiator are used to create the left inverse system of the PMSM speed subsystem.
The nonlinear mapping relationship and the dynamic properties of the left inverse system are described
by fuzzy neural network and differentiator, respectively. Formula (14) states that the differentiator is
necessary for the left inverse system of the fuzzy neural network’s speed subsystem. The derivatives
of current, voltage, and current signals need to be taken as input samples, while the velocity signals
need to be taken as output samples, so that ANFIS can be used to approximate the nonlinear mapping
relationship of the left inverse system. In order to obtain the input and output samples required by
ANFIS, a PMSM closed-loop control system is constructed. Adopt random signals within the working
range and collect 3500 groups of data samples, of which 2500 groups are used for training, 500 groups
used for verification, and the remaining 500 groups used for testing. The whole inputs are therefore id,
iq, i

′
d, ud, uq and the output samples demanded by ANFIS ωe.
The data from input and output are normalized to reduce sampling error and shorten training

time. First, it is necessary to train ANFIS offline, set 4 membership functions for each input, and the
former piece of network parameters (c, σ), back piece of network parameters (Pl,1, Pl,2, Pl,3, Pl,4, Pl,5)
and Rl are adjusted by the sampling mixed algorithm, until the error of the ANFIS is less than the set
value 0.001. The diagram of PMSM sensorless control structure based on the fuzzy neural network left
inversion is shown in Figure 4.

speed subsystem

“ inner sensor ”

ud id

uq

iq
S

i  ‘d
ANFIS

eω̂

Figure 4. The diagram of PMSM sensorless control structure based on the fuzzy neural network left
inversion.

3.3.3. Speed Sensorless Control Method for PMSM

Figure 5 depicts the overall block diagram of the control system. Using the proposed sensorless control
method, taking d- and q-axis voltage and d- and q-axis current as inputs, the speed and rotor angle
information are obtained through the sensorless control algorithm shown in Figure 5. Make the difference
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between the collected speed ω̂e and the given speed signal ω∗
e , and realize the speed closed-loop control

through the proposed ADRC regulator in Section 2. After obtaining the current command signal i∗d and
i∗q , make the difference with the collected current feedback signal id and iq, and then realize the current
closed-loop control through two current regulators ACR.

4. EXPERIMENTAL VERIFICATION

In order to verify the effectiveness of the proposed method, the speed, speed error, angle, and angle error
in sensorless control of the PMSM are analyzed and verified experimentally. The test bench used in this
experiment is shown in Figure 6. The main control board uses TI’s TMS320F28335 DSP, the driver
uses IPM modules, and integrates current sampling, bus voltage sampling, and optocoupler isolation
circuits. The specific parameters of the motor are shown in Table 1. Using the model-based design
method, the DSP programming process is completed in Matlab, and the data and running state of the
motor are monitored by Matlab.

Table 1. Parameters of the prototype.

Parameters Value Parameters Value

Stator resistance R (Ω) and inductance Ls (H) 1.6/0.005075 Rated power P (kW) 0.2

Pole Pairs 4 Rated voltage U (V) 220

Permanent magnet flux λf (Wb) 0.0825 Rated current I (A) 2.1

Rated speed nN (r/min) 3000 Rated torque Te (N·m) 0.64

Auxiliary

power supply

Dynamometer

PMSM
Control

board

Power

board

Figure 6. Schematic diagram of the experimental platform.

Figure 7 is the waveform of sensorless control at 30 r/min. The speed error waveforms with no
load for the traditional control method based on the high-frequency injection and the proposed control
method are both shown in Figure 7(a). As can be seen from Figure 7(a), the vibration amplitude of
speed error with no load is 10 r/min and 8 r/min, respectively. The vibration amplitudes of the two
are basically the same. Figure 7(b) shows the angle error waveforms with no load for the traditional
control method and the proposed control method. The angle error vibration amplitude of the traditional
method is 0.5 rad at no load, and that of the proposed method is 0.1 rad at no load. The angle error
vibration amplitude of the proposed method is smaller than that of the traditional method. The angle
tracking state in Figure 7(c) reflects the angle tracking effect of the traditional control method and the
proposed method at no load. It can be seen from the figure that the effect of the proposed method is
better than that of the traditional control method. The speed error waveforms with full load for the
traditional control method based on the high-frequency injection and the proposed control method are
both shown in Figure 7(d). As can be seen from Figure 7(d), the vibration amplitude of speed error
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Figure 7. Speed error, angle value and angle error value at 30 r/min. (a) Speed error with no load.
(b) Angle error with no load. (c) Angle value with no load. (d) Speed error with full load. (e) Angle
error with full load. (f) Angle value with full load.

with full load is 36 r/min and 17 r/min, respectively. Figure 7(e) shows the angle error waveforms with
full load for the traditional control method and the proposed control method. The angle error vibration
amplitude of the traditional method is 1.0 rad at full load, and that of the proposed method is 0.08 rad
at full load. The angle error vibration amplitude of the proposed method is smaller than that of the
traditional method. The angle tracking state in Figure 7(f) reflects the angle tracking effect of the
traditional control method and the proposed method at full load. It can be seen from the figure that
the effect of the proposed method is better than that of the traditional control method.

Figure 8 is the waveform of sensorless control at 3000 r/min. The speed error waveforms with no
load for the traditional control method based on the extended back EMF and the proposed control
method are both shown in Figure 8(a). As can be seen from Figure Figure 8, the vibration amplitude
of speed error with no load is 13 r/min and 8 r/min, respectively. Figure 8(b) shows the angle error
waveforms with no load for the traditional control method and the proposed control method. The angle
error vibration amplitude of the traditional method is 0.6 rad at no load, and that of the proposed
method is 0.1 rad at no load. The angle error vibration amplitude of the proposed method is smaller
than that of the traditional method. The angle tracking state in Figure 8(c) reflects the angle tracking
effect of the traditional control method and the proposed method at no load. It can be seen from the
figure that the effect of the proposed method is better than that of the traditional control method. The
speed error waveforms with full load for the traditional control method and the proposed control method
are both shown in Figure 8(d). As can be seen from Figure 8(d), the vibration amplitude of speed error
with full load is 23 r/min and 15 r/min, respectively. Figure 8(e) shows the angle error waveforms with
full load for the traditional control method and the proposed control method. The angle error vibration
amplitude of the traditional method is 2.0 rad at full load, and that of the proposed method is 0.1 rad
at full load. The angle error vibration amplitude of the proposed method is smaller than that of the
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Figure 8. Speed error, Angle value and angle error value at 30 r/min. (a) Speed error with no load.
(b) Angle error with no load. (c) Angle value with no load. (d) Speed error with full load. (e) Angle
error with full load. (f) Angle value with full load.

traditional method. The angle tracking state in Figure 8(f) reflects the angle tracking effect of the
traditional control method and the proposed method at full load. It can be seen from the figure that
the effect of the proposed method is better than that of the traditional control method.

It can be seen from Table 2 that the proposed method has good control performance at both low
speed and high speed. At the same time, the experimental data in [3] are also listed, and the data
results are similar to those in this paper.

Table 2. Experimental data.

Trad. Method Prop. Method
Control method

in [2]

low speed

no load
Speed error (r/min) 10 8 -

Angle error (rad) 0.5 0.1 -

full load
Speed error (r/min) 36 17 -

Angle error (rad) 1 0.08 -

high speed

no load
Speed error (r/min) 13 8 10

Angle error (rad) 0.6 0.1 0.34

full load
Speed error (r/min) 23 15 -

Angle error (rad) 2 0.1 -
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5. CONCLUSIONS

A sensorless control method based on active disturbance rejection control (ADRC) and left inverse
of fuzzy neural network for PMSM is proposed in this paper. The following is a summary of the
major contributions: (1) After determining the left reversibility of the PMSM control system, the fuzzy
neural network is utilized to build the left inverse system. The left inverse system is then coupled in
series with the PMSM control system to realize the sensorless control of the PMSM. (2) The speed
loop ADRC control is adjusted using the observed speed value, which enhances the effectiveness of the
control system. (3) The proposed control approach is more general than both the extended back EMF
method and the conventional high frequency injection method. Despite the good control impact of the
suggested approach, the control algorithm has certain issues with computation and data storage. The
development of an algorithm that requires less computing and data storage is required in later stages.
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