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Intelligent Microwave Staring Correlated Imaging
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Abstract—Microwave staring correlated imaging (MSCI) is a super-resolution imaging technique based
on temporal-spatial stochastic radiation fields (TSSRFs), which requires an accurate calculation of the
electromagnetic field at the imaging plane. However, systematic errors always exist in practice, such as
the time synchronization and frequency synchronization errors of radar systems, which make it difficult
to calculate the required TSSRFs accurately, and this deteriorates the imaging results. Meanwhile, some
imaging algorithms have problems such as high computational complexity. In this paper, an intelligent
MSCI method based on the deep neural network (DNN) is proposed, which can accomplish imaging
directly from the echoes, avoiding the computation of TSSRFs. A multi-level residual convolutional
neural network (MRCNN) is developed for the DNN, and simulations and experiments are carried out
to obtain the dataset for training and testing the MRCNN. Compared with the conventional MSCI
methods, the imaging results verify the effectiveness of intelligent MSCI in terms of imaging quality and
computational efficiency.

1. INTRODUCTION

Microwave imaging can be accomplished by acquiring target electromagnetic scattering information in
the microwave frequency, which has all-weather and all-time imaging capability for broad applications
in remote sensing, military target investigation. Real aperture radar (RAR) imaging allows continuous
observation of the focal area, but its azimuthal resolution is limited by its antenna aperture size, so it can
only be applied to low-resolution imaging [1, 2]. Synthetic aperture radar (SAR) and inverse synthetic
aperture radar (ISAR) imaging rely on the relative motion between radar and target to synthesize large
antenna apertures to achieve high-resolution imaging, so it is not achievable to staring imaging for a
long time at the observation scene [3, 4]. Microwave staring correlated imaging (MSCI) is a new imaging
regime that allows super-resolution staring imaging beyond the limits of its antenna aperture size, and its
central idea is that the random radiation source (RRS) generates temporal-spatial stochastic radiation
fields (TSSRFs) to modulate different target information within its antenna beam, so the echo signals
contain identifiable target information, and by correlating the echoes with the preset radiation fields,
target information can be decoupled to obtain high-resolution target imaging [5, 6].

The imaging quality of MCSI is influenced by the computational accuracy of the TSSRFs as well
as the correlated reconstruction algorithm. On the one hand, there are always systematic errors in real
MSCI, such as the position errors of the transmitting and receiving arrays, the time synchronization and
frequency synchronization errors of radar systems, etc., which seriously affect the accurate calculation
of the preset TSSRFs and result in a serious mismatch with the scattered echo signal collected at the
corresponding time, degrading the performance of the MSCI [7–14]. In recent years, researchers have
proposed some solutions for each different influencing factor. The array position errors are studied in
MSCI, and the basis pursuit (BP) algorithm is proposed by iterating alternately between the imaging and
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the error estimation to obtain better imaging results [7]. Afterward, the self-calibration methods based
on orthogonal match pursuit (OMP) and sparse Bayesian learning (SBL) are proposed to reconstruct
the target images and estimate the amplitude-phase errors of the signals from different transmitting
antennas [8, 9]. Besides, the errors caused by random amplitude, phase, and synchronization exist
in each transmitted pulse of each channel, Cao et al. regarded it as additive perturbations to the
radiation field and proposed an iterative optimization method based on FOCUSS and TV-TLS, which
estimated the perturbation and scattering coefficient of the target to obtain better imaging quality
respectively [10, 11]. Overall, the methods above address only one of the factors; however, it is difficult
to obtain all the system parameters accurately to calculate TSSRFs in engineering. On the other hand, in
the MSCI reconstruction algorithm, He et al. and Meng et al. introduced regularization methods to MSCI
and proposed Tikhonov regularization, truncated singular value decomposition (TSVD) method, total
variance regularization, and iterative regularized inversion algorithms based on Landweber’s algorithm,
which enhances the stability of the problem solution by limiting the smaller singular value components
of the observation matrix based on the least-squares method [12, 13]. For sparse targets, OMP, SBL,
and other sparse reconstruction methods are applied to MSCI and achieve better imaging results [14].
These imaging optimization algorithms still suffer from the high computational complexity and long
imaging times.

In recent years, owing to the easily accessible large amount of data and growing computational
power, deep learning has demonstrated excellent performance in several areas of regression and
classification. Constructing specific neural network structures has good applications in different fields,
such as image classification and recognition using convolutional neural networks (CNNs) [15, 16],
generation of the desired high-quality images using generating adversarial networks (GANs) [17, 18], and
the prediction of dense data using full convolutional networks (FCNs) [19–21]. Recently, neural networks
have been applied in microwave imaging. In parameter prediction of SAR target simulation, Qiu’s team
used CNN to establish the mapping relationship between simulation images and simulation parameters,
and reconstructed the images from the predicted parameters by neural networks, which have better
performance than images reconstructed from manually set parameters, and realized the inverse process
of inferring simulation parameters from real images [22]. In nonlinear electromagnetic inverse scattering
imaging, Shao and Du developed an auto-encoder to find compressed alternative solutions for high-
resolution target images, and then used a deep learning network (DLN) to convert the electromagnetic
signal into a compressed alternative solution, and subsequently decompressed it to the target image,
which realized the process of reconstructing a nonlinear electromagnetic signal into a target medium
image [23]. In intelligent electromagnetic perception, Li et al. combined a programmable metasurface
with adaptively modulated electromagnetic waves and the artificial neural network IM-CNN-1, and then
reconstructed images of the human body from measured microwave data and identified the region of
the hand and chest area within the whole image using Faster R-CNN, controlling the metasurface by
the optimal digital coding pattern to focus its radiation wave onto the desired spots and reading hand
signals and physiological state by the artificial neural network IM-CNN-2 [24, 25].

MSCI is a linear electromagnetic inverse scattering process that correlates the scattered echoes
of targets with the preset TSSRFs to reconstruct the target images, where the mapping relationship
between the scattered echoes and the target imaging is closely related to linear regression in deep
learning [19, 21, 26]. In this paper, a fundamental connection between the deep neural network (DNN)
architecture and MSCI is first proposed. Inspired by this connection, we develop a multi-level residual
convolutional neural network framework for MSCI called MRCNN. In the MSCI system, MRCNN builds
an intelligent correlated imaging mapping model, which constructs an end-to-end mapping between
the scattering echo and the target imaging after autonomous learning. Next, a numerical simulation
platform is set up, where TSSRFs are generated in the target region by emitting amplitude-hopping
and phase-hopping waveforms from multi-transmitter systems, and 10,000 mixed National Institute of
Standards and Technology database (MNIST) handwritten digital datasets [27] are binarized to the
target’s backscattering coefficient, with the received scattered echoes in the simulated MSCI system as
the output and input of the MRCNN, respectively. Subsequently, an experiment is carried out in an
anechoic chamber. By constructing a set of orthogonal target scenes consisting of corner reflectors, a
metamaterial aperture antenna serves as the RRS, and different TSSRFs are generated by frequency
sweeping that radiate into the imaging area, and the received scattered echoes with the distribution of
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the backscattering coefficients in the imaging region are used as the input and output of the MRCNN,
respectively. The samples are randomly grouped for training and testing MRCNN.

Simulated and experimental results show that MRCNN demonstrates the ability to image unknown
targets after autonomous learning, which proves the feasibility of MRCNN. Since it uses convolution
to extract high-dimensional information directly from the echoes and deconvolution to map the high-
dimensional feature information to the target image, this intelligent MSCI avoids the calculation of
TSSRFs with RRS parameters and the use of complex and time-consuming iterative optimization
algorithms, providing a realistic solution for the application of MSCI.

2. PROBLEM STATEMENT

This section reveals the connection between the DNN structure and MSCI. Since in an MSCI system,
there is a strong linear end-to-end mapping between the scattered echoes obtained in the different
TSSRF modes and the target imaging, the DNN can learn end-to-end predictions of complex data
because of its linear regression capability, which suggests that DNN can provide an efficient alternative
solution in MSCI.

2.1. Connection between DNN Architecture and MSCI

The diagram of a typical MSCI system with multiple transmitters and one receiver is illustrated in
Figure 1. The RSS consists of N antennas distributed randomly in the XOY plane. The center of the
antenna array is the origin O, and the position of the ith antenna is r⃗i, i = 1, 2, . . . , N . The TSSRFs
are generated in the target region by emitting amplitude-hopping and phase-hopping waveforms from
multi-transmitter systems, where the TSSRFs generated at the mth radiation are denoted as Em

inc. The
2-D imaging area S is located at the upper right of the RSS; its height is H; and the horizontal distance
from the origin is L1. After the TSSRFs continue to propagate, interacting with targets in the imaging
area to produce scattered fields, the scattered echo signal is received by the receiving antenna. The
horizontal distance from the receiving antenna to the origin is L2, which is located in the XOY plane.

Assume that the orthogonal, independent signal Si (r⃗i, t) emitted by the ith transmitting antenna
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Figure 1. Microwave correlated imaging system.
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can be expressed as:

Si (r⃗i, t) =

Q∑
q=1

si,q(t− qT ) rect

[
t− (q − 1)T

τ

]
(1)

where Q is the total number of pulses emitted in one imaging process, si,q(t) the qth pulse signal emitted
by the ith transmitting antenna, T the pulse period, τ the pulse width, and T ≫ τ , rect[] the rectcorner
window function.

The TSSRFs Einc(r⃗, t) constructed by the N transmitters in the target area can be expressed as:

Einc(r⃗, t) =

N∑
i=1

Fi (r⃗i, r⃗)

4π |r⃗ − r⃗i|
Si

(
r⃗i, t−

|r⃗ − r⃗i|
c

)
(2)

where r⃗i is the position vector of the ith antenna, r⃗ the position vector of the target, Fi (r⃗i, r⃗) the
antenna pattern of the ith antenna, and c the speed of light.

After the target reflection and second propagation in free space, the received echo signal S (r⃗o, t)
can be expressed according to the first-order Bohr approximation as:

Sr (r⃗o, t) =

∫∫
S

N∑
i=1

Fi(r⃗i, r⃗)Fo (r⃗o, r⃗)

(4π)2 |r⃗ − r⃗i| |r⃗ − r⃗o|
Si

(
r⃗j , t−

|r⃗ − r⃗i|+ |r⃗ − r⃗o|
c

)
σ (r⃗) dr⃗ + n(t) (3)

where r⃗o is the position vector of the receiving antenna, Fo (r⃗o, r⃗) the antenna pattern of the receiving
antenna, σ(r⃗) the backscattering coefficient of the target at r⃗, and n(t) the noise.

Considering the propagation time delay from the target to the receiver, the modified TSSRF is
described as:

Erad (t, r⃗) =
N∑
i=1

Fi (r⃗i, r⃗)Fo (r⃗o, r⃗)

(4π)2 |r⃗ − r⃗i| |r⃗ − r⃗o|
Si

(
r⃗j , t−

|r⃗ − r⃗i|+ |r⃗ − r⃗o|
c

)
(4)

The relationship between the received echo S (r⃗o, t) and the TSSRF Erad (t, r⃗) can be described as:

Sr (r⃗o, t) =

∫∫
S
Erad (t, r⃗)σ (r⃗) dr⃗ + n(t) (5)

In data processing, the received echo signals are a set of discrete-time samples, so the reconstruction
process of the target must be discretized in both the spatial and temporal domains. The imaging area
is divided into Q discrete grids, and the observation time is divided into M samples. Then the discrete
form of Equation (5) is:

Sr (t1)
Sr (t2)

...
Sr (tM )

 =


Erad (t1, r⃗1) Erad (t1, r⃗2) · · ·Erad (t1, r⃗Q)
Erad (t2, r⃗1) Erad (t2, r⃗2) · · ·Erad (t2, r⃗Q)

...
...

. . .
Erad (tM , r⃗1) Erad (tM , r⃗2) · · ·Erad (tM , r⃗Q)




σ (r⃗1)
σ (r⃗2)

...
σ (r⃗Q)

+


n (r⃗1)
n (r⃗2)

...
n (r⃗Q)

 (6)

Its vector form is:
S⃗r = E⃗rad · σ⃗ + n⃗0 (7)

where S⃗r is the sampling echo signal at the receiver using the Analog to Digital Converter (ADC) device,

E⃗rad the TSSRF matrix vector, n⃗0 the noise vector, and σ⃗ the observed target backscattering coefficient
vector.

Based on the scattered echo vector S⃗r and TSSRF vector E⃗rad, the reconstructed images ⃗̂σ can be
described as:

⃗̂σ = ξ
[
E⃗rad, S⃗r

]
(8)

where ξ denotes the correlated processing operator.
The common correlated imaging algorithms can be applied to solve (8), including pseudo-inverse,

matched filter method, etc., and the accurate calculation of the TSSRFs is necessary for imaging. From
(4), the parameters of the RRS must be known for the calculation of the TSSRFs; however, in practical
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imaging, it is difficult to synchronize time and frequency precisely in radar systems to calculate TSSRFs
accurately. When higher quality imaging needs are required, further optimization algorithms must be
used, such as TSVD regularization, Tikhonov regularization, and sparse Bayesian learning, which is a
complex and time-consuming iterative problem of convex optimization.
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Figure 2. DNN mapping model. It constructs an end-to-end mapping between scattered echoes and
target imaging.

For a deep learning neural network with linear regression analysis, the essence is exactly the linear

regression function Y⃗ = W⃗ X⃗+ B⃗, which is linearly transformed from one feature space X⃗ to another Y⃗ ,

and W⃗ and B⃗ are the weight and bias, respectively. Inspired by this observation, an intelligent MSCI
method based on the DNN is proposed to build, as shown in Figure 2, which constructs an end-to-end

mapping between the scattering echo S⃗r and the target imaging ⃗̂σ after autonomous learning, described
as:

⃗̂σ = Net
(
S⃗r, θ

)
(9)

where Net represents the DNN, and θ = {W⃗ , B⃗} is network parameters of the neural network under
the MSCI system, respectively. The back propagation updates the parameters with a gradient descent
optimization algorithm and a mean square error loss function, and the process is represented as:

θk+1 = θk − η

∂

1

p

P∑
p=1

(
Net

(
S⃗r

p
, θk

)
− σ⃗p

)2


∂θ

(10)

where η is the learning rate; k is the iterative; S⃗r
p
and σ⃗p are the scattered echoes and target

backscattering coefficient in the pth target scene set, respectively; P is the number of target scene
sets for each iteration of training. As shown in Eq. (11), the optimal parameters θopt are obtained after
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autonomous learning, and then the scattered echoes of the unknown target scene are then input to the

DNN, which directly outputs its target image ⃗̂σ:

⃗̂σ = Net
(
S⃗r, θopt

)
(11)

When a set of available samples is acquired, it is permissible to train both W⃗ and B⃗ at each layer
of the DNN to find the optimal network parameter model. Comparing this approach to conventional
MSCI methods, the learned method would be more efficient as it optimizes the weighting matrices and
biases and the reconstruction error with respect to the target backscattering coefficient. In general, the
above observations suggest that DNNs are well suitable for MSCI problems.

2.2. Multi-Level Residual Convolutional Neural Network Structure for MSCI

After demonstrating the connection between DNN architecture and MSCI, we now design a multi-level
residual convolutional neural network structure to solve the MSCI problem. The idea of convolution and
deconvolution is proposed in semantic segmentation following the FCN proposed by Long et al. [19]. The
idea of the MRCNN is constructed by using the strong feature extraction capability of the convolutional
layer network and the target feature mapping imaging capability of the deconvolutional layer network,
where the convolutional layer network finds the high-dimensional feature information from the scattered
echo, and then the deconvolutional layer network maps the high-dimensional feature information to the
target image. Since a strong linear link is established between the received scattered echoes and target
imaging, a large number of convolutional and deconvolutional layers are applied to increase the depth of
the network; however, this increases the training difficulty of the network. To solve the gradient explosion
and gradient disappearance problems caused by increasing network depth, both residual fusions in the
convolutional and deconvolutional layers are invoked following the residual network (Resnet) proposed
by He et al. [28], so that more complex extraction of feature patterns can be performed without causing
the network overfitting. In addition, in the network construction, to effectively retain the target feature
information in the scattering echo for imaging, the convolution layer is not normalized using the batch
normalization (BN) layer, and to stabilize the network structure, the deconvolution layer is normalized
using the BN layer.

The scheme of the present network is shown in Figure 3, and the MSCI system presented in Figure 1
is simulated in our numerical simulation platform. By controlling the phase and amplitude of the emitted
signals from the 24 transmitting antennas in the RRS, 160 groups of 160 TSSRFs are generated in the
target area, with each group of TSSRFs operating at 160 frequencies within the operating bandwidth of
the antenna array, obtaining 160× 160 scattered echoes from multiple targets as input to the MRCNN.
Then it is transformed into tensors of 40× 40× 64 after using two convolution kernels of 7× 7. Next,
eight convolutional residual modules are transformed into high-dimensional features of 5 × 5 × 512.
Each module uses two convolutional kernels of 3 × 3, and the output tensors of each two modules are
20×20×128, 10×10×256, and 5×5×512, respectively. The ReLU function is chosen as the activation
function for the deconvolution layer to extract high-dimensional features. After obtaining 5 × 5 × 512
high-dimensional feature information by convolutional layer network, it is then converted into tensors of
10× 10× 256 by a convolutional kernel of 3× 3 with a step of 2 and a padding of 2 in the deconvolution
layer. The next is three deconvolution residual modules with the same settings, which convert it into
tensors of 80× 80× 8, and the output tensors of each residual module are 20× 20× 128, 40× 40× 64,
80×80×32, respectively. The Softplus function is chosen as the activation function for the deconvolution
layer to reconstruct the target image. Then the tensors with the same size as the input are obtained by
one layer of deconvolution, and the feature numbers are changed to 2 by a 1×1×2 convolution. Finally,
compared with the binarized microwave image of the corresponding target, the binary cross-entropy is
used as the loss function, and a quantitative gradient descent optimization algorithm is driven to update
the parameters by back propagation. In the following section, we will verify the applicability of MRCNN
for MSCI in simulation and experiment.
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Figure 3. Multi-level residual convolutional neural network structure (i.e., MRCNN). BN is the batch
normalization, SOFTPLUS, RELU is the nonlinear activation function, k(a, b, c) is the convolution
kernel of size a× b× c, and n(a, b) represents stride = a and padding = b, a× b× c are the out tensors
of this layer.

3. NUMERICAL SIMULATION AND RESULT ANALYSIS

In this section, the performance of MRCNN in solving MSCI problems is demonstrated through
numerical simulations. For comparison, we report the corresponding results of the generalized minimum
residual (GMRES) optimization algorithm to reconstruct the target image.

3.1. Establishment of Numerical Simulation Platform

The simulated imaging scenario is shown in Figure 1. The RRS consists of 24 randomly distributed
antennas located in the XOY plane, and the center of the array is the origin O. The positions of the
24 antennas are shown in the red rectangles in Figure 4. The TSSRFs are generated by controlling the
phase and amplitude of the emitted signal of each transmitting antenna. The random amplitude of each
transmitter’s signal is one of [0, 0.2, 0.4, 0.6, 0.8, 1], and the random phase is one of [0, π], generating 160
groups of TSSRFs in the imaging area, each group with 160 different TSSRFs. The radiated 2-D imaging
region S is located at the upper right of the antenna array, whose height H is 128m. The imaging region
S of 20m × 20m is divided into spatial grids of 160 × 160, with the length of each resolution cell of
0.125m. The receiving antenna is located in the XOY plane with a horizontal distance to the origin of



116 Ying et al.

Figure 4. Position of each transmitting antenna of the microwave RRS.

100m. 10,000 MNIST datasets are binarized into images into 160× 160 images, a handwritten numeric
database containing 0 to 9, simulating the target with a scattering coefficient of 1 and the background
with a scattering coefficient of 0 on different resolution cells in the imaging region. The TSSRFs interact
with the scattering coefficient, and then the scattered echoes are received by a single receiver.

According to the system scenario, the operating bandwidth of the system is set between 9.5GHz
and 14GHz, and 160 TSSRFs in each group work at 160 interval frequencies within the operating
bandwidth of the antenna array. The scattered echoes at each TSSRF are obtained by scanning the
frequency in steps of 28.125MHz. Thus, the generated 10,000 sets of scattered echo signals of 160×160

Figure 5. Schematic visualization of the target and echo data. The first row shows the target with a
scattering coefficient of 1 and the second row shows the corresponding amplitude of the echo data in
size 160× 160.
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are used as the input to the MRCNN, and the corresponding 10,000 target backscatter coefficients are
used as the output of the MRCNN. The calculation of TSSRFs and GMRES algorithm for conventional
MSCI are implemented in MATLAB 2021. The target and echo data are shown in Figure 5. As shown
in Figure 5, each row of echo data is 160×1 in size and is distributed over each equally spaced frequency
within the operating bandwidth of 9.5–14GHz, with 160 rows corresponding to 160 frequencies. Each
row of echo data is obtained by transmitting random amplitude-hopping and phase-hopping signals
from a multi-transmitter system to generate 160 random radiation fields, which are then radiated to
the target area and scattered to the receiving antenna, containing 160 types of target information. The
system parameters are given in Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Size of antenna array 2m× 2m Pulse width 100 ns

Antennas Number 24 Pulse of period 1000 ns

Carrier frequency 9GHz Target distance 128m

Frequency bandwith 4.5GHz Imaging area 20m× 20m

Number of pulses 1800 Grid size 0.5m

3.2. Training and Testing of MNIST Dataset

The process of using neural network training for imaging is shown in Figure 6. The process can be
divided into two stages. The first stage is the training of the network model: first, in the MSCI
system shown in Figure 1, the MNIST dataset is binarized into the backscattering coefficients of the
target region as labels, and the simulation parameters of the MSCI system are set; then, the whole
process of MSCI is simulated by MATLAB to obtain the scattering echo; finally, the scattering echoes
containing information about different targets and corresponding labels are used to train the neural
network. Through iterative training, the neural network can learn the end-to-end mapping between the
scattered echo and the target imaging, and each set of echoes and labels in the training set optimizes
the weights and biases. The second stage is the testing of the network model: the unknown digital
target is simulated in the same MSCI simulation scenario to obtain the scattering echo, which is input
to the well-trained network to predict the corresponding target imaging by the mapping relationship;
then it is compared with the target to evaluate the effectiveness of the method. 10,000 groups of echoes
and labels are divided into two parts, with 7,000 groups for training and 3,000 groups for testing.

Table 2. Network parameters.

Hyper-parameter Specification

Optimizer gradient descent with momentum

Loss function binary cross-entropy function

Echo patch size 160× 160

Batch size 4

Epoch number 300

Learning rate range [10−2, 10−5]

Input channels 1

Layers of ResBlock 11

Total Layers 29

Convolution kernel size 1× 1, 3× 3, 7× 7
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Figure 6. The process of training the neural network and using a well-trained neural network to test
imaging.

The structure of the MRCNN used is shown in Figure 3, and the network parameters are shown
in Table 2 under the best imaging performance. It is designed with the PyTorch library and takes
approximately 8 hours to train. The training stage was performed with a gradient descent optimization
algorithm with driving volume, binary cross-entropy as the loss function, a minibatch size of 4, and an
epoch setting of 300. The learning rate is set to 10−2 and halved after every 50 epochs. The weights and
biases are initialized by random weights with the normal distribution of zero means. The calculations
are performed in an AMD 5800H 8-core processor and NVIDIA GeForce RTX 3050 Ti server with
128GB of access memory.

The first and third rows in Figure 7 represent 8 targets, and the second and fourth rows in Figure 7
represent the output images obtained by MRCNN for the corresponding echo data in the training and
test sets, respectively. To characterize the recovery image quality, the normalized mean square error
(NMSE) is used as a qualitative metric, described as:

NMSE =
∥σ̂ − σ∥2
∥σ∥2

(12)

where σ and σ̂ are the scattering coefficient of the target and the reconstructing target images.
Table 3 reports the NMSE results of the reconstructed images in the training and test sets,

respectively. Figure 8 shows that the training and test losses of the MRCNN have reached 0.1 during 300
epochs, and the losses become stable which indicates that the MRCNN has achieved a direct mapping
link between scattered echoes and target imaging.
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Figure 7. Reconstruction results of MRCNN in training and test sets. The first and third rows show
8 targets, and the second and fourth rows show the output images by MRCNN from the corresponding
echo data in the training and test sets, respectively.

Figure 8. The training loss and test loss of MRCNN for the MNIST data during 300 epochs.
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Table 3. NMSE results for the reconstructions in Figure 7.

Column Sequence 1 2 3 4

Training Set 0.0026 0.0035 0.0036 0.0024

Testing Set 0.0042 0.0086 0.0092 0.0083

3.3. Testing Letter Targets with Trained Networks

To further investigate the generalization capability of the MRCNN designed for MSCI, another set of
simulations is conducted, where the network is trained with the MNIST dataset, and the test target is
the English alphabet, whose backscattering coefficient is 1 on the spatial grid of 160×160. In the MSCI
scenario shown in Figure 1, system parameters are all the same as the training data set. The same 160
groups of 160 TSSRFs in random amplitude-phase are obtained in the simulation, interacting with the
target’s backscattering coefficients, and by scanning 160 frequencies within the operating bandwidth of
the antenna array, the scattered echoes of 160 × 160 in each TSSRF pattern were obtained, which is
then input to the well-trained MRCNN.

Figure 9 shows the reconstruction results based on different imaging methods. The first row shows
the target, and the second, third, and fourth rows show the imaging results of the backward projection
(BP) algorithm, GRRES algorithm, and MRCNN, respectively. To compare the imaging quality of the
three imaging methods, the NMSE results corresponding to the different methods are shown in Table 4.
As shown in Table 4, the NMSE of the MRCNN reconstructed target images is less than 0.1, so in
this case, the real image is very different from the training sample, and the results obtained from the
trained MRCNN are satisfactory. It should be noted that MRCNN establishes an intelligent MSCI
mapping model, which inputs the scattered echo into the well-trained network and takes less than 1 s
to generate the target image through the well-trained network model, and the amount of information
required for intelligent MSCI is much less than other algorithms. Among them, both the BP algorithm
and the GMRES algorithm take about 10 s. The reconstruction results show that the intelligent MSCI
is significantly better than both the BP algorithm and the conventional MSCI optimization algorithm
in both imaging quality and efficiency.

Table 4. NMSE results for the reconstructions in Figure 10.

Letter Target U S T C

BP 0.8862 0.8461 0.7659 0.7836

GMRES 0.5263 0.5148 0.5296 0.5489

MRCNN 0.0562 0.0592 0.0583 0.0651

From the above discussion, an important conclusion can be drawn: the intelligent MSCI model
based on the MRCNN has been learned in the same MSCI scenario, or the DNN architecture has
established a linear electromagnetic inverse scattering network link between the scatter echo and target
imaging.

4. EXPERIMENTAL VERIFICATION

4.1. Measurement Setup

To verify the practicality of this intelligent MSCI method, this section presents experiments carried out
in a microwave anechoic chamber. A metamaterial aperture antenna was first developed as a microwave
RRS to obtain the TSSRFs, consisting of many subwavelength, complementary electromagnetic
inductive-capacitive (cELC) resonators, each cELC being engraved on a microstrip line and fed with a
signal by a waveguide pattern. Since the geometry of the cELC controls the variation of its resonant
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Figure 9. Reconstruction results of letter-shaped targets in the second, third and fourth rows for the
BP algorithm, the GMRES algorithm in the traditional MSCI and the MRCNN, respectively. The first
row shows the targets.
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Figure 10. Experimental imaging configuration of the metamaterial aperture antenna.
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frequency, it is possible to vary the geometric parameters of the resonator to obtain multiple cELCs
with different resonant frequencies. 126 cELC resonators are etched on randomly distributed microstrip
lines, containing 36 types of cELC resonators with different resonant frequencies, covering the K-band
from 18GHz to 22GHz. When the resonant frequencies are swept in the available bandwidth, these
cELCs form an aperture by leaking to generate a series of frequency-dependent varying TSSRFs. So the
1-D waveguide generates fan beams which vary only in azimuth. The top and bottom surfaces of the
metamaterial aperture antenna are fabricated using perfect electric conductor (PEC) and the substrate
is made of Rogers RO4003 with permittivity = 3.55 and thickness = 1.58mm. The fabricated antennas
are fed on one side by a standard SubMiniature version A (SMA) adapter, and the other side is connected
to a 50Ω matching load. The antenna array has microstrip transmission lines with width = 3.2mm,
length = 600mm, and the dielectric plate and the ground with width = 16mm, length = 600mm.

The open waveguide receives signals of different TSSRF patterns at operating frequencies. The
imaging experimental configuration is shown in Figure 10. The circuit connections in the imaging
system are shown schematically in Figure 11. The two ports of the Vector Network Analyzer (VNA)
are connected to the transmitting and receiving antennas, respectively, and the measured forward
transmission coefficient (S21) is the target scattering signal in the imaging scene. A simple sparse
scene is constructed in an anechoic chamber of 4×4×3m, as shown in Figure 12, with the transmitting
and receiving antennas at a height of 1.1m and 1.3m, respectively, and the absorbing materials placed
in the gap between the transmitting and receiving antennas; three corner reflectors of 10 cm diameter
were used as imaging targets, fixed on a slide rail 1m distant in front of the antenna. Initially, a
transmitting signal with a power of −30 dB is set on the VNA. The radar cross-section (RCS) of the
corner reflector, viewed along the axis of symmetry of the line-of-sight (LOS), is:

RCS =
4πA2

eff

λ2
(13)

where Aeff is the effective area contributing to multiple internal reflections, and λ is the operating
wavelength.

The backscattering coefficient is:

σ =
RCS

A
(14)

where A is the radiation area of the antenna beam. The backscattering coefficient of the corner reflector
is obtained to be approximately 10. Additional system parameters are given in Table 5.

After demonstrating the anechoic chamber imaging system, the experimental dataset for the
intelligent MSCI needed to be fabricated. The designed 1-D metamaterial aperture antenna, which

Figure 11. Schematic diagram of the circuit connection in the imaging system. The metamaterial
aperture radiation waveform to the region of interest at a certain resonant frequency.
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The binarized 

microwave image

Figure 12. Imaging scene. The upper right corner shows its microwave image in the imaging area,
with the brightness component of the image selected as the backscattering coefficient of the measured
target.

Table 5. Experiment parameters.

Parameter Value

Working frequency 18–22GHz

Sampling interval 10MHz

Number of orthogonal scenario sets 114

Number of radiation field types 400

Number of resonant units 126

Number of resonant unit types 36

Imaging area 1.6m× 1.6m

cross-range resolution at 1m 3.78 cm

Grid size 1 cm

produces TSSRFs in the operating band with undulating changes in the horizontal direction and
gentling fluctuations in the vertical direction, can only be used for 1-D imaging [29–33]. When the 1-D
metamaterial aperture antenna serves as an RRS, the imaging system can be considered monostatic
imaging at a small area with limited transmitting perspective. Corner reflectors are chosen as imaging
targets because they are suitable for monostatic sounding, and their backscatter coefficient is larger. The
echoes from different targets are more weakly correlated, and it is easier for the neural network to extract
information from the echoes to map the target image. A set of 114 mutually orthogonal target scenes was
created by controlling the combination and position of corner reflectors in the horizontal direction on a
sliding track. The operating metamaterial aperture antenna generates a series of frequency-dependent
TSSRFs and radiates at each target scene. The frequency sweep interval is set to 10MHz, which can
ensure that the different TSSRFs of the metamaterial aperture antenna have a weak correlation from
the simulation and measurement. A total of 400 different TSSRFs are generated at 400 frequencies, and
S21s obtained at different TSSRF patterns are used as the input to the MRCNN. The backscattering
coefficient distribution in the imaging region is used as the output of MRCNN, and then the samples
are randomly grouped for training and testing the MRCNN.
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Figure 13. MRCNN for experimental scenes.

Due to the small amount of data, we again designed a specific network structure for this
experimental imaging, as shown in Figure 13. In the network, a 3× 3 convolution kernel has been used
several times to increase the depth of the network without changing the data size. The convolution
layer uses 6 residual modules with 13 convolutions, which convert the echo data of 20× 20 into tensors
of 5 × 5 × 512, and the feature numbers are 1, 64, 128, 256, and 512, respectively, The deconvolution
layer uses 4 residual modules with 8 deconvolutions, which convert from tensors of 5 × 5 × 512 into
tensors of 160×160×2. Since the categories are target and background, the last deconvolution residual
modules are used to change the number of channels to 2, which facilitates backpropagation to update
the network parameters compared to the backscattering coefficients in the corresponding imaging area.

4.2. Experimental Results of Applying MRCNN

The 114 targets and corresponding echo data were randomly divided into two parts, where 108 groups
are for training and the rest for testing. The gradient descent optimization algorithm with momentum
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Figure 14. The output images obtained by MRCNN from the corresponding echo data of the training
and test sets in the second and fourth rows respectively. The first and third rows show the 8 targets.

is used in the training, with a small batch size of 1 and the epoch set to 150. The learning rate is set to
10−3 and halved after every 50 epochs. The MRCNN is shown in Figure 13. The training of the network
takes about 3 h. Four targets are randomly selected in each of the training and test sets, as shown in
the first and third rows of Figure 14, and the output images by inputting the corresponding echo data
into MRCNN in the training set and test set are shown in the second and fourth rows, respectively. It
shows that MRCNN can accurately reconstruct the images of different locations and numbers of targets
in the azimuthal region. Figure 15 represents the training loss and testing loss of MRCNN during 150
epochs, respectively. The NMSE results of the reconstructed images in the training and test sets are
shown in Table 6.

Table 6. NMSE results for the reconstructions in Figure 15.

Column Sequence 1 2 3 4

Training Set 0.0085 0.0095 0.0104 0.0094

Testing Set 0.0126 0.0586 0.0098 0.0112

As shown in Table 6, the NMSE of the intelligent MSCI reconstructed target image is less than 0.1,
and an important conclusion can be drawn: Without changing the imaging scene, the echoes are obtained
simply by changing the position of the corner reflector in the same azimuthal region. With the trained
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Figure 15. The training loss and test loss of the MRCNN for experimental scenes during 150 epochs.

MRCNN mapping, the MRCNN can directly show the image of the corner reflector at an unknown
position and number in the imaging region. This demonstrates that MRCNN has learned the intelligent
mapping model of the MSCI system in the same MSCI scenario. The essential reason that MRCNN can
provide better image results is that the present neural network, consisting of 15 convolutional processing
layers and 13 deconvolutional processing layers (a total of 1.1million parameters), provides approximate
numerical solutions to the imaging equations in MSCI.

5. CONCLUSION

This paper proposes an intelligent MSCI method based on the DNN and establishes a fundamental
link between MSCI and DNN, and then develops a multi-level residual convolutional neural network
framework for MSCI. MRCNN utilizes the strong feature extraction capability of the convolutional
layer network and the target feature mapping imaging capability of the deconvolutional layer network
and adds the residual modules so that the neural network model becomes easier to optimize, which can
construct an end-to-end mapping between scattering echo and target imaging after autonomous learning.
To verify the effectiveness of the intelligent MSCI method, the simulation is compared with the GMRES
optimization algorithm in traditional MSCI. To test the generalization ability of the intelligent MSCI
method, MRCNN is trained on the MNIST dataset, and the test targets are composed of letters with
the backscattering coefficient of 1. MRCNN can still reconstruct the high-resolution image within 1 s.
Meanwhile, a metamaterial aperture antenna is developed as the RRS; the corner reflector is used as
the target; the combination and position of the corner reflector are changed in the horizontal direction
to produce a number of mutually orthogonal target scenes. The acquired data is used for training
and testing MRCNN. The experiments show that the trained MRCNN can still show the image of the
corner reflector at an unknown position and number in the imaging region. More advanced network
architectures can reconstruct more practical and complex targets, which are to be explored in our further
studies. When complex scenes are imaged, it is also necessary to develop an effective RRS to acquire a
dataset. The intelligent MSCI method changes the traditional MSCI strategy for solving the TSSRFs
to reconstruct imaging, providing an ideal solution for MSCI.
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