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Abstract—Flat band systems have attracted considerable interest in different branches of physics,
providing a flexible platform for exploring the fundamental properties of flat bands. Flat band states in
the continuum (FBICs) can be derived from a one-dimensional lattice loaded with electromagnetically
induced transparency (EIT) medium. The appearance of the strong slow light phenomena has been
found under the conditions of EIT and flat band. Flat bands provide a key ingredient in designing
dispersionless wave excitations. Different from the conventional flat band states, the FBIC is delocalized
state and has robustness, providing us an efficient way to achieve large delay slow light. These results
may provide inspiration for exploring fundamental phenomena arising from FBICs.

1. INTRODUCTION

In recent years, there has been a surge of interest for the physics in flat band system [1–19]. It is
well known that the motion of an electron in a periodic lattice can be described by Bloch theory,
and its band structure is usually composed of dispersion curves. However, the conventional wisdom
has been defied by the surprising discovery of the flat band (FB) [20], a dispersion-free energy band
characterized by a group velocity of zero for the wave packet throughout the Brillouin region. These novel
properties of flat band physics have attracted a great deal of theoretical and experimental interest in a
variety of fields, including ultracold atoms [5, 21–25], various metamaterials [26–29], exciton-polariton
condensates [22, 30–32], photonic waveguide arrays [4, 11, 33–36], and more. People have realized the flat
band by constructing some special lattice structures with “geometrical frustration” [37], strengthening
the magnetic field [38, 39], constructing strain structures [40–43], introducing twist angles [44–47], etc.
A lot of researches have been carried out on the novel physical phenomena brought about by them.

Electromagnetic induced transparency (EIT), which is originally rooted in quantum physics system,
has been widely used in the research of slow lights [48–52], sensors [53–55], absorbers [56–58], optical
modulators [59, 60], nonlinear enhancement [61, 62], and other fields, due to its slow wave effect, strong
dispersion, low absorption, and high-quality factor spectrum response. The analogue of EIT effect based
on microwave metamaterials [52, 63–65], in particular, provides a new platform for the observation of
slow wave effect, which not only is easy to adjust in structure, but also can visually reveal the strong
dispersion effect caused by the EIT phenomenon. So far, the studies of the EIT structure are all focused
on the transmission characteristics and group delay, while the in-depth investigation on energy band
characteristics of periodic structures composed of EIT mediums and dielectric remains lacking. To the
best of our knowledge, it is the first time that a special FB located in the passband is proposed, which
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is different from the conventional FB in band gap opened at the boundary or the central of the Brillouin
zone.

In this work, we will combine the concepts of the flat band and EIT effect in a photonic crystal
composed of dielectric and EIT medium to explore the possibility of enhancing the robust slow light
phenomena. In Section 2, the equivalent photonic crystal model for studying FBIC is introduced
and analyzed, including EIT metamaterial and waveguide configuration, then the band structure of
multilayer system is calculated for firstly using hybrid theory based on coupled mode method (CMM)
and transfer matrix method (TMM). In Section 3, We present the numerical results of the designed finite
EIT lattice structures to realize FBIC. The transmission spectrum and group delay are in agreement
with the predictions of hybrid theory. Furthermore, we show that FBIC is robust to loss, providing
solid evidence for the stability of the slow-light phenomenon. Finally, a brief conclusion and prospect
are presented in Sec. 4.

2. THEORETICAL MODEL

In this section, we analyze the band structure of a lattice composed of alternating layers, which consist
of alternating arrangements of EIT metamaterial and waveguide structures, as shown in Figure 1. In
the illustrated model, slow wave effect can be easily observed and exploited at room temperature. EIT
in metamaterials replaces three-level atoms with artificial atoms and replaces the interference between
microscopic quantum channels with the interference between macroscopic light fields. Sun et al. [52]
have experimentally observed the dynamic evolution of EIT in a waveguide system. Similar to the
structure in [52], we consider the EIT realized in metamaterials with a waveguide configuration, as
shown in Figure 1(a), and the open-ended comb line (l = 15mm, w = 0.2mm) can be considered as
a bright resonator. SRRs formed by two edge-coupled split rings (g = 0.2mm, a = 6.4mm) can be
considered as a dark resonator.

Our theoretical investigation begins with TMM, which allows one to obtain the band structure (ω
versus k), reflection coefficient, and transmission with the help of Bloch theory [66]. Figure 1(c) shows
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Figure 1. (Color online) (a) Photograph of the EIT medium, (b) Analogy diagram of a metamaterial
and three level atomic system, (c) lattice composed of finite number of alternating EIT and dielectric
layers.
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Figure 2. (Color online) (a) The scheme of the atomic level structure and (b) the 1D super lattice
made of a backbone waveguide and EIT.

the one-dimensional lattice loaded with EIT elements, and L is the lattice constant. The electric field on
every position [E(x)] can be decomposed into forward wave [E+(x)] and backward wave [E−(x)], which
meets the condition E(x) = E+(x) + E−(x). The electric fields on different positions are connected
by the transfer matrix. First, we build a model of interaction of photons with the three-level atom, as
shown in Figure 2(a). Combining TMM and CMM, a hybrid theory to calculate the band structure is
presented. Similar to the transfer matrix method joined with coupled-mode theory in [52], the transfer
matrix for the EIT medium can be written as:

MEIT =
1

t

(
1 −rL
rR t2 − rLrR

)
, (1)

with the transmission coefficient of EIT medium t = 1 − γ1[i(ω−ω2)+Γ2]
[i(ω−ω1)+γ1+Γ1][i(ω−ω2)+Γ2]+κ2 and reflection

coefficient of EIT medium rL = rR = − γ1[i(ω−ω2)+Γ2]
[i(ω−ω1)+γ1+Γ1][i(ω−ω2)+Γ2]+κ2 , where κ is the coupling coefficient;

ω1 and ω2 are resonance frequency of the comb line and SRRs, respectively; γ1 is the spontaneous
emission attrition rate of the bright resonator; Γ1 and Γ2 are the intrinsic loss of bright and dark
resonators, respectively.

The transfer matrix for an entire unit cell in Figure 2(b) connects the electric field on two sides of
the unit cell by (

E+
m+1

E−
m+1

)
= M

(
E+

m
E−

m

)
, (2)

where the transfer matrix for lattice unit cell can be written as M = MDMEITMD. The transfer matrix
MD for the backbone waveguide (homogeneous medium) can be written as:

MD =

(
ejkL/2 0

0 e−jkL/2

)
. (3)

Then, for a finite structure with N unit cells, the total transfer matrix can be obtained from the product
of a transfer matrix for the single unit cell M (N) = MN , in which

M =
1

t

(
e−i·kL −rL
rR

(
t2 − rLrR

)
· ei·kL

)
. (4)

According to the Born-Karman boundary condition, we have(
E+

m+1

E−
m+1

)
= ejqa

(
E+

m
E−

m

)
. (5)

where q is the Bloch wave vector, and L is the length of the unit cell. From Equations (2) and (5), we
can get

M

(
E+

m
E−

m

)
= ejqa

(
E+

m
E−

m

)
. (6)
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The band structure of EIT lattice shown in Figure 1(c) can be obtained from the transfer matrix of the

single unit cell combined with Bloch boundary conditions cos(qL) = M11+M22
2 , namely,

cos(qL) =

[
1− γ1 [i (ω − ω2) + Γ2]

[i (ω − ω1) + γ1 + Γ1] [i (ω − ω2) + Γ2] + κ2

]
cos (kL) (7)

Corresponding band structures are calculated as shown in Figure 3. Here, the parameters are consistent
with those in [52], L = 15mm, γ1 = 0.38GHz, f1 = ω1/2π = 3.74GHz, f2 = ω2/2π = 3.69GH,
κ = 0.318GH, Γ1 = Γ2 = 0. The frequency ranges from 3.64GHz to 3.74GHz in the band structure
correspond to FBIC.

Figure 3. Band structures for 1D EIT lattice.

3. NUMERICAL RESULTS AND DISCUSSION

In order to validate our analytical calculations and further elucidate the slow light response of the
EIT lattice, we numerically calculate the transmission spectra and group delay of the finite EIT lattice
structures using CST Microwave Studio. The transmission and group delay spectra of the EIT element
are plotted in Figure 4. A transmission window emerges with a peak transmittance exceeding 90% at
3.7GHz. So, what are the effects resulting from the 1D EIT lattice? A conventional one-dimensional PC,

(a) (b)

Figure 4. (Color online) (a) Simulated transmittances and (b) group delay of the EIT element and
EIT lattice, respectively.
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(AB)N , where N is the periodic number, and the lattice constant L =dAB = 15mm was considered. A
and B denote the EIT and homogeneous dielectric, respectively. The transmission spectra of truncated
PC (AB)9 are presented in Figure 4(a). It provides extra degrees of freedom for controlling the spectra
through the structural element and lattice constants. Zhang et al. [67] realized slow light with ultra-flat
dispersion in hybrid photonic crystal waveguide. We investigate the slow-wave effect, and the simulated
results of group delay time are shown in Figure 4(b). A transmission window emerges in frequency
ranges from 3.64GHz to 3.74GHz with a peak transmittance exceeding 75%. The group delay time
in the FBIC of EIT lattice has reached 6.26 ns, while the group delay time of EIT element is 0.78 ns.
Therefore, we realized slow light with FBIC.

We then investigate the influence of the loss on the transmittance and slow wave effect. An
adjustable resistance R ≤ 20Ω is inserted into the junction, which is a tunable intrinsic loss in the EIT
element. The transmission spectra, field distributions, and group delay time with different R are shown
in Figure 5. From Figure 5(b), we can find that the field distribution is non-localized, and fields are
distributed in the dark resonator, so the transmittance and group delay time are nearly R independent.
It has also been predicted that the FBIC features are robust.

(a) (b) (c)

Figure 5. (Color online) (a) Simulated transmittances of the EIT lattice vs R, (b) numerical surface
current distributions, (c) group delay of the EIT lattice vs R.

(a) (b)

Figure 6. (Color online) (a) Transmission coefficient spectrum of the EIT lattice. The blue line
corresponds to the lattice, that is, lattice constant is 15mm, and the red line corresponds to the disorder,
that is, distances between element are 14mm, 15mm, 14mm, 13.5mm, 14mm, 15mm, 13mm, 13.5mm,
respectively. (b) The group delay of the EIT lattice.
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For traditional flat band, the vanishing transverse group velocity allows the lattice to support
compact eigenstates that are perfectly localized at several lattice sites, with exactly vanishing amplitude
in all other sites. As a result, the periodicity was changed even slightly, and the propagating mode can
be destroyed. When we destroy the periodicity of the EIT lattice, the slow light is robust, because the
FBIC is non-localized. From Figure 6, we can find that the transmittance and group delay time are
changed little, when the distance between lattice elements was changed from 15mm to 14mm, 15mm,
14mm, 13.5mm, 14mm, 15mm, 13mm, 13.5mm.

4. CONCLUSION

In summary, we present a novel method to generate robust slow light effect using an EIT lattice with
flat dispersion. The results of the numerical simulations indicate that non-localization of flat band in
the EIT lattices shows that the flat band is in non-localized states. We have studied the transmission
and slow-light behavior in an EIT element and EIT lattice. Under the EIT and FBIC condition, we
realized larger delay slow light with FBIC. Under the non-localization of FBIC condition, the maximum
transmittance as well as the corresponding group delay is nearly unchanged with intrinsic loss in a
bright resonator and disorder. Therefore, our results provide novel ideas for future studies in FBIC,
and they highlight the importance of non-localization flat band systems.
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