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Electromagnetic Equivalence Principle Formulation for Optical
Forces on Particles in Arbitrary Fields

Justinas Lialys1, Laurynas Lialys1, Shima Fardad1, 2, and Alessandro Salandrino1, 2, *

Abstract—The computation of the fields scattered by a dielectric sphere illuminated by a plane
wave and the evaluation of the resultant optical forces is a classical problem that can be analytically
solved using Mie theory. Whereas extending said formulation to arbitrary incident fields does not pose
any conceptual difficulty, the actual computation of the scattering coefficients and force components
substantially grows in complexity as soon as interactions beyond the electric dipole arise. By formulating
an equivalent electromagnetic problem, we derive a set of computationally efficient formulas for the
evaluation of scattering and optical forces exerted by arbitrary incident fields upon dielectric spheres in
the Mie regime. As opposed to force calculations by direct integration of the Maxwell’s Stress Tensor, the
present formulation relies on a set of universal interaction coefficients that do not require any problem-
specific integration and can therefore be all precomputed and tabulated. The proposed methods can be
easily integrated with the T-Matrix method to calculate forces on non-spherical dielectric objects.

1. INTRODUCTION

Optical forces arise because of the redistribution of electromagnetic momentum that occurs when an
electromagnetic wave is scattered by a polarizable obstacle. Once the scattering problem is solved,
determining the forces acting on the particle amounts to calculating the flux of the Maxwell’s stress
tensor [1] through any surface fully enclosing particle (assuming that the background medium is
homogeneous and lossless). That is the approach informing the Generalized Mie Theory of Optical
Forces (GMTOF) [2] for the calculation of optical forces in the paradigmatic case of spherical particles
of arbitrary size. The GMTOF formulation focuses on the interaction of spherical multipoles with one
another and offers specific selection rules that reduce the computational complexity of evaluating the
forces exerted on a sphere of arbitrary size. From a conceptual standpoint, the procedure to extend
GMTOF to multi-particle systems is quite clear: the interactions between any two particles must be
handled by expressing the fields scattered by each particle in terms of spherical multipoles concentric
with the other particle. The addition theorem for vector spherical harmonics [3] (VSH) allows one to
do just that, but it comes at the price of a very cumbersome and difficult to code formulation in terms
of Wigner 3j and 6j symbols [4, 5].

The situation is quite different in the case of scattering and force calculations in the Rayleigh
regime, or in other words in the case of small particles in which expansion terms beyond the electric
dipole are negligible. In such instances the optical force on the object can be expressed in the following
compact and physically transparent form [6–8]:
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In expressions (1), αR and αI are the real and imaginary parts of the particle’s polarizability respectively.
The first term is known as the gradient force, the second term is the radiation pressure, and the less
familiar last term is often referred to as spin force since it is associated to the nonuniform distribution
of the spin density of the light field [6]. Aside from being physically informative and elegantly compact,
what is noteworthy in the formulation (1) is the fact that it features only incident fields and intrinsic
particle properties. As such, formulas (1) are eminently practical, both in terms of analysis and design.
That is because formulas (1) allow for the accurate computation of optical forces even under the most
complex field distributions [9–12], while entirely bypassing the onerous step of solving the scattering
problem. Further, the extension to multiparticle systems in the Rayleigh regime is immediate and
without any of the complications arising in the more general Mie regime. Such versatility comes at the
price of a domain of applicability restricted to subwavelength particles.

For all the stated reasons we considered it of great practical utility to introduce a computational
framework offering the ease of application of the Rayleigh regime approach while retaining the generality
of the GMTOF. The paper is organized as follows. In Section 2, we introduce the notation and
the definitions of recurring quantities. In Section 3, we outline the geometry and the properties
of the scattering problem. In Section 4, we introduce an efficient method to decompose a general
electromagnetic field in VSHs. The advantage of the proposed method is that no problem-specific
projection integrals must be explicitly computed. The present formulation includes instead a set of
universal coefficients that can be easily precalculated/tabulated. In Section 5, the scattering problem is
reformulated in terms of equivalent sources. In Section 6, we exploit the equivalent sources introduced
in Section 5 to obtain a general expression of the force acting on a particle in terms of only the
Mie coefficients and spatial derivatives of the incident electromagnetic field. In Section 7, we draw
our conclusions and highlight the advantages of the proposed methods. In Appendix A, we provide
precomputed universal coefficients up to order 2. In Appendix B, we verify the consistency of the
present method with well-known analytical results for dipolar particles.

2. DEFINITIONS AND NOTATION

A time harmonic dependence e−iωt is assumed throughout the paper unless otherwise specified. Vectors
are indicated in boldface. Unit vectors are denoted by a circumflex accent, i.e., r̂. ε0 is the dielectric
permittivity of vacuum, and µ0 is the magnetic permeability of vacuum. The relative permittivity and
permeability are denoted with a subscript appropriate to the region of interest, i.e., ε1µ1, etc. Similarly,
the propagation constant for region i is denoted as ki = ω

√
ε0εiµ0µi, and the intrinsic impedance is

denoted as ηi =
√

(µ0µi)/(ε0εi).
This article follows the notation of Korn and Korn [13] for spherical Bessel functions, and of Bohren

and Huffman for VSH [14]. For the benefit of the reader, we repeat below the definitions of the VSHs
that are recurring throughout the paper:

ψ(s)
enm(r, θ, ϕ) = cosmϕPm

n (cos θ)z(s)n (k r)

ψ(s)
onm(r, θ, ϕ) = sinmϕPm

n (cos θ)z(s)n (k r)
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pnm(r, θ, ϕ) = ∇× [rψ(s)

pnm(r, θ, ϕ)]

N(s)
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(2)

The function z
(s)
n (kr) is a solution of the spherical Bessel equation, with a propagation constant k

appropriate for the region of interest. For different values of the superscript s we have: z
(1)
n (x) = jn(x)
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(spherical Bessel function of the first kind), z
(2)
n (x) = yn(x) (spherical Bessel function of the second

kind), and z
(3)
n (x) = jn(x)+iyn(x) = h(1)n (x) (spherical Hankel function of the first kind). The functions

Pm
n (cos θ) are associated Legendre’s functions of the first kind.

As a shorthand, we introduce the (αβγ) notation to denote partial derivatives of any vectorial
function V(x, y, z) evaluated at the origin of the reference system:
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1
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[
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∂z′γ
V

(
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)]
x′ = 0
y′ = 0
z′ = 0

(3)

3. FORMULATION OF THE SCATTERING PROBLEM

The geometry of interest is shown in Fig. 1, a sphere of relative permittivity ε2 and radiusR is surrounded
by a background medium (henceforth “medium 1”) of relative permittivity ε1. The sphere is assumed to
be centered at the origin of an appropriate spherical reference system rθϕ. The structure is illuminated
by an electromagnetic field EiHi consistent with Maxwell’s equations in medium 1. The incident field
is completely general, with the sole requirement of being non-singular in the region r ≤ R (in other
words, all sources of the incident field are assumed to be in the region r > R). The internal fields are
denoted by EcHc and the scattered fields are denoted by Es, Hs.

Figure 1. Layout of the scattering problem.

A generic incident field can always be expressed in a vector spherical harmonics basis as:
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For the VSHs M
(1)
pnmN

(1)
pnm we adopt the same formulation and notation as in Bohren and Huffman [14],

with the superscript (1) indicating a radial dependence in terms of spherical Bessel functions of the
first kind [15] jn(k1r). The index p ∈ [eo] indicates even or odd azimuthal symmetry of the spherical
harmonics. The constants Apnm, Bpnm, which have units of V/m, depend on the incident field alone
and owing to the orthogonality properties of the vector spherical harmonics, can be calculated by taking
inner product of the vector Ei and the relevant basis function. In Section 4 we present an alternative
and more efficient method to determine the expansion constants.
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The fields in the internal region, i.e., for r < R, are expanded as:
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In the expansion (5) the radial dependence of the vector spherical harmonics is in terms of spherical
Bessel functions of the first kind jn(k2r).

Finally, the scattered fields in the region r > R are expressed as:
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In formulas (6) the superscript (3) indicates that the spherical harmonics have a radial dependence in

terms of spherical Hankel functions of the first kind [15] h
(1)
n (k1r).

In the following we will refer to the nondimensional coefficients an, bn, cn, dn as scattering
coefficients, whereas we will refer to products like Apnman as scattering amplitudes. By imposing
the continuity of the tangential fields at r = R, all the scattering coefficients can be easily determined.
Importantly, in the linear regime, the scattering coefficients do not depend on the expansion coefficients
Apnm, Bpnm of the incident field, but only on the geometry, the material properties, and the wavelength
of the problem of interest. As such, these coefficients are intrinsic properties of the system and describe
its ability to scatter the various spherical harmonics at the wavelength of interest. Additionally, the
scattering coefficients bear no dependence on the azimuthal parity e/o or index m. The expressions of
these scattering coefficients are widely available in the literature, but for notational consistency with
this work we like to refer the reader to Bohren and Huffman [14].

4. EXPANSION OF AN ARBITRARY FIELD IN VECTOR SPHERICAL
HARMONICS

The completeness property of vector spherical harmonics allows for the expansion on any nonsingular
field in the form (4). Exploiting the orthogonality of this vectorial basis [14], the expansion coefficients
in (4) can be obtained as:
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(7)

Expressions (7) are integrals over an arbitrary spherical surface of radius a. If one chooses a → 0,
the electric and magnetic fields and various spherical harmonics can be replaced by their asymptotic



Progress In Electromagnetics Research M, Vol. 114, 2022 143

expressions for small radii, and a Taylor expansion can be performed:
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In (8) we have used the multinomial theorem [16] after expressing the fields in Cartesian coordinates
and used the notation (3).

With expansions (8), in the limit we can equivalently express the coefficients (7) as:
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The parameter Nnm in expressions (9) is given, in the limit a→ 0, by:

Nnm = (1 + δm,0)
2π
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We introduce the following notation for the remaining vector integrals:
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We note that the Sαβγ
pnm coefficients as defined by (11) are universal, in the sense that they bear no

dependence on the fields being expanded, or any other problem-specific parameter. Consequently,

all Sαβγ
pnm can be precomputed and tabulated. Table A1 in Appendix A reports all Sαβγ

pnm coefficients
computed up to the quadrupolar order (n = 2).

Based on these considerations, the coefficients (9) reduce to the following expressions:

ETM
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∑
α′+β′+γ′=n−1

Sα′β′γ′
pnm ·E(α′,β′,γ′)

i

ETE
pnm = iη1

∑
α′+β′+γ′=n−1

Sα′β′γ′
pnm ·H(α′,β′,γ′)

i
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Figs. 2 and 3 show the application of the proposed expansion methods to the case of Hermite-Gauss
beams. The expansion was in both cases truncated at n = 10.

5. EQUIVALENT ELECTROMAGNETIC SOURCES

Two different but equivalent perspectives can be adopted for the calculation of various electromagnetic
quantities, such as energy, momentum, and forces. In the case of forces, one can concentrate either
on the fields or on the sources of those fields. Force computations using the Maxwell’s stress tensor
deal exclusively with the total fields, i.e., incident plus scattered fields, whereas force computations via
the Lorentz force [17] consider the interaction of the incident field with the sources of the scattered
fields. From the physical point of view, such sources are polarization charges and currents induced on
the scatterer. The surface equivalence principle in electromagnetics [18] offers an additional option: a
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Figure 2. Expansion coefficients and intensity profile of a horizontally polarized gaussian beam with
spot size w0= λ.

Figure 3. Expansion coefficients and intensity profile of a horizontally polarized Gauss-Hermite beam
of order 1, 0 and spot size w0=λ.

scattering object and the associated physical sources of the scattered fields (i.e., dielectric polarization)
can be replaced by a set of fictitious sources that radiate in the background medium and reproduce
exactly the scattered fields in a certain region of interest. That is the approach that we adopt in the
following. We must note that typically the reformulation of an equivalent problem does not offer any
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Figure 4. Layout of the equivalent problem.

computational advantage, since the full scattering problem must be solved in order to determine the
equivalent sources. The present case is a lucky exception, since Mie theory offers close form scattering
coefficients up to any VSH order.

Once the scattering coefficients are calculated, an equivalent problem can be formulated [18] in
terms of appropriate distributions of charges and currents. With reference to Fig. 4, the idea is to find
a set of equivalent sources contained in a region r ≤ a, with a ≪ λ, such that the same scattered field
distribution (6) is recovered for r ≥ R. To that end, the permittivity ε2 is replaced by the background
permittivity ε1, and the domain of the scattered fields (6) is extended inward up to r = a. In the
interior region r < a the electric and magnetic fields can be set to any arbitrary distribution fulfilling
Maxwell’s equations. Any such distribution can always be expressed as a superposition of non-singular
vector spherical harmonics (M(1)N(1)) as follows:
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The coefficients uv in (13) are chosen to ensure continuity of the tangential components of the scattered
electric field at r = a, i.e.:

(Es|r=a)× r̂ =
(
Eeq|r=a

)
× r̂ (14)

Under the constraint (14), the coefficients uv are given by:
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(15)

The unit vector t̂ in Equation (15) represents either θ̂ or ϕ̂. With the expansion coefficients (15), a
discontinuity remains on the radial components of the electric displacement D and on the tangential
components of the magnetic field H, indicating that a surface charge and a surface current distribution
must be placed at r = a in order to produce the correct scattered fields (6) in the external region. In
particular, we have the following equivalent sources:

ρ = δ(r − a)ε0ε1 (Es −Eeq) · r̂ (16)

J = δ(r − a) (Hs −Heq)× r̂ (17)



146 Lialys et al.

(a) (b) (c)

Figure 5. Equivalent charges and current distributions associated with the modes (a) TM10, (b) TM21,
and (c) TM32. The red (green) areas indicate a positive (negative) charge density. The arrows indicate
the equivalent surface current density.

The equivalent sources (16) and (17) obey charge conservation laws as actual charges would, i.e.,
∇ · J = −∂tρ. The examples in Fig. 5 show such spatial relation between equivalent charges and
currents for a few modal components.

6. FORCE CALCULATIONS WITH EQUIVALENT SOURCES

In this section we compute the force exerted by the incident fields upon the equivalent sources (16)
and(17). Since radius a of the auxiliary surface supporting the equivalent sources can be arbitrarily
chosen, we choose a to be vanishingly small. Such a choice allows us to replace all spherical Bessel and
Hankel functions by their asymptotic forms [15] for small values of the radial coordinate. The explicit
expression of the equivalent surface charge density reduces to:

ρ ∼ δ(r − a) ε0ε1

∞∑
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n∑
m=0

anin
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2nn!

[
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(k1a)n+2
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Since the surface charge density is due to the discontinuity of the radial components of the relevant
electric fields, only TM components contribute to (18). The equivalent surface current density can be
written as a superposition J = JTM + JTE of the following TE and TM contributions as follows:
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In the presence of a generic time-harmonic electromagnetic field Ei, Hi, the equivalent surface charge
density (18) is subject to the following average force:

⟨F⟩ = 1

2
Re [Fρ + FJ ] =

1

2
Re

[∫∫∫
ρE∗

i dV + µ0

∫∫∫
J×H∗

i dV

]
(21)
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The volume integrals in (21) are extended over all space, but they reduce to surface integral owing to
the delta functions in (18) and (19):

Fρ = ε0ε1

∞∑
n=1

n∑
m=0

ani
(2n+ 1)!
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1
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(22)
Since the electric field in (22) is evaluated for r = a → 0 and is nonsingular, we can substitute the
vector Taylor expansion (8), thus obtaining the following expression for Fρ:

Fρ =
ε0ε1
k21
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In Equation (23) we have defined the following numerical coefficients:
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We note that the Qαβγ
pnm coefficients as defined by (24) are universal, in the sense that they bear no

dependence on the fields being expanded, or any other problem-specific parameter. Consequently, all

Qαβγ
pnm can be precomputed and tabulated. Table A2 in Appendix A reports all the nonzero Qαβγ

pnm

coefficients up to the quadrupolar order (n = 2). The coefficients (24) introduce a series of restrictions.
Most importantly, the coefficients (24) are identically zero for α + β + γ < n; therefore, in the limit
a→ 0, only the term s = n must be retained in (23):
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As a consistency check, expression (25) is independent of the radius a of the arbitrary sphere selected
to formulate the equivalent problem.

The second force component FJ is due to the interaction of the incident magnetic field with the
equivalent currents (19):

FJ = µ0

∫∫∫
J×H∗

i dV (26)

The magnetic field is expanded according to (8), so that plugging (19) and (20) in (26) and rearranging
the terms we obtain:
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enmITE αβγ
enm + ETE

onmITE αβγ
onm

]
×H

∗(α,β,γ)
i (27)

In (27) we have introduced the following vector coefficients:
ITM αβγ
enm =

(2n+ 1)!

2n(n+ 1)!

2π∫
0

π∫
0

Tαβγ(θ, ϕ)

[
− cos(mϕ)

dPm
n (cos θ)

dθ
θ̂ +m sin(mϕ)

Pm
n (cos θ)

sin θ
φ̂

]
sin θ dθ dϕ

ITM αβγ
onm =

(2n+ 1)!

2n(n+ 1)!

2π∫
0

π∫
0

Tαβγ(θ, ϕ)

[
− sin(mϕ)

dPm
n (cos θ)

dθ
θ̂ −m cos(mϕ)

Pm
n (cos θ)

sin θ
φ̂

]
sin θdθdϕ

(28)
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ITE αβγ
enm =

(2n+ 1)!

2nn!

2π∫
0

π∫
0

Tαβγ(θ, ϕ)

[
m sin(mϕ)

Pm
n (cos θ)

sin θ
θ̂ + cos(mϕ)

dPm
n (cos θ)

dθ
φ̂

]
sin θdθdϕ

ITE αβγ
onm =

(2n+ 1)!

2nn!

2π∫
0

π∫
0

Tαβγ(θ, ϕ)

[
−m cos(mϕ)

Pm
n (cos θ)

sin θ
θ̂ + sin(mϕ)

dPm
n (cos θ)

dθ
φ̂

]
sin θdθdϕ

(29)

Just like the coefficients Sαβγ
pnm and Qαβγ

pnm, the coefficients Iαβγpnm as defined by (28) and (29) are universal
and can be precomputed, since they are independent of any problem-specific parameter. Tables A3

and A4 in Appendix A report all the nonzero Iαβγpnm coefficients up to the quadrupolar order (n = 2).
Noting that the coefficients (28) are identically zero for α+ β + γ < n− 1, and the coefficients (29) are
identically zero for α + β + γ < n, in the limit a → 0, the summations over the s index in (27) reduce
to a single term:

FJ =
µ0
k21η1

∞∑
n=1

n∑
m=0

∑
α+β+γ=n−1

an

[
ETM

enmITM αβγ
enm +ETM

onmITM αβγ
onm

]
×H

∗(α,β,γ)
i

+
µ0
k21η1

∞∑
n=1

n∑
m=0

∑
α+β+γ=n

bn

[
ETE

enmITE αβγ
enm + ETE

onmITE αβγ
onm

]
×H

∗(α,β,γ)
i (30)

Combining (25) and (30), along with the coefficients (12), leads to a particularly useful result: a force
expression in terms of the incident field and its derivatives only. In the proposed formulation, the
treatment of multiparticle systems is straightforward. As an example, Fig. 6 shows a two-dimensional
map of the force field generated by 2 Rayleigh particles, and the predicted stable optical binding
sites [19]. The position of the stable binding sites is consistent with the experimentally observed
formation of hexagonal lattices [20] in this type of systems.

Figure 6. Optical forces generated by two Rayleigh particles (solid green disks) illuminated by an
x-polarized plane wave of wavelength λ = 600nm. The empty green circles indicate the stable optical
binding sites for this configuration.
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7. CONCLUSIONS

The analytical results presented in this paper allow one to calculate the force experienced by a Mie
particle in a general electromagnetic field distribution without having to explicitly solve the scattering
problem, and without any integration involving the parameters of the problem at hand. Notice in
fact that all coefficients SQI are universal and can be precomputed. All the properties of the particle
are captured by the well-known Mie coefficients anbn. The T -Matrix method can be easily integrated
in the proposed formulation to treat non-spherical objects, in which case the Mie coefficients anbn are
multiplied by the appropriate correction factors. The present method is well-suited to treat multiparticle
systems since the proposed field decomposition method is based on spatial derivatives of the fields
only and hence bypasses the implementation of the translation theorem for vector spherical harmonics
to evaluate the scattering of spherical multipoles from off-center particles. The proposed analytical
approach provides a versatile technique to predict both numerically and analytically optomechanical
interactions in complex field distributions and in multiparticle settings.

APPENDIX A. TABLE OF UNIVERSAL COEFFICIENTS Sαβγ
PNM , Qαβγ

PNM, AND IαβγPNM

Table A1. Sαβγ
pnm coefficients up to the quadrupolar order.

n m α β γ Sαβγ
enm Sαβγ

onm

1 0 0 0 0 (3/2)ẑ 0

1 1 0 0 0 −(3/2)x̂ −(3/2)ŷ

2 0 1 0 0 −(5/6)x̂ 0

2 0 0 1 0 −(5/6)ŷ 0

2 0 0 0 1 (5/3)ẑ 0

2 1 1 0 0 −(5/6)ẑ 0

2 1 0 1 0 0 −(5/6)ẑ

2 1 0 0 1 −(5/6)x̂ −(5/6)ŷ

2 2 1 0 0 (5/12)x̂ (5/12)ŷ

2 2 0 1 0 −(5/12)ŷ (5/12)x̂

2 2 0 0 1 0 0

APPENDIX B. ELECTRIC DIPOLE

As a consistency check, using formulas (23) and (30), we derive the force on a particle with electric
dipolar response only (a1 = a1r + i a1i). The relevant coefficients are the following:



ETM
e10 =

3

2
Eiz

ETM
o10 = 0

ETM
e11 = −3

2
Eix

ETM
o11 = −3

2
Eiy


Q100

e10 = 0

Q100
o10 = 0

Q100
e11 = −4 i π

Q100
o11 = 0


Q010

e10 = 0

Q010
o10 = 0

Q010
e11 = 0

Q010
o11 = −4 i π


Q001

e10 = 4 i π

Q001
o10 = 0

Q001
e11 = 0

Q001
o11 = 0


ITM 000
e10 = −4π ẑ

ITM 000
o10 = 0

ITM 000
e11 = 4π x̂

ITM 000
o11 = 4π ŷ

(B1)
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Table A2. All nonzero Qαβγ
pnm coefficients up to the quadrupolar order.

n m α β γ Qαβγ
enm Qαβγ

onm

1 0 0 0 1 4i π 0

1 1 1 0 0 −4i π 0

1 1 0 1 0 0 −4i π

2 0 2 0 0 −4i π 0

2 0 0 2 0 −4i π 0

2 0 0 0 2 8i π 0

2 1 1 0 1 −24i π 0

2 1 0 1 1 0 −24i π

2 2 2 0 0 24i π 0

2 2 0 2 0 −24i π 0

2 2 0 0 2 0 0

2 2 1 1 0 0 48i π

Table A3. ITMαβγ
pnm coefficients up to the quadrupolar order.

n m α β γ ITM αβγ
enm ITM αβγ

onm

1 0 0 0 0 −(4π)ẑ 0

1 1 0 0 0 (4π)x̂ (4π)ŷ

2 0 1 0 0 (4π)x̂ 0

2 0 0 1 0 (4π)ŷ 0

2 0 0 0 1 −(8π)ẑ 0

2 1 1 0 0 (12π)ẑ 0

2 1 0 1 0 0 (12π)ẑ

2 1 0 0 1 (12π)x̂ (12π)ŷ

2 2 1 0 0 −(24π)x̂ −(24π)ŷ

2 2 0 1 0 (24π)ŷ −(24π)x̂

2 2 0 0 1 0 0

The time averaged force is given by:

⟨F⟩ =
1

2
Re

ε0ε1
k21

1∑
m=0

∑
α+β+γ=1

a1

[
ETM

e1mQ
αβγ
e1m + ETM

o1mQ
αβγ
o1m

]
E

∗(α,β,γ)
i (B2)

+
µ0
k21η1

1∑
m=0

a1
[
ETM

e1mITM 000
e1m + ETM

o1mITM 000
o1m

]
×H

∗(0,0,0)
i

]

=
1

2
Re

[
−3 i πε0ε1a1

k31
(Ei|r=0 · ∇) E∗

i |r=0 −
3πa1
k21

Ei|r=0 × H∗
i |r=0

c/
√
ε1

]
(B3)

Formula (B2) can be further simplified using the following vector identities [6, 7, 17]:
Re[(E · ∇)E∗] =

1

2
∇(E ·E∗)−Re [E×∇×E∗] =

1

2
∇(E ·E∗)− Im [ω µ0E×H∗]

Im[(E · ∇)E∗] = − 1

2i
∇× (E×E∗)

(B4)
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Table A4. All nonzero ITEαβγ
pnm coefficients up to the quadrupolar order.

n m α β γ ITE αβγ
enm ITE αβγ

onm

1 0 1 0 0 −(4π)ŷ 0

1 0 0 1 0 (4π)x̂ 0

1 1 1 0 0 0 0

1 1 0 1 0 (4π)ẑ −(4π)ẑ

1 1 0 0 1 −(4π)ŷ (4π)x̂

2 0 1 0 1 −(12π)ŷ 0

2 0 0 1 1 (12π)x̂ 0

2 1 2 0 0 (12π)ŷ 0

2 1 0 2 0 0 −(12π)x̂

2 1 0 0 2 −(12π)ŷ (12π)x̂

2 1 1 1 0 −(12π)x̂ (12π)ŷ

2 1 1 0 1 0 −(12π)ẑ

2 1 0 1 1 (12π)ẑ 0

2 2 2 0 0 0 (24π)ẑ

2 2 0 2 0 0 −(24π)ẑ

2 2 0 0 2 0 0

2 2 1 1 0 −(48π)ẑ 0

2 2 1 0 1 (24π)ŷ −(24π)x̂

2 2 0 1 1 (24π)x̂ (24π)ŷ

Using (B4), the force (B2) can be expressed as:

⟨F⟩ = 3πε0ε1a1i
k31

1

4
∇|Ei|2 −

3πa1r
2k21

Re

[
Ei ×H∗

i

c/
√
ε1

]
− 1

2i

3 πε0ε1a1r
2k31

∇× (Ei ×E∗
i ) (B5)

The result (B5) coincides with the well-known expression (1) once the TM01 Mie coefficient a1 =
a1r + i a1iis written in terms of the dipolar polarizabilityα = αr + i αi:

αr =
3πε0ε1
k31

a1i

αI = − 3πε0ε1
k31

a1r

(B6)
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