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Target Classification by Conventional Radar Based on Bispectrum
and Deep CNN
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Abstract—Due to the restriction of the low-resolution systems and the interference of background
clutter and environmental noise in the exploration process, the traditional classification and recognition
algorithms of conventional radar for aircraft targets have low accuracy and poor feature stability.
To solve the above problems, this paper proposes to apply high-order cumulant spectrum and deep
convolutional neural network (CNN) to feature the extraction and classification of aircraft target radar
echoes. Firstly, analyze the high-order statistical characteristics of aircraft echoes, calculate their
bispectrum, and then enhance the generated bispectrum dataset. Finally, use the augmented dataset to
train and test the deep CNN, and obtain the final classification and recognition results. Experimental
results show that the proposed method can accurately classify and identify multiple aircraft targets in
the dataset, indicating that the bispectral features can better reflect the target characteristics, and the
classification method combined with the deep learning model has good classification and identification
performance and noise robustness.

1. INTRODUCTION

Radar target recognition refers to the use of various acquired target echo signals to judge the type
of target and give the judgment results by extracting stable and meaningful features or directly using
all the effective echo data. Due to the problems of complex structure, high research cost, and short
detection distance, the traditional low-resolution radar system is used in most of the air defense warning
radars in service. However, the limitations of the low-resolution design and the system performance
make it difficult for conventional warning radars to achieve further classification and recognition of
detected targets [1–3]. Therefore, it is of great practical significance and application value to study the
target recognition technology that can adapt to conventional low-resolution radars.

Most conventional low-resolution radars use target recognition methods based on feature extraction.
Firstly, they use echo signals to detect targets. On this basis, they extract features that can be used
for target classification and recognition according to phase, amplitude, and other feature information
and in combination with changes in feature space. Finally, they use machine learning methods such
as support vector machine (SVM) to classify and recognize targets. For example, Zhang and Li [4]
used multifractal correlation theory to extract the features of radar target echoes, and on this basis,
combined with SVM to study the classification performance of conventional low-resolution radars for
various types of aircraft. To solve the problem that traditional low-resolution radar target recognition
is greatly affected by environmental clutter, Hu et al. [5] proposed an aircraft target classification
method based on ensemble empirical mode decomposition (EEMD) and multifractal, which achieved
the classification of targets such as civil aircraft and fighter aircraft. Xia et al. [6] proposed a joint multi-
feature classification method based on the micro-Doppler effect caused by the micro-motion of targets,
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which extracted features from the time domain and frequency domain, respectively, and then combined
with SVM for target classification. Chen et al. [7] proposed a jet engine modulation (JEM) feature
extraction method based on eigenvalue decomposition to analyze JEM echo characteristic spectrum of
three types of aircraft, and then classify them. Li and Xie [8] analyzed and defined multifractal features
of various aircraft targets, which can achieve classification of targets effectively. Most of the above
feature extraction methods focus on estimating spectral line interval, and the calculation is relatively
complex, which often requires a high pulse repetition rate and long observation time. At the same
time, the traditional low-resolution radar is often challenging to meet the requirements of a high pulse
repetition rate and long observation time. Therefore, the estimation accuracy of this kind of method is
often not high, and it is greatly limited in practical application.

As an important kind of target monitored by conventional low-resolution radar, the non-rigid
oscillation or attitude change of the airframe relative to the radar will generate complex nonlinear
modulation on the echo amplitude and its phase [9]. In addition, the JEM caused by the rotation of
flight-rotating parts such as rotors, tails, propellers, and turbofans is also a typical nonlinear modulation,
which is reflected in the echo amplitude, phase, frequency, and other characteristics [10]. However,
besides the target echo, there are also various kinds of interference signals contained in the target echo
signal of the aircraft, such as noise and clutter. How to eliminate clutter and other interference and
extract characteristic signals is a significant issue to be considered. The high-order cumulant spectrum
has good noise suppression ability for colored Gaussian noise. It can maintain the phase information of
the nonlinear system, so it can extract rich feature information and provide accurate feature samples
for target classification and recognition. Numerous scholars have studied the application of bispectrum,
as the lowest order high-order cumulant spectrum, in the field of radar target recognition. Walton and
Jouny [11] analyzed the details of the interaction of multiple reflection mechanisms of a bispectral
representation object as a robust feature for radar target classification and applied it to commercial
aircraft model classification. Ji et al. [12] proposed a bispectral estimation method for auto-regressive
(AR) model parameters, aiming at the suppression effect of bispectrum on Gaussian noise, and selected
reasonable bispectral characteristics to classify aircraft targets. Jouny et al. [13] obtained the time
domain bispectral features of radar targets and then used two classification methods, Cross Correlation
and Nearest Neighbor Rule, to identify the radar targets. All the aforementioned studies proved the
effectiveness of the bispectral feature; therefore, it is well documented to employ this kind of features
as the recognition features for aircraft targets. Although the above feature extraction methods can
achieve target classification and recognition to a certain extent, most features are artificially designed
and belong to shallow features, which is not conducive to further improvement of target classification
and recognition rate. In recent years, target recognition technology based on convolutional neural
network (CNN) and other deep learning networks has been rapidly developed and applied to radar
target recognition [14]. The introduction of the deep learning methods into the field of radar target
detection and recognition is helpful in solving the problems of difficulty in manually defining features
and insufficient model expression ability in traditional methods [15]. For this reason, this paper intends
to propose a radar target classification and recognition method combining bispectrum and deep CNN,
aiming at exploring and designing excellent feature representation for low-resolution radar targets and
using deep learning methods to complete target recognition.

2. DEFINITION AND CALCULATION OF BISPECTRUM

2.1. Definition of Bispectrum

The cumulant higher than the second order is called the higher order cumulant, and the bispectrum is
called the third order cumulant spectrum, which is the two-dimensional discrete Fourier transform of
the third order cumulant. The bispectral expression defined by the third-order cumulant is as follows.

If the higher-order cumulants of random sequences x(t), x(t+ τ1), . . . , x(t+ τk−1) can be summed
absolutely, that is to say [16]:

∞∑
τ1=−∞

. . .

∞∑
τk−1=−∞

|ckx(τ1, . . . , τk−1)| < ∞, (1)
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then the k-order spectrum of the signal can be defined as the (k − 1) dimensional discrete Fourier
transform of the k-order cumulant, which is expressed as [16]:

skx(ω1, . . . , ωk−1) =

∞∑
τ1=−∞

. . .

∞∑
τk−1=−∞

ckx(τ1, . . . , τk−1)e
−j(ω1τ1+...+ωk−1τk−1) (2)

where |ωi| ≤ π, i = 1, 2, . . . , k − 1, |ω1 + ω2 + . . .+ ωk−1| ≤ π.
Bispectrum is the third-order spectrum, expressed as follows [16]:

Bx(ω1, ω2) =
∞∑

τ1=−∞

∞∑
τ2=−∞

c3x(τ1, τ2)e
−j(ω1τ1+ω2τ2) (3)

According to the additivity of cumulants, the third-order cumulants of the gained signal y(n) =
x(n) + g(n) can be expressed as

C3y(τ1, τ2) = E{[x(n) + g(n)][x(n+ τ1) + g(n+ τ1)][x(n+ τ2) + g(n+ τ2)]}
= C3x(τ1, τ2) + C3g(τ1, τ2) + E[x(n)] {C2g(τ1) + C2g(τ2) + C2g(τ2 − τ1)}

+E[g(n)]{C2x(τ1) + C2x(τ2) + C2x(τ2 − τ1)} (4)

As can be seen from the above equation, when the mean value of the target echo signal x(n) and
Gaussian noise g(n) is 0, Equation (4) can be simplified as

C3y(τ1, τ2) = C3x(τ1, τ2) + C3g(τ1, τ2) (5)

Since g(n) is Gaussian noise, its third-order cumulant is zero. Therefore, the bispectrum feature of the
received signal can restrain the influence of Gaussian colored noise. That is,

By(ω1, ω2) = Bx(ω1, ω2) (6)

Because the phase information of radar echo reflects the radiation and scattering characteristics of
aircraft target to a electromagnetic wave and contains the physical characteristics such as the structure
and material composition of aircraft target, when analyzing the radar target echo signal, it is generally
required that the extracted signal features should have timeshift invariance, scale variability, and phase
preservation. The bispectrum in the higher-order spectrum has the above three properties, for the
third-order cumulant and bispectrum maintain the amplitude and phase information of the signal,
are time-invariant, and can suppress any colored Gaussian noise [17]. Given this, this paper takes
bispectrum as an example to study the application of high-order spectrum in the characteristic analysis
and feature extraction of conventional low-resolution radar target echo signals.

2.2. Bispectrum Estimation

Bispectral analysis methods of actual signals are generally divided into two categories: the first category
is the parametric model estimation method, and the second is the nonparametric estimation method,
in which the nonparametric estimation method includes the direct estimation method and indirect
estimation method [18]. Here we mainly introduce the direct estimation method of bispectrum. The
calculation steps are as follows.

(1) Divide x(n) into K segments, and each component contains M observed samples, denoted as

xk(0), xk(1), . . . , xk(M − 1), (k = 1, . . . ,K) (7)

(2) Calculate the Fourier transform coefficients

X(k)(λ) =
1

M

M−1∑
n=0

x(k)(n) · e−j 2πnλ
M (8)

where λ = 0, 1, . . . ,M/2.
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(3) Calculate the triple correlation of the discrete Fourier transform coefficients

bk(λ1, λ2) =
1

∆2
0

L1∑
i1=−L1

L1∑
i2=−L1

X(k)(λ1 + i1) ·X(k)(λ2 + i2) ·X(k)(−λ1 − λ2 − i1 − i2) (9)

where ∆0 = fs/N0.

(4) Calculate the average of the K-segment bispectrum estimates

B(ω1, ω2) =
1

K

K∑
k=1

bk(ω1, ω2) (10)

where ω1 = 2πfsλ1/N0, ω2 = 2πfsλ2/N0.

Bispectrum contains signal information such as energy, amplitude, and phase, which can be used
as an important tool to detect non-Gaussian and nonlinear characteristics of a signal. Extracting
bispectrum features will be beneficial to signal classification [19]. Fig. 1 shows the three-dimensional
bispectral estimation of a group of normalized radar echo data calculated when different fast Fourier
transform (FFT) points are selected in the MATLAB environment. If the length of FFT is noted
as nfft, nfft is usually taken as an integer power of 2, and its default value is 128. As shown in
Fig. 1, as the number of nfft points increases, the bispectrum 3D graph curve becomes more and
more detailed. In general, the larger nfft is, the more accurate the bispectrum estimation is, and the
higher the frequency resolution is. Therefore, the more detailed the convex peak is in the figure, the
higher-order statistical characteristics of the signal are better highlighted. However, when the number
of nfft points increases, the bispectrum calculation amount will increase, so the calculation time will
also increase accordingly. Considering the computational complexity and resolution, the bispectrum
estimation map with nfft = 1024 is selected as the input of the neural network.

(a) (b) (c)

Figure 1. Estimated bispectral three-dimensional graph. (a) nfft = 512. (b) nfft = 1024. (c)
nfft = 2048.

3. DEEP CONVOLUTIONAL NEURAL NETWORKS

Deep learning network has an excellent ability to capture the abstract expression of data automatically.
In the current research, a great quantity of deep learning models have been applied to radar target
recognition processing and have achieved relatively good recognition results [20–22]. The basic principle
of feature selection based on neural networks is: in the process of neural network training, the weights
of each input unit can be learned and obtained. These weights reflect the sensitivity of sample features
in the classification task. Then, the weights are used as the quantitative standard to delete or weaken
the influence of redundant features and noise features in the original feature set. The input weighting
factors that are more beneficial to classification are constructed at the model input level to improve the
classification accuracy.
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Convolutional Neural Network (CNN) is a very representative deep neural network structure, which
is excellent in processing two-dimensional image data and has strong spatial feature extraction ability.
The basic structure of CNN consists of a convolution layer, a pooling layer, and a fully connected layer.
The structure of CNN used in this paper is shown in Fig. 2.

Figure 2. Structure of convolutional neural network.

(1) Convolution layer: The input image is a three-dimensional bispectrum image obtained by the
direct estimation method. For the convenience of processing, the image size is uniformly processed
as 224 × 224 × 3, where 3 is the depth of the image (namely, red, green, blue, RGB), the size of the
convolution kernel is 3 × 3; the number of convolution kernels is 2; and the moving step is 2. The
convolution operation is done on the feature map output from the previous layer using a pre-defined
convolution kernel. The convolution kernel is a multi-dimensional matrix, which moves over the feature
map in specific steps. Each time it moves, a convolution operation is performed, and finally, a feature
map is acquired, which is the feature map extracted by this convolution kernel. n convolution kernels
can extract n feature maps. After the convolution operation, the output feature map is transformed
into a new feature map through the nonlinear transformation of the ReLU activation function. Then
the input of the next layer is obtained. The ReLU function is expressed as follows [23].

ReLU(x) = max(0, x) (11)

(2) Pooling layer: The input vector of the previous layer is pooled to reduce the dimension, improve
the calculation speed, and improve the robustness of the extracted features. Commonly used pooling
methods involve maximum pooling, mean pooling, and random pooling. In classification tasks, the
maximum pooling can make the network get better results and has a certain error screening function,
so it is often used as the primary pooling method.

(3) Fully connected layer: In essence, the fully-connected layer is a classifier, where each neuron is
connected to each value of the one-dimensional vector of the flat layer. After multi-layer convolution
and pooling, the input data of the neural network are mapped to the hidden layer feature space. The
feature map formed needs to be mapped with the output sample labels through the fully connection
layer to complete the classification task.

In this paper, we intend to use the Softmax function [24] for classification. The Softmax function
can normalize the output component of the previous layer and convert it into a value between (0, 1).
These values can be regarded as a probability distribution and used as the target prediction value of
classification. The one with the highest probability is the final classification result. In order to prevent
overflow, this paper intends to use the following method to obtain the final classification result: firstly
get the maximum value of the input vector, and then subtract this maximum value from all vectors.
The calculation is as follows:

M = max(xi) (12)
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Softmax(xi) =
exi−M∑
j e

xj−M
(13)

Figure 3 shows the flowchart of aircraft target classification and identification using deep CNN.

Figure 3. Classification and Recognition Process of Aircraft Targets.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Experimental Dataset

The data used in this research have various types of aircraft target echo data recorded from an air
defense warning radar. The radar operates in the VHF band, with a pulse repetition frequency of
100Hz and a pulse width of 25µs. The data used in the experiment are groups of radar echo data of six
different aircraft types with varying attitudes of flight. The input image of the classification network is
the bispectrum estimation image obtained from the original echo data. There are 512 samples of each
category in the training set, and the quantity of six types of training samples is 3072 groups. Among
them, Targets 1, 2, 4, and 5 are civil aircraft, and Targets 3 and 6 are fighter aircraft. Targets 1, 2, and
3 fly towards the radar station, and Targets 4, 5, and 6 fly away from radar. The statistical information
of the training and test samples is given in Table 1, in which the order of the training and test sets is
randomly scrambled.

Due to the complexity of the target flight state and environment, it is essential to preprocess the
original measured data to reduce the impact of these interference factors. Here, energy normalization
and attitude angle diversity are used to preprocess the original echo data [25]. For conventional low-
resolution radars, the attitude angles of aircraft targets can be divided into three types: towards the
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Table 1. Sample statistics of the training set and test set of various aircraft targets.

Flight attitude Target Category Training data Testing data

Towards the radar station

Target 1 512 256

Target 2 512 256

Target 3 512 256

Off the radar station

Target 4 512 256

Target 5 512 256

Target 6 512 256

radar station, off the radar station, and in the side direction. Among them, the former two can be
used for target classification, while the third hardly ever works for target classification. The energy
normalization is mainly used to avoid the influence of the difference of target echo amplitude on target
feature research and extraction.

The energy normalization calculation formula is as follows. Suppose that {xn} (n = 0, 1, 2, . . . ,m−
1) is the target echo signal sequence, then its signal energy is:

Ex =

m−1∑
n=0

|xn|2 (14)

The normalized sequence is expressed as:

x̂n =
xn√
Ek

(15)

Then there is

Ex̂ =

N−1∑
n=0

|x̂n|2 = 1 (16)

4.2. Data Augmentation

The objective of data augmentation is to improve the universalization ability and robustness of the
model via obtaining more available training samples [26]. Therefore, this paper obtains more training
samples through data augmentation to train the CNN, which can reduce the overfitting phenomenon
of the CNN model effectively. Specifically, this paper uses three ways of data augmentation: image
flipping, random cropping, and adding noise. In the process of image flipping, the original bispectrum
estimated image center is used as a reference, and the image is flipped 90 degrees clockwise. During
random cropping, the generated cropping area should avoid the feature prominent areas in the original
image as much as possible to avoid losing the pixel blocks of prominent areas in the newly generated
samples, which can improve the classification performance of the model to a certain extent [27]. When
adding noise, the complicated approach is by dropping pixels on a rectangular region with optional
area size and random position to produce black rectangular blocks, thus generating some colored noise,
represented by the Coarse Dropout method. It is even possible to randomly select an area on the image
and erase the image information. In this study, we choose the method of adding Gaussian noise. Fig. 4
shows some examples of bispectral images of aircraft target radar echo after adding Gaussian noise.

As can be seen from Fig. 4, the image with Gaussian noise is presented as random blocks of black
and white pixels propagating in the image, and overfitting generally happens when the model tries to
learn high-frequency features that may be unnecessary. Gaussian noise with zero mean has data points
in all frequencies, thus it can distorting high-frequency features effectively, so adding an appropriate
amount of noise can enhance the learning ability of the network and effectively prevent the network
from overfitting.
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(a) (b) (c)

Figure 4. Bispectral image after adding Gaussian noise. (a) nfft = 512, variance = 0.05. (b)
nfft = 1024, variance = 0.05. (c) nfft = 2048, variance = 0.05.

After data augmentation, there are 1024 samples of each type in the training set, and the total
number of six types of training samples is 6144 groups. Table 2 shows the statistical information of
training samples and test samples after data enhancement.

Table 2. Sample statistics of the training set and test set of various aircraft targets after data
augmentation.

Flight attitude
Target

Category

Augmented

training data

Testing

data

Total Sample

number

Towards the radar station

Target 1 1024 256 1280

Target 2 1024 256 1280

Target 3 1024 256 1280

Off the radar station

Target 4 1024 256 1280

Target 5 1024 256 1280

Target 6 1024 256 1280

4.3. Model Training

The training of the deep learning model is carried out on the CPU. Based on the Python programming
environment, a CNN is built under the Tensorflow and Keras frameworks. The value of iterations
epochs is set to 100 in the training process, and the batch size of each iteration is set to 20. The
network training process is as follows:

(1) Initialize the network structure and parameters. Use the Adamax optimizer to optimize the
network, and set the initial learning rate lr to 0.001. The learning rate attenuation mechanism is set
to take the accuracy of the validation set as a reference. If the accuracy is not optimized after ten
iterations, multiply the current learning rate by the attenuation coefficient to get a new learning rate,
and the attenuation coefficient is set to 0.95.

(2) Build the network. Randomly select samples from the training data set and input them into
the network, calculate the output of each layer of the convolution network, and output the category
prediction probability of samples.

(3) Conduct iterative training and continuously optimize the network model. Set the training stop
conditions, and judge whether to continue training by referring to accuracy and loss function value. If
the accuracy of the model training is improved by less than 1% after any ten iterations, or the accuracy
of the model is not improved when the value of the loss function decreases, the training is stopped.

In the process of network training, each parameter is constantly adjusted, and the setting of
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parameters is determined to be optimal by comparing the accuracy of aircraft target classification.
When the training conditions are met, the network training process is ended. The calculation method
of classification accuracy [28] is as follows:

Accuracy =
Number of correctly predicted samples

Total number of samples
(17)

4.4. Analysis of Experimental Results

Some fundamental literatures on bispectrum (Ref. [7], Ref. [8], Ref. [12], etc.) have been directly or
indirectly compared with Ref. [4], and the experimental results show that the classification performance
of [4] is better than that of fundamental literature. To verify the effectiveness of the extracted features,
we finally choose to compare and analyze the classification performance of the classification method
based on deep learning proposed in this paper (abbr. as CMDL) on the same data set with the three
traditional classification methods proposed in [4–6]. The classification results of aircraft targets under
the two flight attitudes of towards the radar station and off the radar station are given in Table 3 and
Table 4, respectively.

Table 3. Classification accuracy of attitude towards the radar station.

Method Target 1 Target 2 Target 3 Accuracy

Ref. [4] 90.72% 88.87% 94.96% 91.52%

Ref. [5] 93.57% 91.88% 88.70% 91.38%

Ref. [6] 94.96% 92.66% 92.19% 93.27%

CMDL 96.20% 95.47% 96.48% 96.05%

Table 4. Classification accuracy of attitude off the radar station.

Method Target 4 Target 5 Target 6 Accuracy

Ref. [4] 85.55% 95.90% 94.56% 92.00%

Ref. [5] 87.54% 90.21% 92.75% 90.17%

Ref. [6] 91.41% 96.48% 88.67% 92.19%

CMDL 96.86% 95.65% 95.20% 95.90%

As can be grasped from Tables 3 and 4, the average classification accuracy (Accuracy) of the
method in this paper outperformed the traditional methods in the comparison experiments in both
flight attitudes. Among them, compared with the three traditional methods, the classification accuracy
of Target 2 in the flight toward the radar station is more than 6% higher than the method in [4].
Compared with the method in [5], the classification accuracy of Target 3 has been improved by more
than 7%. In the flight off the radar station, although the classification accuracy of Target 5 is almost
the same as that of the comparative methods, the accuracy of Target 4 is more than 11% higher than
that of the method in [4], more than 9% higher than that of the method in [5]. The accuracy of Target 6
is more than 6% higher than that of the method in [6]. The experimental results show that the model
established in this paper can effectively handle the classification task of multiple categories of aircraft
targets.

The reason that the proposed method performs relatively well is that the high-order cumulant
spectrum can suppress Gaussian noise. This paper uses bispectrum features to classify targets, which
improves the signal-to-noise ratio (SNR) of aircraft echoes and helps to improve the classification and
recognition rate. In [4], Zhang and Li use the fractional Fourier transform to perform multifractal
correlation analysis in the optimal fractional Fourier domain, but their multifractal correlation features
are artificially defined. Therefore, it may be necessary to define other better fractal features for the
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data set in this experiment. In [5], EEMD is used to reconstruct the micro-motion component of
aircraft echoes, but its experimental parameter settings do not seem to find the optimal solution. If
better parameters are used, better performance may be obtained. In addition, the EEMD algorithm
achieves the goal of noise reduction by repeatedly adding the Gaussian white noise with zero mean value
for auxiliary analysis. Such reconstructed signal features are not robust in a low SNR environment.
Although [6] extracts multiple features from the time domain and frequency domain, the final classifier
selected is still the traditional machine learning method, with weak generalization ability.

To sum up, the fundamental reason for the better performance of the method proposed in this
paper is that bispectral processing can make full use of the possible interrelationships of the data and
help to explore the deep multidimensional features of the aircraft target, which is more discriminative
than the traditional statistical features. At the same time, the proposed method based on bispectrum
is not affected by Gaussian noise in the environment and has strong anti-interference performance.

Tables 5 and 6 show the confusion matrix of classification results under the two flight attitudes.
The main diagonal of the confusion matrix is the correct sample for classification, and the rest are
the wrong samples. It is observed that although the classification accuracy of various types of aircraft
targets is comparatively good, in the prediction results of Table 5 and Table 6, about 3% ∼ 5% of
the test samples are wrongly classified. The main reason for classification loss is that the acquisition
distance of civil aircraft echo data is 90 ∼ 140 km, while the acquisition distance of fighter aircraft echo
data is 50 ∼ 100 km. Their signal-to-noise ratios may not differ much, causing confusion of some data
samples in classification experiments.

Table 5. Confusion matrix of attitude towards the radar station.

Target 1 Target 2 Target 3

Target 1 246 0 10

Target 2 0 244 12

Target 3 0 9 247

Table 6. Confusion matrix of attitude off the radar station.

Target 4 Target 5 Target 6

Target 4 248 0 8

Target 5 5 245 6

Target 6 0 12 244

5. CONCLUSIONS

Aiming at the difficulties faced by the traditional low-resolution radar target classification methods in
practical applications, this paper proposes an aircraft target classification method based on bispectrum
and deep CNN. In view of the characteristics that the network structure of the CNN model requires a
large number of data sets, the data sets are constructed by calculating the bispectrum of the radar echo
of aircraft targets and performing image flipping and random cropping, and other data augmentation
processing. Experiments show that the radar target recognition model based on bispectrum features
and CNN can accurately classify and recognize targets such as civil aircraft and fighter aircraft, and
has better robustness and generalization than traditional methods. Although the proposed method has
good classification performance, due to the increasing variety and number of radar targets in practical
applications, how to design more ingenious and more generalized classification models is a focus of future
research. In addition, since radar signals are typical cyclostationary signals, the inherent characteristics
of aircraft targets in the cyclostationary domain may not be fully characterized. In the follow-up work,
it can be considered to analyze the property of these nonlinear modulation characteristics reflecting the
physical characteristics of aircraft targets in the cyclostationary domain and study their characterization
methods.
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