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Diffraction by a Semi-Infinite Parallel-Plate Waveguide with
Five-Layer Material Loading: Rigorous Wiener-Hopf Analysis

Kewen He* and Kazuya Kobayashi

Abstract—In this paper, the Wiener-Hopf technique is used to analyze the plane wave diffraction
rigorously by a semi-infinite parallel-plate waveguide with five-layer material loading for E polarization.
Introducing the Fourier transform of the unknown scattered field and applying boundary conditions in
the transform domain, the problem is formulated in terms of the simultaneous Wiener-Hopf equations
satisfied by unknown spectral functions. The Wiener-Hopf equations are solved exactly via the
factorization and decomposition procedures leading to exact and approximate solutions. Taking the
Fourier inverse of the solution in the transform domain, the scattered field in the real space is explicitly
derived. For the region inside the waveguide, the scattered field is expressed in terms of the waveguide
TE modes, whereas the field outside the waveguide is evaluated asymptotically with the aid of the saddle
point method leading to a far field expression. Numerical examples of the radar cross section (RCS)
are presented for various physical parameters and far field scattering characteristics of the waveguide
are discussed in detail.

1. INTRODUCTION

Researchers in the field of electromagnetic theory are often faced with the prediction and reduction of the
radar cross-section (RCS) of a target [1–5]. It is well known that the radar absorbing material and the
shaping of targets are the main topics in the RCS study. The design and application of electromagnetic
wave absorbers are very important for the research of electromagnetic wave scattering [6]. It is also
important to note that a radar absorber composed of multiple media or multilayer radar absorbers has
recently received much attention in predicting and reducing the RCS of objects [7, 8]. On the other
hand, a complex object, such as an aircraft or a vehicle, can be modeled using simple geometric elements
such as plates, shells, spheres, and edges. In the past, the scattering and diffraction properties of simple
geometric elements have been analyzed to investigate how to predict or reduce the RCS of the object.
One of the important geometries in this regard is an open-ended metallic waveguide cavity [1–6, 9].
This problem can be used as a typical model for duct structures such as aircraft jet engine intakes and
fissures on the surfaces of more complicated bodies. A variety of efficient analysis methods such as
high-frequency techniques, numerical methods, the hybrid ray-numerical approach, and the Kobayashi
potential method have been developed and scattering problems involving cavities of various shapes have
been analyzed [10–21]. The solutions obtained by these methods, however, may not be uniformly valid
for arbitrary cavity dimensions.

The Wiener-Hopf technique is known as a powerful, rigorous approach in analyzing wave scattering
and diffraction problems involving canonical geometries, since the edge condition, required for the
uniqueness of the solutions for edged obstacles, is explicitly taken into account [22–28]. This fact results
in a fast convergence of the Wiener-Hopf solutions over a broad frequency range from very low to
extremely high frequencies. In the previous papers, we used the Wiener-Hopf technique to carry out a
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rigorous RCS analysis of various two-dimensional cavities formed by a finite parallel-plate waveguide [29–
34] and a semi-infinite parallel-plate waveguide [35–37]. Our final solutions have been verified to be valid
over a broad frequency range and can be used to validate other commonly-used numerical methods and
high-frequency ray techniques. In this paper, we will consider a semi-infinite parallel-plate waveguide
with five-layer material loading and analyze the E-polarized plane wave diffraction by using the Wiener-
Hopf technique. The solution procedure developed in this paper provides a significant extension of our
prior work on the terminated, semi-infinite parallel plate waveguide with four-layer material loading [37].
It should be emphasized that the analysis for this generalized waveguide geometry becomes much more
complicated than our previous paper since it is necessary to take into account the more complex, multiple
reflection-refraction-diffraction effect occurring inside the waveguide.

By introducing the Fourier transform for the unknown scattered field and applying appropriate
boundary conditions in the transform domain, the problem is formulated in terms of simultaneous
Wiener-Hopf equations. The Wiener-Hopf equations are then solved in a formal sense using the
factorization and decomposition procedure. It is important to note that the formal solutions contain
infinite series terms with unknown coefficients. The edge condition will then be explicitly used to derive
approximate expressions for the infinite series, resulting in highly accurate approximate solutions to
the Wiener-Hopf equations. Our final solution is shown to be valid for arbitrary waveguide dimensions.
Taking the inverse Fourier transform of the Wiener-Hopf solutions and evaluating the integral, we
derive the TE mode expression for the scattered field inside the waveguide, whereas for the outside
the waveguide, a far field expression is derived by using the saddle point method. We shall present
representative numerical examples of the RCS for various physical parameters, and discuss the scattering
characteristics of the waveguide in detail.

The time factor is assumed to be e−iωt and suppressed throughout this paper.

2. TRANSFORMED WAVE EQUATIONS

We consider the diffraction of an E-polarized plane wave by a semi-infinite parallel-plate waveguide with
five-layer material loading as shown in Fig. 1, where the waveguide plates are infinitely thin, perfectly
conducting, and uniform in the y-direction. The relative permittivity and permeability for (εm, µm),
m = 1, 2, 3, 4, and 5 characterize the material layers I, II, III, IV, and V, respectively.

Figure 1. Geometry of the problem.

Let the total electric field ϕt(x, z)[≡ Et
y(x, z)] be

ϕt(x, z) = ϕi(x, z) + ϕ(x, z) (1)

for −∞ < x < ∞ and −∞ < z < ∞, where ϕi(x, z) is the incident field of E polarization defined by

ϕi(x, z) = e−ik(x sin θ0+z cos θ0), 0 < θ0 < π/2 (2)
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with k[≡ ω(ε0µ0)
1/2] being the free-space wavenumber. The total field ϕt(x, z) satisfies the two-

dimensional Helmholtz equation

[∂2/∂x2 + ∂2/∂z2 + ε(x, z)µ(x, z)k2]ϕt(x, z) = 0, (3)

where

µ(x, z) =



µ1 (layerI)

µ2 (layerII)

µ3 (layerIII)

µ4 (layerIV)

µ5 (layerV)
1 (otherwise)

, ε(x, z) =



ε1 (layerI)

ε2 (layerII)

ε3 (layerIII)

ε4 (layerIV)

ε5 (layerV)

1 (otherwise)

, (4)

Once the solution of (3) is found, nonzero components of the total electromagnetic fields are derived
from

(Et
y,H

t
x, H

t
z) =

[
ϕt,

i

ωµ0µ (x, z)

∂ϕt

∂z
,

1

iωµ0µ (x, z)

∂ϕt

∂x

]
. (5)

For the convenience of analysis, we shall assume that the vacuum is slightly lossy as in k = k1+ ik2
with 0 < k2 ≪ k1. The solution for the lossless case will be obtained by taking the limit k2 → 0 at the
end of analysis. We now investigate the asymptotic behavior of the scattered field for |z| → ∞. For
convenience, let us define the cylindrical coordinates (ρ1,2, θ1,2) centered at the edges (x, z) = (±b, 0)
as

x− b = ρ1 sin θ1, z = ρ1 cos θ1 for 0 < θ1 < π,
x+ b = ρ2 sin θ2, z = ρ2 cos θ2 for − π < θ2 < 0,

}
(6)

and introduce the following three regions:

Region I : {(ρ1,2, θ1,2) : (0 < ρ1 < ∞,−π/2 < θ1 < π − θ0)
∪(0 < ρ2 < ∞,−π + θ0 < θ1 < π/2)}

Region II : {(ρ1, θ1) : (0 < ρ1 < ∞, π − θ0 < θ1 < π)}
Region III : {(ρ2, θ2) : (0 < ρ2 < ∞,−π < θ2 < −π + θ0)}

 (7)

Then we see from the radiation condition that the scattered field at large distances from the origin in
Regions I, II, and III behaves like ϕd, ϕr + ϕd, and −ϕi + ϕd, respectively, where ϕr and ϕd denote
the field reflected from the semi-infinite plate at x = b and the diffracted field, respectively. Then by
taking into account the fact that the semi-infinite parallel-plate waveguide can be regarded as a single
semi-infinite plate in the far region, we can show that

ϕ(x, z) =

{
O
(
ek2z cos θ0

)
as z → −∞,

O
(
e−k2z

)
as z → ∞.

(8)

for −∞ < x < ∞.
Let us define the Fourier transform of the scattered field with respect to z as

Φ(x, α) = (2π)−1/2

∫ ∞

−∞
ϕ(x, z)eiαzdz, (9)

where α = σ + iτ(≡ Reα+ iImα). In view of radiation condition, we can verify that Φ(x, α) is regular
in the strip −k2 < τ < k2 cos θ0 of the complex α-plane. It is also proved that as |x| → ∞, Φ(x, α) is
bounded for any α in −k2 < τ < k2 cos θ0. Introducing the Fourier integrals as

Φ+(x, α) = (2π)−1/2

∫ ∞

0
ϕ(x, z)eiαzdz,

Φ−(x, α) = (2π)−1/2

∫ −L1

−∞
ϕt(x, z)eiαzdz,

Φr
m(x, α) = (2π)−1/2

∫ −Lm+1

−Lm

ϕt(x, z)eiαzdz, m = 1, 2, 3, 4,

Φ0
1(x, α) = (2π)−1/2

∫ 0

−L5

ϕt(x, z)eiαzdz.


(10)
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we can show that Φ+(x, α) and Φ−(x, α) are regular in τ > −k2 and τ < k2 cos θ0, respectively, whereas
Φ0
1(x, α) and Φr

m(x, α) for m = 1, 2, 3, 4, are all entire functions. In the following analysis, we shall use
these conventions for indicating the regions of regularity in the complex α-plane. Using (9) and (10),
we can express Φ(x, α) as

Φ(x, α) = Φ1(x, a) + Ψ(+)(x, α), −∞ < x < ∞, (11)

where

Ψ(+)(x, α) = Φ+(x, a)−A
e−ikx sin θ0

α− k cos θ0
, A =

1

(2π)1/2i
, (12)

Φ1(x, α) =

4∑
m=1

Φr
m(x, α) + Φ0

1(x, α) + Φ−(x, α). (13)

As seen from (12), Ψ(+)(x, α) is regular in the upper half-plane τ > −k2 except for a simple pole at
α = k cos θ0. We shall henceforth use the subscript ‘(+)’ for functions with this regularity property.
In the following, we shall derive the transformed wave equations by taking into account the boundary
conditions and the radiation condition.

In view of the boundary conditions for total tangential electromagnetic fields, we see that

Et
y(±b, z) = 0, −∞ < z < 0, (14)

Et
y(±b+ 0, z) = Et

y(±b− 0, z) [≡ Et
y(±b, z)], 0 < z < ∞, (15)

Ht
x(x,−Lm − 0) = Ht

x(x,−Lm + 0) m = 1, 2, 3, 4, 5, |x| < b. (16)

Using (5), (14)–(16) can be rewritten as follows:

ϕt(±b, z) = 0, −∞ < z < 0, (17)

ϕt(±b+ 0, z) = ϕt(±b− 0, z) [≡ ϕt(±b, z)], 0 < z < ∞, (18)

1

µm

∂ϕt(x,−Lm − 0)

∂z
=

1

µm+1

∂ϕt(x,−Lm + 0)

∂z
, m = 1, 2, 3, 4,

1

µ5

∂ϕt(x,−L5 − 0)

∂z
=

∂ϕt(x,−L5 + 0)

∂z
.

 (19)

According to (1) and (3), the scattered field ϕ(x, z) in the vacuum region satisfies

(∂2/∂x2 + ∂2/∂z2 + k2)ϕ(x, z) = 0. (20)

In addition, the total field ϕt(x, z) satisfies[
∂2/∂x2 + ∂2/∂z2 + ε(x, z)µ(x, z)k2rm

]
ϕt(x, z) = 0 (21)

for m = 1, 2, 3, 4, and 5 for regions I, II, III, IV, and V, respectively, where krm = (µrmεrm)1/2k. By
taking the Fourier transform of (20) and applying (8) to the region |x| > b, we can verify that(

d2/dx2 − γ2
)
Φ(x, α) = 0 (22)

holds in the strip −k2 < τ < k2 cos θ0, where

γ =
(
α2 − k2

)1/2
, Reγ > 0. (23)

Since γ is a double-valued function of α, we choose Reγ > 0 for its proper branch. Equation (22) is the
transformed wave equation for |x| > b.

Because there are several medium discontinuities across the surfaces at z = −Lm for m = 1, 2, 3,
4 and 5, the derivation of transformed wave equations for the region |x| < b is complicated. We now

multiply both sides of (20) by (2π)−1/2eiαz and integrate with respect toz over the range −L5 < z < ∞.
Then by taking into account (8) and the boundary condition for tangential electromagnetic fields at
z = −L5, we derive that

(d2/dx2 − γ2)
[
Φ0
1(x, α) + Ψ(+)(x, α)

]
= e−iαL5

[
µ−1
r5 f5(x)− iαg5(x)

]
(24)
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for τ > −k2 with α ̸= k cos θ0, where

f5(x) = (2π)−1/2∂ϕ
t(x,−L5 − 0)

∂z
, (25)

g5(x) = (2π)−1/2ϕt(x,−L5 − 0). (26)

Next, we multiply both sides of (21) by (2π)−1/2eiαz and integrate with respect to z over the ranges
−∞ < z < −L1, −L1 < z < −L2, −L2 < z < −L3, −L3 < z < −L4, and −L4 < z < −L5. Using
the boundary conditions for tangential electromagnetic fields at z = −Lm for m = 1, 2, 3, 4, and 5, we
obtain

(d2/dx2 − Γ2
1)Φ−(x, α) = −e−iαL1 [f1(x)− iαg1(x)] , (27)(

d2/dx2 − Γ2
2

)
Φr
1(x, α) = −e−iαL2 [f2(x)− iαg2(x)] + e−iαL1 [(µr2/µr1)f1(x)− iαg1(x)] , (28)(

d2/dx2 − Γ2
3

)
Φr
2(x, α) = −e−iαL3 [f3(x)− iαg3(x)] + e−iαL2 [(µr3/µr2)f2(x)− iαg2(x)] , (29)(

d2/dx2 − Γ2
4

)
Φr
3(x, α) = −e−iαL4 [f4(x)− iαg4(x)] + e−iαL3 [(µr4/µr3)f3(x)− iαg3(x)] , (30)(

d2/dx2 − Γ2
5

)
Φr
4(x, α) = −e−iαL5 [f5(x)− iαg5(x)] + e−iαL4 [(µr5/µr4)f4(x)− iαg4(x)] (31)

where Γm = (α2 − k2rm)1/2 with ReΓm > 0 for m = 1, 2, 3, 4, 5, and

fm(x) = (2π)−1/2∂ϕ
t(x,−Lm − 0)

∂z
m = 1, 2, 3, 4, 5, (32)

gm(x) = (2π)−1/2ϕt(x,−Lm) m= 1, 2, 3, 4, 5. (33)

Equations (24) and (27)–(31) are the transformed wave equations for |x| < b.

3. SCATTERED FIELD REPRESENTATION IN THE FOURIER TRANSFORM
DOMAIN

Equations (8) and (9) show that Φ(x, α) is bounded for |x| → ∞, and therefore the solution of (22) is
expressed as

Φ(x, α) =

{
Ψ(+)(b, α)e

−γ(x−b) for x > b,

Ψ(+)(−b, α)eγ(x+b) for x < −b,
(34)

where we have used (11) and the following boundary conditions for tangential electric fields across
x = ±b:

Φ−(±b± 0, α) = 0, Φ1(±b∓ 0, α) = 0, (35)

Φ+(±b± 0, α) = Φ+(±b− 0, α) [≡ Φ+(±b, α)] . (36)

Equation (34) is the scattered field representation for |x| > b.
Due to the medium discontinuities in |x| < b, the transformed wave equations contain unknown

inhomogeneous terms fm(x) and gm(x) for m = 1, 2, 3, 4, 5 (see (24) and (27)–(31). In view of the
edge condition, we can expand these functions into the Fourier sine series as

fm(x)
gm(x)

}
=

1

b

n∑
n=1

{
fmn

gmn

}
sin

nπ

2b
(x+ b), m = 1, 2, 3, 4, 5 (37)

for |x| < b. Using (35) and (36) and carrying out some manipulations, we derive the solutions of (24)
and (27)–(31) with the result that

Φ−(x, α) =
e−iαL1

b

∞∑
n=1

C−
1n(α)

α2 + Γ2
1n

sin
nπ

2b
(x+ b), (38)
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Φ0
1(x, α) + Ψ(+)(x, α) = Ψ(+)(b, α)

sinh γ(x+ b)

sinh 2γb
−Ψ(+)(−b, α)

sinh γ(x− b)

sinh 2γb

−e−iαL5

b

∞∑
n=1

C+
5n(α)

α2 + γ2n
sin

nπ

2b
(x+ b), (39)

Φr
m(x, α) =

1

b

∞∑
n=1

Cmn(α)

α2 + Γ2
mn

sin
nπ

2b
(x+ b), m = 1, 2, 3, 4, (40)

where

γn =
[
(nπ/2b)2 − k2

]1/2
; Γmn =

[
(nπ/2b)2 − k2rm

]1/2
, m = 1, 2, 3, 4, 5, (41)

C5n(α) = e−iαL5C+
5n(α), (42)

Cmn(α) = e−iαLm+1C−
(m+1)n(α)− e−iαLmC+

mn(α) for m = 1, 2, 3, 4 (43)

with
C−
mn(α) = fmn − iαgmn, m = 1, 2, 3, 4, 5 (44)

C+
mn(α) = (µrm+1/µrm)fmn − iαgmn, m = 2, 3, 4, 5. (45)

The scattered field representation for region |x| < b is derived by substituting (24) and (27)–(31)
into (13) and using (11).

We conclude from the above results that the desired scattered field representation in the Fourier
transform domain leads to

Φ(x, α) = Ψ(+)(±b, α)e∓γ(x∓b) for x ≷ ±b,

= Ψ(+)(b, α)
sinh γ(x+ b)

sinh 2γb
−Ψ(+)(−b, α)

sinh γ(x− b)

sinh 2γb

−1

b

∞∑
n=1

e−iαL5C+
5n(α)

α2 + γ2n
sin

nπ

2b
(x+ b)

−1

b

∞∑
n=1

e−αL1C−
1n(α)

α2 + γ2n
sin

nπ

2b
(x+ b)

−1

b

4∑
m=1

∞∑
n=1

Cmn(α)

α2 + Γ2
mn

sin
nπ

2b
(x+ b) for |x| < b. (46)

Equation (46) holds in the strip −k2 < τ < k2 cos θ0 of the complex α-plane.

4. SIMULTANEOUS WIENER-HOPF EQUATIONS

Differentiating (46) with respect to x, setting x = ±b± 0, ±b∓ 0 in the results, and carrying out some
manipulations with the aid of boundary conditions, we arrive at

Jd
−(α) = −

U(+)(α)

M(α)
−

∞∑
n=1,odd

nπ

b2
e−iαL5C+

5n (α)

α2 + γ2n

+
∞∑

n=1,odd

nπ

b2
e−iαL1C−

1n (α)

α2 + Γ2
1n

+

5∑
m=2

∞∑
n=1,odd

nπ

b2

e−iαLmC−
mn (α)− e−iαLm−1C+

(m−1)n (α)

α2 + Γ2
mn

, (47)
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Js
−(α) = −

V(+)(α)

N(α)
+

∞∑
n=2,even

nπ

b2
e−iαL5C+

5n (α)

α2 + γ2n

−
∞∑

n=2,even

nπ

b2
e−iαL1C−

1n (α)

α2 + Γ2
1n

−
5∑

m=2

∞∑
n=1,even

nπ

b2

e−iαLmC−
mn (α)− e−iαLm−1C+

(m−1)n (α)

α2 + Γ2
mn

, (48)

where

U(+)(α) = Ψ(+)(b, α) + Ψ(+)(−b, α), (49)

V(+)(α) = Ψ(+)(b, α)−Ψ(+)(−b, α), (50)

J
d

−(α) = J−(b, α)− J−(−b, α), (51)

Js
−(α) = J−(b, α) + J−(−b, α), (52)

M(α) =
e−γb cosh γb

γ
, N(α) =

e−γb sinh γb

γ
, (53)

J−(±b, α) = Φ′
−(±b± 0, α)− Φ′

1(±b∓ 0, α). (54)

The prime in (54) denotes differentiation with respect to x. Equations (47) and (48) are the simultaneous
Wiener-Hopf equations satisfied by unknown spectral functions.

5. ANALYTICAL PROPERTIES OF THE FOURIER COEFFICIENTS

In this section, we study analytical properties of the Fourier coefficients fmn and gmn for m = 1, 2, 3,
4, 5 that appear in (37). Based on the definition, Ψ(+)(x, α) is regular in τ > −k2 except for a simple
pole at α = k cos θ0, whereas Φ−(x, α) is regular in τ < k2 cos θ0. In addition, Φr

m(x, α) with m = 2, 3,
4, 5, and Φ0

1(x, α) are all entire functions. Therefore, it follows that

lim
α→iγn

(α− iγn)
[
Φ0
1(x, α) + Ψ(+)(x, α)

]
= 0, (55)

lim
α→−iΓ1n

(α+ iΓ1n)Φ−(x, α) = 0, (56)

lim
α→±iΓmn

(α∓ iΓmn)Φ
r
m−1(x, α) = 0, m = 2, 3, 4, 5. (57)

Substituting (38)–(40) into (55)–(57), we obtain that

C+
5n(iγn) =

(nπ
2b

)
U(+)(iγn) for odd n,

= −
(nπ
2b

)
V(+)(iγn) for even n, (58)

and
Cmn(±iΓmn) = 0, n = 1, 2, 3, . . . . (59)

with m = 2, 3, 4, 5, where U(+) (α) and V(+) (α) are defined by (49) and (50). Equations (58) and (59)
form a system of simultaneous algebraic equations that connects the functions U(+)(α) and V(+)(α) with
the Fourier coefficients fnm and gmn for m = 1, 2, 3, 4, 5. By solving these equations for fnm and gmn,
we derive that

fmn =
nπ

b
PmnU(+)(iγn) for odd n,

= −nπ

b
PmnV(+)(iγn) for even n. (60)

gmn =
nπ

b
QmnU(+)(iγn) for odd n,

= −nπ

b
QmnV(+)(iγn) for even n. (61)
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where

P1n =
2Γ1ne

−Γ2n(L1−L2)

(µr2/µr1)Γ1n + Γ2n

(1 + δ1n)Γ2ne
−Γ3n(L2−L3)

(µr3/µr2)Γ2n + δ1nΓ3n

·(1 + δ2n)Γ3ne
−Γ4n(L3−L4)

(µr4/µr3)Γ3n + δ2nΓ4n

(1− δ4n)e
−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (62)

P2n =
(1 + δ1n)Γ2ne

−Γ3n(L2−L3)

(µr3/µr2)Γ2n + δ1nΓ3n

(1 + δ2n)Γ3ne
−Γ4n(L3−L4)

(µr4/µr3)Γ3n + δ2nΓ4n

· (1− δ4n)e
−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (63)

P3n =
(1 + δ2n)Γ3ne

−Γ4n(L3−L4)

(µr4/µr3)Γ3n + δ2nΓ4n

(1− δ4n)e
−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (64)

P4n =
(1− δ4n)e

−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (65)

P5n =
(1− δ4n)e

−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)
(66)

Q1n = ρ1ne
−Γ2n(L1−L2)

(1 + δ1n)Γ2ne
−Γ3n(L2−L3)

(µr3/µr2)Γ2n + δ1nΓ3n

(1 + δ2n)Γ3ne
−Γ4n(L3−L4)

(µr4/µr3)Γ3n + δ2nΓ4n

· (1− δ4n)e
−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (67)

Q2n = ρ2ne
−Γ3n(L2−L3) (1 + δ2n)Γ3ne

−Γ4n(L3−L4)

(µr4/µr3)Γ3n + δ2nΓ4n

· (1− δ4n)e
−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (68)

Q3n = ρ3ne
−Γ4n(L3−L4) (1− δ4n)e

−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)

(1 + δ3n)µr5Γ4n

(µr5/µr4)Γ4n + δ3nΓ5n
, (69)

Q4n = ρ4n
(1− δ4n)e

−Γ5n(L4−L5)

1− ρ4nδ4ne−2Γ5n(L4−L5)
µr5, (70)

Q5n =
ρ4ne

−2Γ5n(L4−L5) − δ4n

1− ρ4nδ4ne−2Γ5n(L4−L5)
(71)

with

ρ1n =
(µr2/µr1)Γ1n − Γ2n

(µr2/µr1)Γ1n + Γ2n
, (72)

δ1n =
1− ρ1ne

−2Γ2n(L1−L2)

1 + ρ1ne−2Γ2n(L1−L2)
, (73)

ρ2n =
(µr3/µr2)Γ2n − δ1nΓ3n

(µr3/µr2)Γ2n + δ1nΓ3n
, (74)

δ2n =
1− ρ2ne

−2Γ3n(L2−L3)

1 + ρ2ne−2Γ3n(L2−L3)
, (75)

ρ3n =
(µr4/µr3)Γ3n − δ2nΓ4n

(µr4/µr3)Γ3n + δ2nΓ4n
. (76)

δ3n =
1− ρ3ne

−2Γ4n(L3−L4)

1 + ρ3ne−2Γ4n(L3−L4)
, (77)
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ρ4n =
(µr5/µr4)Γ4n − δ3nΓ5n

(µr5/µr4)Γ4n + δ3nΓ5n
, (78)

δ4n =
µr5γn − Γ5n

µr5γn + Γ5n
. (79)

By substituting (60) and (61) with m = 5 into (43) and setting α = −iγn, we also obtain

C5n(−iγn) =
nπ

2b
e−2γnL5Q5nU(+)(iγn) for odd n,

= −nπ

2b
e−2γnL5Q5nV(+)(iγn) for even n, (80)

where

Q5 =
ρ4ne

−2Γ5n(L4−L5) − δ4n

1− ρ4nδ4ne−2Γ5n(L4−L5)
. (81)

The results derived in this section can be conveniently used in the next section to solve the Wiener-Hopf
equations.

6. SOLUTIONS OF THE WIENER-HOPF EQUATIONS

The kernel functions M(α) and N(α) given by (53) are factorized as [24, 25]

M(α) = M+(α)M−(α) = M+(α)M+(−α),

N(α) = N+(α)N−(α) = N+(α)N+(−α),

}
(82)

where

M+(α) = (cos kb)1/2 eiπ/4 (k + α)−1/2 exp

(
iγb

π
ln

α− γ

k

)
exp

[
iαb

π

(
1− C + ln

π

2kb
+ i

π

2

)] ∞∏
n=1,odd

(
1 +

α

iγn

)
e2iαb/nπ,

(83)

N+(α) =

(
sin kb

k

)1/2

exp

(
iγb

π
ln

α− γ

k

)
exp

[
iαb

π
π
(
1− C + ln

π

2kb
+ i

π

2

)] ∞∏
n=2,even

(
1 +

α

iγn

)
e2iαb/nπ

(84)

with C (= 0.57721566 . . . ) being Euler’s constant.
According to (82)–(84), M±(α) and N±(α) are regular and nonzero in τ ≷ ∓k2, and show the

asymptotic behavior

M±(α), N±(α) ∼ −(∓iα/2)1/2 as α → ∞ with τ ≷ ∓k2. (85)

We multiply both sides of (47) by M−(α) and decompose the resultant equations. This leads to

M−(α)J
d
−(α)−

(
2

π

)1/2 i cos(kb sin θ0)

M+(k cos θ0)(α− k cos θ0)

+

∞∑
n=1,odd

nπ

b2
1

α+ iγn

[
M−(α)e

−iαL5C+
5n(α)

α− iγn
+

M+(iγn)e
−γnL5C+

5n(−iγn)

2iγn

]

+

∞∑
n=1,odd

nπ

b2
1

α+ iγn

[
M−(α)e

−iαL1C−
1n(α)

α− iΓ1n
+

M+(−iΓ1n)e
−Γ1nL1C+

1n(−iΓ1n)

2iΓ1n

]

+

5∑
m=2

1

α+ iΓmn

M−(α)
[
e−iαLmC−

mn(α)− e−iαLm−1C+
(m−1)n(α)

]
α− iΓmn
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+
M+(iΓmn)

[
e−iαLmC−

mn(−iΓmn)− e−iαLm−1C+
(m−1)n(iΓmn)

]
2iΓmn


= −

U(+)(α)

M+(α)
+

(
2

π

)1/2 i cos(kb sin θ0)

M+(k cos θ0)(α− k cos θ0)

+

∞∑
n=1,odd

nπ

b2
M+(iγn)e

−γnL5C+
5n(−iγn)

2iγn(α+ iγn)

−
∞∑

n=1,odd

nπ

b2
M+(−iΓ1n)e

−Γ1nL1C+
1n(−iΓ1n)

2iΓ1n(α+ iΓ1n)

−
5∑

m=2,odd

nπ

b2
M+(−iΓmn)

[
e−ΓmnLmC−

mn(−iΓmn)− e−ΓmnLmC+
mn(−iΓmn)

]
2iΓmn(α+ iΓmn)

. (86)

Based on Meixner’s edge conditions [25, 38], we deduce that

Et
y = O(ρ1/2), Ht = O(ρ−1/2), ρ → 0, for L5 > 0,

Et
y = O(ρν), Ht = O(ρ−1+ν′), ρ → 0, for L5 = 0,

(87)

ϕ(±b, z) =

{
− eik(±b sin θ0) +O(z1/2), for L5 > 0, as z → +0,

− eik(±b sin θ0) +O(zν), for L5 = 0, as z → +0,
(88)

∂ϕt(±b± 0, z)

∂x
− ∂ϕt(±b∓ 0, z)

∂x
=

{
O(z−1/2), for L5 > 0, as z → −0,

O(z−1+ν′), for L5 = 0, as z → −0,
(89)

where ρ is the distance measured from the edges at the aperture of the waveguide, and

ν = η(νµ, νε), ν ′ = η(νµ, νε + 1) (90)

with Reν > 0, Reν ′ > 0, and

νµ =
1

π
cos−1 µγ − 1

2(µγ + 1)
, νε =

1

π
cos−1 1 + εr

2(1 + εr)
, (91)

η(a, b) =

{
a for Rea ≤ b,
b for Rea ≤ b.

(92)

Applying the fundamental theorem for the asymptotic behaviors of the Fourier integrals [26], we can
show that Ψ(+)(±b, α) and J−(±b, α) asymptotically behave like

Ψ(+)(±b, α) =O(α−3/2), for τ > −k2, for L5 > 0,

=O(α−1−ν), for τ > −k2, for L5 = 0,
(93)

J−(±b, α) =O(α−1/2), for τ < k2 cos θ0, for L5 > 0,

=O(α−ν′), for τ < k2 cos θ0, for L5 = 0.
(94)

as α → ∞. Thus, applying (93) and (94) to (49), (50) and (51), (52) respectively, we can obtain

U(+)(α), V(+)(α) = O(α−3/2), for τ > −k2, for L5 > 0,

= O(α−1−ν), for τ > −k2, for L5 = 0,
(95)

Js,d
− (±b, α) = O(α−1/2), for τ < k2 cos θ0, for L5 > 0,

= O(α−ν′), for τ < k2 cos θ0, for L5 = 0.
(96)

It is shown that the left- and right-hand sides of (86) are regular in the lower (τ < k2 cos θ0)
and upper (τ > −k2) half-planes, respectively, and both sides have a common strip of regularity
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(−k2 < τ < k2 cos θ0). As a result, the analytic continuation argument shows that both sides of (86)
must be equal to an entire function, which is found to be identically zero by using (95), (96) and
Liouville’s theorem. It follows that

−
U(+)(α)

M+(α)
−
(
2

π

)1/2 i cos(kb sin θ0)

M+(k cos θ0)(α− k cos θ0)
+

∞∑
n=1,odd

nπ

b2
M+(iγn)e

−γnL5C+
5n(−iγn)

2iγn(α+ iγn)
= 0. (97)

The Wiener-Hopf Equation (48) may be decomposed using a similar procedure. By multiplying
both sides of (48) by N−(α) and decomposing the resultant equation, we arrive at

−
V(+)(α)

N+(α)
+

(
2

π

)1/2 sin(kb sin θ0)

N+(k cos θ0)(α− k cos θ0)
−

∞∑
n=2,even

nπ

b2
N+(iγn)e

−γnL5C+
5n(−iγn)

2iγn(α+ iγn)
= 0. (98)

The unknown coefficients C5n(−iγn) are involved in (97) and (98). In Section 5, we have
examined the relationship between the unknown functions and the unknown Fourier coefficients. By
substituting (80) into (97) and (98) and arranging the results, we obtain that

U(+)(α)

b
=

M+(α)

b1/2

[
− Au

b (α− k cos θ0)
−

∞∑
n=1

e−2γ2n−1L5anpnQ5nu
+
n

b (α+ iγ2n−1)

]
, (99)

V(+)(α)

b
=

N+(α)

b1/2

[
− Av

b (α− k cos θ0)
−

∞∑
n=1

e−2γ2nL5bnqnQ5nv
+
n

b (α+ iγ2n)

]
, (100)

where

Au = −
(
2

π

)1/2 cos(kb sin θ0)

M+(k cos θ0)
, Av =

(
2

π

)1/2 cos(kb sin θ0)

N+(k cos θ0)
, (101)

an =
[(n− 1/2)π]2

biγ2n−1
, bn =

(nπ)2

biγ2n
, n ≥ 1, (102)

pn =
M+(iγ2n−1)

b1/2
, qn =

N+(iγ2n)

b1/2
, n ≥ 1, (103)

u+n =
U(+)(iγ2n−1)

b
, v+n =

V(+)(iγ2n)

b
, n ≥ 1. (104)

Equations (99) and (100) are the exact solutions to the Wiener-Hopf Equations (47) and (48). But
they are formal since the infinite series with the unknown coefficients u+n and v+n for n = 1, 2, 3, . . . are
involved. Therefore we need to develop a procedure to derive explicit approximate expressions of (99)
and (100).

Using (95) and (104), it is possible to derive

u+n ∼ 21/2Ku(bγ2n−1)
−3/2, v+n ∼ 21/2Kv(bγ2n)

−3/2, for L5 > 0,

u+n ∼ 21/2Ku(bγ2n−1)
−1−ν , v+n ∼ 21/2Kv(bγ2n)

−1−ν , for L5 = 0.

}
(105)

as n → ∞, where Ku and Kv are unknown constants. Taking a large positive integer N , the unknowns
u+n and v+n for n ≥ N of the infinite series in (99) and (100) can be approximated with reasonable
accuracy by the asymptotic behavior given in (105). We then replace each infinite series in (99)
and (100) with the sum of a finite series containing N −1 unknowns and a remaining infinite series with
one unknown constant. This procedure yields highly accurate approximate expression for the original
infinite series since the edge condition is explicitly taken into account. Thus, we obtain the approximate
expressions for (99) and (100) with the result that

U(+)(α)

b
≈ M+(α)

b1/2

[
− Au

b (α− k cos θ0)
−

N−1∑
n=1

e−2γ2n−1L5anpnQ5nu
+
n

b (α+ iγ2n−1)
+KuSu(α)

]
, (106)

V(+)(α)

b
≈ N+(α)

b1/2

[
− Av

b (α− k cos θ0)
−

∞∑
n=1

e−2γ2nL5bnqnQ5nv
+
n

b (α+ iγ2n)
+KvSv(α)

]
, (107)
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where

SN
u (α) =

∞∑
n=N

anQ5(2n−1)e
−2γ2n−1L5(bγ2n−1)

−2

b (α+ iγ2n−1)
,

SN
v (α) =

∞∑
n=N

bnQ5(2n)e
−2γ2nL5(bγ2n)

−2

b (α+ iγ2n)
, for L5 > 0,

SN
u (α) =

∞∑
n=N

anQ5(2n−1)e
−2γ2n−1L5(bγ2n−1)

−3/2−ν

b (α+ iγ2n−1)
,

SN
v (α) =

∞∑
n=N

bnQ5(2n)e
−2γ2nL5(bγ2n)

−3/2−ν

b (α+ iγ2n)
, for L5 = 0.



(108)

Equations (99) and (100) are approximate expressions of (47) and (48), respectively, where the unknowns
u+n and v+n for n = 1, 2, 3, . . . , N − 1,Ku, and Kv are included. These unknowns can be efficiently
determined by solving the two sets of N×N matrix equations numerically. It should be noted that (106)
and (107) are uniformly valid for arbitrary aperture opening of the waveguide.

7. SCATTERED FIELD

The scattered field in real space can be obtained by taking the inverse Fourier transform according to
the following formula:

ϕ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα, − k2 < c < k2 cos θ0. (109)

Substituting (46) into (109), we can derive an integral representation for the scattered field valid for
the entire space. In the following, we will analytically derive explicit expressions for the fields inside
and outside the waveguide. The scattered field inside the waveguide can be expressed in terms of the
TE modes by evaluating (109) using the residue theorem. For the region outside the waveguide, an
asymptotic expression will be derived using the saddle point method.

First we consider the field inside the waveguide. Substituting the scattered field expression for
|x| < b in (46) into (109) and evaluating the resultant integral for z < 0 with the aid of (99) and (100),
the scattered field inside the waveguide is shown to take form of

ϕ(x, z) = −ϕi(x, z) +
∞∑
n=1

T−
1ne

Γ1n(z+L1) sin
nπ

2b
(x+ b) for −∞ < z < −L1, (region I),

= −ϕi(x, z) +
∞∑
n=1

[
T−
mne

Γmn(z+Lm) − T+
mne

Γmn(z+L(m−1))
]
sin

nπ

2b
(x+ b),

(m = 2, 3, 4, 5)for− L1 < z < −L5, (region II, III, IV, V)

= −ϕi(x, z)+

∞∑
n=1

[
T−
0 eγn(z+L5)−T+

0 e−γn(z+L5)
]
sin

nπ

2b
(x+b), for− L5<z<0, (otherwise), (110)

where

T−
mn =

(π
2

)1/2 nπ

2b2
Pmn

Γmn
e−γnL5U(+)(iγn), for odd n, (m = 1, 2, 3, 4, 5),

= −
(π
2

)1/2 nπ

2b2
Pmn

Γmn
e−γnL5V(+)(iγn), for even n, (m = 1, 2, 3, 4, 5). (111)
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T+
mn =

(π
2

)1/2 nπ

2b2
Qmn

Γ(m+1)n
e−γnL5U(+)(iγn), for odd n, (m = 1, 2, 3, 4),

= −
(π
2

)1/2 nπ

2b2
Qmn

Γ(m+1)n
e−γnL5V(+)(iγn), for even n, (m = 1, 2, 3, 4). (112)

T−
0 =

(π
2

)1/2 nπ

2b2
e−γnL5

γn
U(+)(iγn), for odd n,

= −
(π
2

)1/2 nπ

2b2
e−γnL5

γn
V(+)(iγn), for even n. (113)

T+
0 =

(π
2

)1/2 nπ

2b2
Q5n

γn
e−γnL5U(+)(iγn), for odd n,

= −
(π
2

)1/2 nπ

2b2
Q5n

γn
e−γnL5V(+)(iγn), for even n. (114)

In (110)–(114), Pmn and Qmn for m = 1, 2, 3, 4, 5 are defined in Section 5.
Next, we examine the field outside the waveguide and derive the scattered far field. The region

outside the waveguide consists of region |x| < b with z > 0 and region |x| > b. However, at large
distances from the origin, contributions from |x| < b outside the waveguide is negligibly small. Using (46)
and (109), an integral representation of the scattered field is found to be

ϕ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Ψ(+) (±b, α) e∓γ(x∓b)−iαzdα, (115)

where Ψ(+) (±b, α) can be expressed as follows (see (49) and (50)):

Ψ(+)(±b, α) =
1

2

[
U(+)(α)± V(+)(α)

]
. (116)

Applying the method developed in [37] and carrying out some manipulations, we are led to

ϕ(ρ1,2, θ1,2) ∼
[
Ψ(+) (±b,−k cos θ1,2)− Φ̃ (±b,−k cos θ1,2)

]
k sin θ1,2

ei(kρ1,2−π/4)

(kρ1,2)
1/2

− e∓ikb sin θ0
(
e−ikρ1,2 cos(θ1,2−θ0)F

{
(2kρ1,2)

1/2 cos [(θ1,2 − θ0) /2]
}

+e−ikρ1,2 cos(θ1,2+θ0)F
{
(2kρ1,2)

1/2 cos [(θ1,2 + θ0) /2]
})

, x ≷ ±b. (117)

where (ρ1,2, θ1,2) are the cylindrical coordinates given by (6), and F (·) is the Fresnel integral defined by

F (ω) =
e−iπ/4

π1/2

∫ ∞

ω
eit

2
dt. (118)

Equation (117) provides an asymptotic expression of the scattered field as kρ1,2 → ∞, which is uniformly
valid in observation angles θ1,2.

Introducing the cylindrical coordinate (ρ, θ) as x = ρ sin θ, z = ρ cos θ for −π < θ < π, it can be
seen that the following approximate relationship holds in the far field.

cos θ1 ≈ cos θ ≈ cos θ2, (119)

ρ1 ≈ ρ− b sin θ, for 0 < θ < π, (120)

ρ2 ≈ ρ+ b sin θ, for − π < θ < 0. (121)

Replacing the Fresnel integral in (117) with its asymptotic expansion for large |k| ρ1,2 and using (119)–
(121), we can derive an alternative expression for the scattered far field

ϕ (ρ, θ) ∼ ϕg (ρ, θ) + ϕd (ρ, θ) , θ1,2 ≉π ∓ θ0. (122)
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where ϕg (ρ, θ) and ϕd (ρ, θ) are the geometrical optics field and the diffraction field, respectively, and
are defined by

ϕg (ρ, θ) =


− e−ikρ cos(θ−θ0), for − π < θ2 < π + θ0,

0, for − π + θ0 < θ2 < 0, 0 < θ1 < π − θ0,

− e−2ikb sin θ0e−ikρ cos(θ+θ0), for π − θ0 < θ1 < π.

(123)

ϕd (ρ, θ) = Ψ(+) (±b,−k cos θ) k sin θe∓ikb sin θ e
i(kρ−π/4)

(kρ)1/2
, for θ ≷ 0. (124)

8. NUMERICAL RESULTS AND DISCUSSION

In this section, we will show illustrative numerical examples of the RCS to investigate the far field
backscattering characteristics of the waveguide in detail. The RCS per unit length is defined by

σ = lim
ρ→∞

(
2πρ

∣∣ϕd
∣∣2

|ϕi|2

)
, (125)

where ϕd is the diffracted field defined by (124). For real k, (125) is simplified by using (2), (116),
and (124) as

σ = λ

∣∣∣∣k sin θ2
U(+)(−k cos θ)± V(+)(−k cos θ)

∣∣∣∣2 (126)

for θ ≷ 0 with λ being the free-space wavelength. We used the approximate expressions (106) and (107)
to calculate U(+)(−k cos θ) and V(+)(−k cos θ) involved in (126). Since (106) and (107) contain the

unknowns u+n , v
+
n for n = 1, 2, 3, . . . , N − 1 and Ku,v, we need to invert the two sets of N ×N matrix

equations numerically for obtaining physical quantities. We have verified through careful investigation
that choosing N ≥ 2kb/π in (106) and (107) gives sufficiently accurate results.

Figures 2–5 show the normalized monostatic RCS σ/λversus the incidence angle θ0, where the value
of σ/λ is plotted in decibels [dB] by calculating 10 log10 (σ/λ). To study the scattering mechanism over a
broad frequency range, we have performed numerical calculations for six typical values of the normalized
waveguide aperture width kb = 1.57, 3.14, 15.7, 31.4, 47.1, 62.8. Here kb = 1.57, 3.14 correspond to low
frequencies, kb = 15.7, 31.4 correspond to medium frequencies, and kb = 47.1, 62.8 correspond to high
frequencies. In addition, the ratio L1/2b has been chosen as 0.5 (Fig. 2), 1.0 (Fig. 3), 3.0 (Fig. 4), and
5.0 (Fig. 5). In numerical computations, we have used five different materials from the study of radar
absorbing materials (RAM) by Michielssen et al. [6]. Although these material properties are fictitious,
they represent a wide range of available radar absorbing materials. The material constants of the
five-layer material inside the waveguide (see Fig. 1) are ε1= 8+i10, µ1 = 1+ i0 for region I ε2= 10+i6,
µ2 = 1+i0 for region II ε3= 15+i0, µ3 = 3+i15 for region III ε4= 15+i0, µ4 = 7+i12 for region IV, and
ε5= 15+i0, µ5 = 25.8 + i10.3 for region V. Here the material in region I extends from z = −L1 to −∞.
The thickness of regions II, III, IV, and V is such that L1 −L2 = L2 −L3 = L3 −L4 = L4 −L5(= t/4)
with t being the total thickness of the four-layer materials (regions II-V), which is taken as kt = 1.57.
The results for the four cases of single, two-, three-, and four-layer material loading have been included
in Figs. 2–5 for detailed comparisons.

General features observed from Figs. 2–5 are that, at medium (kb = 15.7, 31.4) and high (kb = 47.1,
62.8) frequencies, the RCS is reduced with an increase of the number of material layers. At low
frequencies (kb = 1.57, 3.14), however, the RCS characteristics are very different from those at mid-
and high-frequencies. This is because, the effect of diffracted waves generated at low frequencies is more
significant than higher frequencies. At low frequencies, the scattered field shows complicated features
and geometrical optics interpretation cannot be applied. From Figs. 2((a), (b)), 3((a), (b)), 4((a), (b)),
5((a), (b)), it is clear that the RCS value does not necessarily decrease with an increase of the number
of layers. In particular, the RCS curves for the five different cases (single-, two-, three-, four, five-layer
loading) in Figs. 4(a) and 5(a) merge and show ‘single-line’ like characteristics. This is noticeable in
Fig. 5(a) and can be expected since in this case, the waveguide aperture opening is very small and
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(a)

(b)

(c)

(d)

(e)

(f)

: one-layer material loading (regions II-V: vacuum). : two-layer material loading (regions

III-V: vacuum). : three-layer material loading (regions IV-V: vacuum). : four-layer

material loading (region V: vacuum). : five-layer material loading.

Figure 2. Monostatic RCS [dB] as a function of incidence angle θ0 for L1/2b = 0.5, kt = 1.57.
(a) kb = 1.57. (b) kb = 3.14. (c) kb = 15.7. (d) kb = 31.4. (e) kb = 47.1. (f) kb = 62.8.

can be regarded as a single half-plane of zero thickness. In addition, the ratio L1/2b is as large as 5.0
in Fig. 5(a) (i.e., material-loaded regions are located far from the waveguide opening) and hence, the
multilayer loading cannot be observed in the far field region. Comparing the RCS characteristics for the
five curves (single- to five-layer material loading) in each figure significant RCS reduction is observed
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Monostatic RCS [dB] as a function of incidence angle θ0 for L1/2b = 1.0, kt = 1.57. Other
particulars are the same as in Fig. 2. (a) kb = 1.57. (b) kb = 3.14. (c) kb = 15.7. (d) kb = 31.4.
(e) kb = 47.1. (f) kb = 62.8.

at near-normal incidence (θ0 = 0◦) for all figures except kb = 1.57. Therefore, it is inferred that for
near normal incidence, the five-layer loading results in better RCS reduction over a wide frequency
range. From these results, it can be confirmed that multilayer lossy materials can be used as broadband
absorbing structures.

Next, we shall investigate frequency dependences of the RCS to make more thorough interpretation
of the backscattering characteristics. Fig. 6 shows the normalized monostatic RCS as a function of
normalized frequency kb for angles of incidence θ0 = 0◦, 30◦, and 60◦, L1/2b = 1.0. Five different
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Monostatic RCS [dB] as a function of incidence angle θ0 for L1/2b = 3.0, kt = 1.57. Other
particulars are the same as in Fig. 2. (a) kb = 1.57. (b) kb = 3.14. (c) kb = 15.7. (d) kb = 31.4.
(e) kb = 47.1. (f) kb = 62.8.

geometries are again considered: waveguides with one-, two-, three-, four-, and five-layer material
loading. The material properties and the layer thicknesses are the same as in Fig. 3. From Fig. 6, we
can see that, for the single-layer loading, the average RCS level increases with an increase of kb, whereas
for the multiple-layer loading, the RCS is reduced over the entire frequency range as shown in the figure.
When comparing properties of the single- and multi-layer loadings, the RCS reduction in the five-layer
case is significant. Therefore, this also demonstrates that multilayer lossy materials can be efficiently
used as broadband absorbing structures. In the numerical example of Figs. 6(a), 6(b) and 6(c), we find
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Monostatic RCS [dB] as a function of incidence angle θ0 for L1/2b = 5.0, kt = 1.57. Other
particulars are the same as in Fig. 2. (a) kb = 1.57. (b) kb = 3.14. (c) kb = 15.7. (d) kb = 31.4.
(e) kb = 47.1. (f) kb = 62.8.

that, with an increase of the incidence angle from θ0 = 0◦ to 60◦, the resonance phenomena are seen.
In particular for the θ0 = 0◦, waves incident on the material surface are simply reflected back, so that
the RCS characteristics are of relatively smooth curves. However, as the incidence angle increases, the
multiple reflection occurs inside the waveguide, which results in waveguide resonances.

The main purpose of this section is to investigate how the multi-layer lossy material loading inside
the waveguide leads to better RCS reduction. The choice of optimal material parameters is important,
but this is beyond the scope of this paper. This may be a future research direction for our research.
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(a)

(b)

(c)

Figure 6. Monostatic RCS [dB] versus normalized frequency kb for θ0 = 0◦, 30◦, and 60◦, L1/2b = 1.0,
kt = 1.57. Other particulars are the same as in Fig. 2. (a) θ0 = 0◦. (b) θ0 = 30◦. (c) θ0 = 60◦.

9. CONCLUSION

In this paper, we have used the Wiener-Hopf technique to analyze the E-polarized plane wave diffraction
rigorously by a semi-infinite parallel-plate waveguide with five-layer material loading. The result
provides an important generalization of the problem treated in our previous paper [37]. It should be
noted that the final solution obtained in this paper is uniformly valid for arbitrary waveguide dimension.
We have presented representative numerical examples for various physical parameters, and discussed the
backscattering characteristics of the waveguide in detail. The diffraction problem involving the same
waveguide geometry for the H-polarized plane wave incidence is currently under investigation, and the
results will be presented in a separate paper.
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