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A Novel STAP Method with Enhanced Degrees of Freedom
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Abstract—In this paper, a new space-time adaptive processing (STAP) method based on improved
nested arrays and pulses configurations is proposed. Specifically, we first decompose the sensor array into
two uniform linear arrays (ULAs) plus a separate sensor, similarly for pulse trains. Then, the original
received signals from the physical array and pulse trains are introduced into the virtual domain, where
the virtual clutter plus noise covariance matrix (CNCM) estimation is performed. Since the system
has more virtual sensors and pulses from the perspective of virtual domain, the degrees of freedom
(DOF) capability is effectively enhanced to improve the angle and Doppler resolution of radar. With
the spatial-temporal smoothing technique, the STAP filter is designed by reconstructing the CNCM
and virtual signal steering vector. Simulation results validate the effectiveness and superiority of the
proposed algorithm.

1. INTRODUCTION

Space-time adaptive processing (STAP) is known to be a time-honored and valuable research topic,
which has an excellent performance in clutter suppression and target detection [1–5]. As is known to
all, the STAP performance is largely determined by the system degrees of freedom (DOF). Traditionally,
researchers mainly focused on uniform linear arrays (ULAs), whose higher DOF usually requires more
antenna sensors, leading to higher hardware cost and computational complexity [6–11]. To maximize
the spatial resolution/DOF, the sparse arrays have attracted more attention than ULAs [12–15].

The research on sparse arrays and sparse pulse trains can be classified into two categories. The
first category designs the system structure by considering an irregularly spaced array and interval pulse
trains [12]. This type of method reduces the number of sensors and hardware resources at the expense
of system performance. The second category can largely decrease the number of sensors and hardware
complexity, increase the DOF, and improve system performance remarkably by using the fixed spaced
array and fixed interval pulse, as well as the difference operator [13–15]. Sparse arrays such as (super)
nested arrays [16–19], coprime arrays [14, 20–24], and minimum redundant arrays [25] can achieve greater
DOF than the uniform linear array (ULA) in the same number of sensors. In other words, obtaining
the same DOF, they need fewer sensors and hardware circuit.

In recent years, several STAP algorithms have been proposed by combining the difference operator,
sparse arrays, and pulse trains [26–30]. The sparse STAP was proposed based on the concept of minimum
redundancy structure to improve the performance of the system [26]. Because of the complexity of the
minimum redundancy structure design, it is not practical for a large antenna array. To solve this
problem, the coprime structure was applied to the STAP effectively in [27–29], which tries to improve
the abilities of beamforming and target detection. It was later shown that through the use of (super)
nest structures [16, 19, 30], one could also produce significant increase in DOF, and their uniform DOF
is more than those of the coprime structure because coprime structure has holes in the virtual difference
structure.
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In order to obtain more DOF, we present the optimal improved nested STAP (OIN-STAP) by
using an improved nested structure [31] in the spatial and temporal domains. More concretely, the
original space-time snapshots are obtained from the improved nested physical array and pulse trains
structure. By using difference operator and spatial-temporal smoothing technology, the virtual space-
time snapshots corresponding to the larger aperture ULA and the great many pulses with fixed pulse
repetition interval (PRI) can be computed from the clutter plus noise covariance matrix (CNCM)
obtained by the original received snapshots. Thus, a new virtual CNCM can be given for the STAP
filter. Finally, the efficiencies of each strategies are analyzed, and the differences between them are
compared, according to the simulation results obtained in the analog-digital computer system.

The rest of this paper is organized as follows. The concept of improved nested arrays and pulse
trains is introduced in Section 2. In Section 3, we present the formulation of the OIN-STAP method.
Simulation results are conducted in Section 4 to verify the superiority of the OIN-STAP. Finally,
conclusions are presented in Section 5.

Notations: lowercase, bold lowercase, and bold capital letters represent scalars vectors and matrices,
respectively. Transpose and complex conjugate transpose are denoted by (·)T and (·)H , respectively.
The symbols ⊗, E(·), and | · | stand for the Kronecker product, statistical expectation, and the absolute,
respectively. IM stands for the M ×M identity matrix, and diag(a) represents a diagonal matrix whose
diagonal elements are the column vector a.

2. IMPROVED NESTED ARRAYS AND PRIS

In this section, we introduce the improved nested arrays and PRIs configuration.

2.1. Improved Nested Arrays

Improved nested arrays (INAs) consist of two ULAs and one single sensor, as shown in Fig. 1(a). In
particular, one named inner ULA possesses N1 sensors with spacing d and positions Ain. The other
called outer ULA has N2 sensors with spacing dout and positions Aout, where dout = (N1 + 2)d. A
single sensor is located in (N1 + 1)d position following the last sensor of outer ULA whose position set
is represented by As. Thus, the sensor positions of INA can be expressed as

A = Ain ∪Aout ∪As (1)

where

Ain = {nind, nin = 0, 1, . . . , N1 − 1} (2)

Aout = {nout(N1 + 2)d+N1d, nout = 0, . . . , N2 − 1} (3)

As = {(N2 − 1)(N1 + 2)d+N1d+ (N1 + 1)d} (4)

(a)

(b)

Figure 1. Improved nested arrays and the difference coarray. (a) Improved nested arrays. (b) The
difference coarray.
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It is obvious that the total number of sensors is N = N1 +N2 +1. Here, the difference coarray DA

of an array A is defined as
DA = {Ai −Aj |Ai, Aj ∈ A} (5)

where Ai denotes the position of the ith sensor. Define set DAO composed the different elements of
DA. Hence, the difference coarray DAO of INA is a filled ULA with N̂ = 2(N2N1 + 2N2 + N1) − 1 in
Fig. 1(b), and the virtual sensor positions for difference coarray are

DAO = {nd |n = −Nc, . . . , Nc, Nc = N2N1 + 2N2 +N1 − 1} (6)

In other words, we can obtain 2(N2N1+2N2+N1)−1 DOF from only N1+N2+1 physical sensors
by the difference operator.

Remarkably, the DOF of INA can be accurately calculated by the number of physical sensors.
Therefore, we can gain the optimal values of N1 and N2 to maximize DOF under the given total
number of sensors. At this time, the INA is described as optimal INA (OINA). In particular, when N
is an even, and the maximum DOF of the difference coarray is N2/2 + 2N − 3 in which N1 = N/2− 1
and N2 = N/2. When N is odd, the optimal values of N1 and N2 are (N − 1)/2 − 1 and (N + 1)/2
respectively, and the corresponding maximum DOF is N2/2 + 2N − 7/2.

2.2. Improved Nested PRIS

In order to further enhance DOF from the temporal dimension, PRIs can also adopt the improved
nested structure. Improved nested PRI (IN-PRI) is composed of two uniform PRIs and one single pulse
which is located in (M1 + 1)Tr position following the last pulse of outer PRI in a coherent processing
interval (CPI) in Fig. 2(a), where two uniform PRIs can also be named as the inner PRI with M1 and
the outer PRI with M2 whose minimal PRIs are Tr and Tout = (M1 + 2)Tr, respectively. The total
number of pulses is M = M1 +M2 + 1. Thus, the corresponding pulse positions are

P = Pin ∪ Pout ∪ Ps (7)

where

Pin = {pinTr, pin = 0, 1, . . . ,M1 − 1} (8)

Pout = {pout(M1 + 2)Tr +M1Tr, pout = 0, . . . ,M2 − 1} (9)

Ps = {(M2 − 1)(M1 + 2)Tr +M1Tr + (M1 + 1)Tr} (10)

are the pulse locations of the inner PRI, outer PRI, and one pulse, respectively. Similarly, the difference
copulse DP of the pulse trains P is

DPO = {Pi − Pj |Pi, Pj ∈ P} (11)

(a)

(b)

Figure 2. Improved nested PRIs and the difference copulse. (a) Improved nested PRIs. (b) The
difference copulse.
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where Pi means the location of the ith pulse. New set DPO consists of different elements of DP .
Therefore, the difference copulse has 2(M2M1 + 2M2 + M1) − 1 virtual pulses in Fig. 2(b) whose
locations are given by

DPO = {mTr |m = −Mc, . . . ,Mc, Mc = M2M1 + 2M2 +M1 − 1} (12)

The above studies prove that IN-PRI can also achieve 2(M2M1+2M2+M1)−1 DOF withM1+M2+1
physical pulses in the temporal dimension.

From the analysis for the INA here we see that optimal IN-PRI (OIN-PRI) has M2/2 + 2M − 3
DOF if the total number of pulses M = M1 +M2 + 1 is even in which M1 = M/2− 1 and M2 = M/2.
When M is odd, the DOF is M2/2 + 2M − 7/2 with M1 = (M − 1)/2− 1 and M2 = (M + 1)/2.

3. THE PROPOSED METHOD

In this section, we firstly develop a new STAP with the improved nested structure, then use the virtual
sensors and pulse trains to construct the virtual space-time snapshot, and finally design the STAP filter.

3.1. Signal Model

Assume that a side-looking airborne phased array radar has N receiving elements and M transmitting
pulses in a CPI, where the receiving array and transmitting pulse for radar are configured as improved
nested structure. d = λ/2 is the minimum inter-element spacing, Tr the minimal PRI, and λ the radar
wavelength [1]. The received space-time snapshots from a range bin without the ranger ambiguity can
be given by

x = atv(ϕt, ft) + xu (13)

where at denotes the target complex gain. The target space-time steering vector is v(ft, ϕt) =
v(ft)⊗v(ϕt), and v(ϕt) and v(ft) denote the target spatial and temporal steering vectors, respectively,
defined as

v(ϕt) =
[
1, e2πjn1ϕt , . . . , e2πjnN−1ϕt

]T
(14)

v(ft) =
[
1, e2πjm1ft , . . . , e2πjmM−1ft

]T
(15)

where ft = 2vrTr cos(θ)/λ and ϕt = d cos(θ)/λ, vr is the velocity of the radar, and θ is the target
directions. xu is the clutter plus noise data, expressed by

xu =

Nc∑
i=1

ac,iv(ϕc,i, fc,i) + n =

Nc∑
i=1

ac,iv(ϕc,i)⊗ v(fc,i) + n (16)

where n is the Gaussian white noise vector whose power is σ2
n; Nc is the number of independent clutter

patches in azimuth domain; fc,i and ϕc,i are the normalized Doppler and spatial frequency of the ith
clutter patch, respectively; ac,i is the ith clutter patch complex gain. The ith clutter patch corresponding
spatial and temporal steering vectors are defined by respectively

v(ϕc,i) =
[
1, e2πjn1ϕc,i , . . . , e2πjnN−1ϕc,i

]T
(17)

v(fc,i) =
[
1, e2πjm1fc,i , . . . , e2πjmM−1fc,i

]T
(18)

c, i is the corresponding space-time steering vector and can be computed as

v(φc,i, fc,i)=


1

e2πjn1φc,i

...
e2πjnN−1φc,i

⊗


1

e2πjm1fc,i

...
e2πjmM−1fc,i

 =


v0,i
v1,i
...

vNM−1,i

 (19)
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where vlM+r−1,i = e2πj(nlϕc,i+mr−1fc,i), l = 0, . . . , N − 1, r = 1, . . . ,M , i = 1, . . . , Nc. Assuming that
different clutter patches are independent, the CNCM based on (16) can be modelled as follows:

Ru = E
[
xux

H
u

]
=

Nc∑
i=1

E
(
|ac,i|2

)
v (ϕc,i, fc,i)v

H (ϕc,i, fc,i) + σ2
nINM

= VPVH + σ2
nINM (20)

where V = [v(ϕc,1, fc,1),v(ϕc,2, fc,2), . . . ,v(ϕc,Nc , fc,Nc)] is the clutter space-time steering matrix, and

the clutter power matrix is P = diag([p1, p2, . . . , pNc ]
T ), pk = E(|ac,k|2). Combining (19) with (20), the

clutter covariance matrix (CCM) can be calculated by

Rc = VPVH =


R0,0

R1,0
...

RNM−1,0

R0,1

R1,1
...

RNM−1,1

. . .

. . .

. . .

. . .

R0,NM−1

R1,NM−1
...

RNM−1,NM−1

 (21)

where R(l1M+r1−1),(l2M+r2−1) =
Nc∑
k=1

pke
2πj[(nl1

−nl2
)ϕc,k+(mr1−1−mr2−1)fc,k], l1, l2 = 0, . . . , N − 1, r1, r2 =

1, . . . ,M .

3.2. Virtual Space-Time Snapshot Construction

In order to obtain the optimal weight vector, the term R(l1M+r1−1),(l2M+r2−1) on (21) can be rewritten
as

R(l1M+r1−1),(l2M+r2−1) =

Nc∑
k=1

pke
2πj[(nl1

−nl2)ϕc,k]e2πj[(mr1−1−mr2−1)fc,k] (22)

where n̂kl=nl1−nl2 can be regarded as the array positions of the difference coarray from (5). The set {n̂}
consists of unique continuous integers of the set {n̂kl}. Predictably, the continuous difference coarray

can be equivalent to a virtual ULA composed of N̂ = 2N̄ + 1 sensors with n̂d spacing. The set n̂ is

n̂ =
{
−N̄ ,−N̄ + 1, . . . , N̄ − 1, N̄

} (
N̄ = N2N1 + 2N2 +N1 − 1

)
(23)

where p̂kl = pk − pl can be regarded as the pulse positions of the difference copulse. The set {p̂} is
made up of unique continuous integers of the set {p̂kl}. The difference copulse resembles a virtual CPI

composed of P̂ = 2M̄ + 1 pulses with p̂Tr spacing. The set p̂ is

p̂ =
{
−M̄,−M̄ + 1, . . . , M̄ − 1, M̄

} (
M̄ = M2M1 + 2M2 +M1 − 1

)
(24)

⌢
v(ϕc,i) and

⌢
v(fc,i) are the corresponding virtual spatial and Doppler steering vectors and can be defined

respectively by

⌢
v(ϕc,i) =

[
e−j2πϕc,iN̄ , . . . 1, . . . , ej2πϕc,iN̄

]T
(25)

⌢
v(fc,i) =

[
e−j2πfc,iM̄ , . . . 1, . . . , ej2πfc,iM̄

]T
(26)

Consequently, the virtual space-time snapshot Y form Ru can be given by

Y =

Nc∑
i=1

E
(
|ac,i|2

)
⌢
v (ϕc,i)

⌢
v
T
(fc,i) + σ2

ne1e
T
2 (27)
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where the elements of e1 ∈ CN̂×1 and e2 ∈ CP̂×1 are all zeros except the one in the center position.

Vectoring (27), we can get a virtual space-time snapshot which can be written as

y =

Nc∑
i=1

E
(
|ac,i|2

)
⌢
v (fc,i)⊗

⌢
v (ϕc,i) + σ2

ne2 ⊗ e1

=

Nc∑
i=1

E
(
|ac,i|2

)
⌢
vci + σ2

n
⌢
e =

⌢
c +

⌢
n (28)

where
⌢
e = e2 ⊗ e1.

⌢
vci =

⌢
v(fc,i) ⊗

⌢
v(ϕc,i),

⌢
c, and

⌢
n denote the virtual space-time steering vector,

clutter vector, and noise vector, respectively.

3.3. Virtual Clutter Plus Noise Covariance Matrix Estimation

To estimate the filter weight, we can get a virtual CNCM estimation by spatial-temporal smoothing
technology. The submatrices Yρ,γ from Y can be defined as

Yρ,γ =

Nc∑
i=1

e−j(ρϕc,i+γfc,i)E
(
|ac,i|2

)
v̄ (ϕc,i) v̄ (fc,i)

T + σ2
ne1,ρe

T
2,γ (29)

where e1,ρ is a subvector formed from the (N̄ + 1 − ρ)th to (2N̄ + 1 − ρ)th entries of e1, and e2,γ is a
subvector formed from (M̄ + 1 − γ) to (2M̄ + 1 − γ) entry of e2, ρ = 0, 1, . . . , N̄ and γ = 0, 1, . . . , M̄ .
v̄(ϕc,i) and v̄(fc,i) can be seen as the spatial and Doppler steering vectors corresponding to a virtual
sub-ULA and sub-CPI.

Then, we can obtain a new covariance matrix by vectoring Yρ,γ , which is formulated as

Rvs =
1(

N̄ + 1
) (

M̄ + 1
) N̄∑

ρ=0

M̄∑
γ=0

yρ,γy
H
ρ,γ (30)

According to [17], (30) can be rewritten as

Rvs =
1(

N̄ + 1
) (

M̄ + 1
) (V̄cPV̄

H
c + σ2

nI(N̄+1)(M̄+1)

)2
(31)

where V̄c = [v̄(ϕc,1, fc,1), v̄(ϕc,2, fc,2), . . . , v̄(ϕc,Nc , fc,Nc)]. From (27), we have

Rvr =
(
V̄cPV̄

H
c + σ2

nI(N̄+1)(M̄+1)

)
=

((
N̄ + 1

) (
M̄ + 1

)
Rvs

)1/2
(32)

Thus, the optimum filter weight corresponding to (32) can be expressed as follows:

w̄ =
R−1

vr v̄t

v̄H
t R−1

vr v̄t

(33)

where v̄t is the target virtual space-time steering vector.

3.4. DOF

Obtained by the above derivation, improved nested arrays and PRIs structure can be transformed into
a virtual uniform ULA and PRI model, and its DOF has the form as follows:

D̂ = N̂ P̂ =
(
2N̄ + 1

)
×

(
2M̄ + 1

)
(34)

Due to the space-time smoothing technology, however, the final DOF of the filter is reduced to

D =
(
N̄ + 1

) (
P̄ + 1

)
= (N2N1 + 2N2 +N1)× (M2M1 + 2M2 +M1) (35)
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which is less than D̂, but larger than NP . The system possesses the maximum DOF when it runs with
the OINA and OIN-PRI strategy at the same time, which is called OIN-STAP. Then, the DOF of filter
can be computed by

Dopt =



(
N

4

2

+N − 5

4

)
×

(
M
4

2
+M − 5

4

)
if N is odd, M is odd(

N

4

2

+N − 1

)
×
(
M

4

2

+M − 1

)
if N is even, M is even(

N

4

2

+N − 5

4

)
×

(
M

4

2

+M − 1

)
if N is odd, M is even(

N

4

2

+N − 1

)
×
(
M

4

2

+M − 5

4

)
if N is even, M is odd

(36)

From this point of view, the OIN-STAP filter can obtain the O(N2M2) DOF from O(NM) physical
sensors and pulses.

4. SIMULATION RESULTS

In this section, we perform comprehensive comparisons between the existing methods including the
traditional STAP (T-STAP) [1], coprime STAP (C-STAP) [29], second-order (super) nested STAP (N-
STAP) [16, 19], and OIN-STAP by numerical experiments. Consider that a side-looking airborne radar
is configured with N = 10, M = 10, λ = 0.05m, Tr = 0.25ms, Nc = 361, v = 50m/s, and σ2

n = 1.
The number of samples is L = 200. For the coprime STAP, we set N1 = M1 = 3 and N2 = M2 = 5.
The specific parameters for the second-order nested STAP are N1 = M1 = 5 and N2 = M2 = 5. To
maximize DOF, the proposed method has N1 = M1 = 4 and N2 = M2 = 5. Assume that the normalized
angle and Doppler frequency of target are 0.1 and −0.2, respectively. The clutter to noise ratio in the
simulation is set to 30 dB, and the signal to noise ratio is 0 dB. All simulation results are averages over
100 Monte Carlo experiments.

Figure 3. The DOF ratiao with the sensor/pulse number K varying from 8 to 100.
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4.1. DOF

First, we prove the ability of the various STAP methods to improve DOF with the given numbers of
sensors and pulses. For the purpose of generalizing this discussion, we assume that the total numbers
of sensors and pulses are both K, i.e., M = N = K. Here we define the DOF ratio as [27]

γ(K) = K2/L(K) (37)

where L(K) represents the maximum DOF of STAP filter. The smaller the γ(K) is, the higher the
DOF is. Fig. 3 reveals the γ(K) of four methods by varying K from 8 to 100. The C-STAP, N-STAP,
and OIN-STAP have higher DOF than T-STAP. In particular, the OIN-STAP has the higher DOF than
the other three methods in fixed K. Furthermore, γ(K) of OIN-STAP are close to 0 in small K which
means that the OIN-STAP can provide greater DOF by a few sensors and pulses.

4.2. Beampatterns in Spatial and Temporal Domain

Next, we demonstrate the capability to form beams in the separated spatial or temporal domain.
Fig. 4(a) gives the beampattern in the spatial domain at the target normalized Doppler frequency while

(a) (b)

Figure 4. Beampatterns. (a) Spatial domain. (b) Doppler domain.

(a) (b)



Progress In Electromagnetics Research C, Vol. 128, 2023 25

(c) (d)

Figure 5. Space time Beampatterns. (a) T-STAP. (b) C-STAP. (c) N-STAP. (d) OIN-STAP.

Fig. 4(b) shows the beampattern in Doppler domain at the target normalized spatial frequency. It can
be observed from Fig. 4 that the OIN-STAP provides high-quality beampatterns in the separated spatial
and temporal domains. In particular, it has the narrowest main lobe among all these STAP methods.
This is because the virtual DOF of the OIN-STAP is larger than those of any other array and pulse
geometries.

Figure 6. Output SINR.



26 Liu et al.

4.3. Space-Time Beampatterns

Third, Fig. 5 shows the space time beampatterns. It is deduced from Fig. 5 that the functions of four
ways are basically the same. They form a deep notch on the clutter ridge and detect the precise location
of the target. There are obvious wide main lobe and high side lobe level in the estimated result by
using the T-STAP due to its limited DOF capacity. The C-STAP possesses higher DOFs; therefore,
their performances are moderately improved. Its detection performance is still lower than N-STAP. The
OIN-STAP gains greater DOF than the other three methods, and as a result, its side-lobe level and
angle-Doppler resolution are optimal.

4.4. SINR

Finally, we assess the output SINR performance against the normalized Doppler frequency. As depicted
in Fig. 6, the compared output SINR chart is shown for the SINR performance of four different models,
including the T-STAP, C-STAP, N-STAP, and OIN-STAP. The theoretical upper bound of output SINR
for the T-STAP is at the lowest level due to its limited DOF capacity. The C-STAP and N-STAP possess
higher DOF; therefore, their output SINR performances are moderately improved. The OIN-STAP has
the maximum DOF compared with the other three algorithms, and as a result, it achieves the best
SINR performance.

5. CONCLUSIONS

We propose a novel STAP method in this paper by extending the concept of second-order nested STAP.
The proposed STAP method is able to achieve more DOF than those of the existing STAP, which
is more effective than traditional techniques on contributions to raising the capability of parameters
estimation, especially to raising the precision of signal detection in space dimension and time dimension
at the same time. Simulation results indicate the effectiveness and good performance of our proposed
STAP.
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