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Abstract—Robust optimization design of brushless electrically excited synchronous machines
(BEESMs) is a problem that has received extensive attention. The increase in finite element calculation
cost due to the increase in the number of motor parameters is one of the main problems faced by
optimization. In this paper, a robust multi-objective optimization design method of BEESM based on
an improved hill-climbing algorithm is proposed. All design parameters are divided into three subspaces
according to the sensitivity by the sensitivity analysis method combined with Kendall’s rank coefficient,
thereby reducing the consumption required for finite element model (FEM) calculation. The screening
problem of Pareto frontier solutions is solved by an improved hill-climbing algorithm. The candidate
points to be optimized are screened through the improved climbing algorithm, and only the candidate
points located on the Pareto frontier will be optimized, which ensures the high performance of the
candidate points. Based on the noise problems that may occur in actual production and processing, the
candidate points are robustly analyzed, and the optimal design is screened out. The robust optimization
design method proposed in this paper can reduce the computational cost and improve the robustness
of the motor based on improving the performance of the motor.

1. INTRODUCTION

Because of its high power factor and adjustable power factor, brushless electrically excited synchronous
machine (BEESM) is widely used in motoring and power generation [1–3]. For example, high-power
hoists, large-capacity rolling mills, fans, pumps, and compressors all use electric excitation synchronous
motor drive systems. Therefore, the research on BEESM is a hot issue in recent years [4–6].

The development and optimization of the motor topology are the two main aspects to improve
the overall performance of the BEESM [7–11]. Zhang et al. proposed a novel BEESM with a hybrid
rotor. This motor has two windings with different numbers of poles to provide excitation and drive
torque independently [12]. Long et al. proposed a new BEESM with an arc-shaped rotor structure. The
armature and field windings of this motor are placed on the stator [13]. Ali et al. proposed a new BEESM
based on the generation and utilization of a subharmonic component of the stator magnetomotive
force [14]. Yao et al. presented a BEESM with a distinctive rotor structure and additional harmonic
field windings [15]. Spielmann and Friedrich investigated the effect of increasing skew on reducing
torque and increasing excitation independent ripple. However, when it comes to a wide application in
the industrial field, existing structures may not be suitable because the actual fabrication process has
not been studied. Therefore, the robust design of BEESM is necessary [16].

On an optimization problem for electrical equipment, studies usually try to find the global optimal
solution of the objective function [17–20]. However, these optimal solutions may exhibit unsatisfactory
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performance when uncertainties in the production process are taken into account [21–24]. Many
studies try to solve optimization problems with uncertainty, but there are still some problems in
current research. First, as design parameters continue to increase, the cost of FEM computation will
rapidly increase, resulting in unacceptable computational costs [25–28]. The corresponding solution is
the combination of a multi-objective intelligent optimization algorithm and surrogate model. With
the continuous development of optimization algorithms, more and more multi-objective intelligent
optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), and
differential evolution algorithm (DEA), are used in the optimization of electrical equipment [29–33].
Also, the development of surrogate model technology has greatly contributed to the reduction of FEM
computation time [34]. However, since the establishment of the surrogate model also needs the support
of FEM calculation, when the optimization parameters increase, the industry of the surrogate model
encounters a bottleneck. Another problem is finding the robust optimal solution [35–38]. Since the
multi-objective optimization algorithm obtains a Pareto front including a series of solution sets, finding
a method that can obtain a robust solution with high performance has become one of the main problems
of a robust design.

To solve the above problems, this paper proposes a BEESM robust multi-objective optimization
design method based on an improved climbing algorithm. All design parameters are divided into three
subspaces according to the sensitivity by the sensitivity analysis method combined with Kendall’s rank
coefficient, thereby reducing the consumption required for FEM calculation. The screening problem
of Pareto frontier solutions is solved by an improved climbing algorithm. The candidate points to be
optimized are screened through the improved climbing algorithm, and only the candidate points located
on the Pareto frontier will be optimized, which ensures the high performance of the candidate points.
Based on the noise problems that may occur in actual production and processing, the candidate points
are robustly analyzed, and the optimal design is screened out.

The rest of this paper is organized as follows. Section 2 introduces the robust multi-objective
optimization method proposed in this paper. Section 3 introduces the principles of robust optimization
methods. Starting from Section 4, we take a BEESM as an example to implement the robust multi-
objective optimization method proposed in this paper. Section 5 presents the results of sensitivity
analysis and parameter stratification. Section 6 presents the optimization results of the motor and
analyzes the results, followed by the conclusion.

2. MULTI-OBJECTIVE OPTIMIZATION METHOD

2.1. Over View of Optimization Methods

Traditional BEESM optimization methods often choose to optimize all design parameters in the same
space, and such optimization methods will lead to a lot of computational consumption. To reduce the
consumption of FEM calculation in the optimization process, a surrogate model is usually used as an
approximate model of FEM. However, as the design parameters increase, the computational cost of
FEM required to train the surrogate model increases exponentially. Therefore, to solve the problem of
the increase of FEM calculation consumption caused by the increase of design parameters, all design
parameters are divided into three subspaces and optimized respectively according to the results of
sensitivity analysis.

During the production and processing of the motor, due to the limitation of production conditions,
there will inevitably be a certain error between the size of the machined motor and the size of the
design. The error brought by the machining will lead to a big difference in the design performance of
the machined prototype and the motor. Therefore, the robust design of the motor is very necessary. In
the optimization process of each subspace, the robust optimization design of the motor is carried out to
avoid the degradation of motor performance caused by motor processing errors to the greatest extent.

As shown in Figure 1, the robust multi-objective optimization design flow of BEESM is divided
into two parts: preprocessing and multi-layer optimization.

The purpose of the preprocessing part is to establish the mathematical model of the optimization
problem and preprocess the design parameters before the multi-objective optimization of BEESM. The
main steps of this part are as follows.

Step1 : Initial design
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Figure 1. Optimization design flow chart.

First, determine the design requirements of BEESM according to the actual situation. Determine
the initial design parameters of the motor according to different motor design requirements.

Step2 : Building Mathematical Models for Optimization Problems
The second step is to determine the optimization problem of BEESM and convert the optimization

problem into a mathematical model. In this step, it is necessary to first determine which design
parameters of the motor need to be optimized and determine the optimization range of these design
parameters. An unreasonable optimization range will result in the motor not being able to find
the optimal design through optimization, or the designed motor will not be used normally. At the
same time, different design parameters may form a closed dimensional chain, or there is a constraint
relationship, and the relationship between these design parameters also needs to be considered. Second,
for different design problems, determine the goal of motor optimization. There are many indicators for
evaluating motor performance, such as rated torque, torque ripple, efficiency, and loss. There is a positive
correlation between some indicators, while other indicators are difficult to find the optimal design at
the same time. In addition, different motor design problems also put forward different requirements for
these indicators. Therefore, it is necessary to determine the optimization goal of the motor according
to the specific motor design problem.

Step3 : Sensitivity analysis
Different optimization objectives tend to have different sensitivities to different design parameters.

If all design parameters are optimized equally without considering the sensitivity of design parameters,
the optimization cost will increase. In addition, since the same optimization method is used for sensitive
and non-sensitive parameters, the design parameters that are sensitive to the optimization objective
may not be optimized to find the best design. Therefore, this paper proposes a sensitivity analysis
method that combines Kendall’s rank coefficient and local sensitivity analysis. The sensitivity of the
design parameters is evaluated by the sensitivity analysis method proposed in this paper and used as
the basis for the space division of the design parameters in the next step.

Step4 : All design parameters are divided into three subspaces: S1, S2, S3
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To improve the efficiency of motor optimization, all parameters are divided into three subspaces
based on the sensitivity standard. These three subspaces are composed of parameters with different
levels of sensitivity: high-sensitivity parameters S1, sensitive parameters S2, and non-sensitive
parameters. parameter S3.

The above four steps constitute the preprocessing part. Through the previous four steps, the
optimization problem of the motor is transformed into a mathematical model, and all design parameters
are divided into three subspaces according to the results of sensitivity analysis. The design parameters
of the next three subspaces will be designed for robust optimization respectively.

The purpose of the multi-layer optimization part is to optimize the parameters of the partitioned
space in order and evaluate the results obtained by the optimization. The main steps of this part are
as follows:

Step1 : Parameters in S1 are optimized, while the parameters in S2 and S3 are fixed
Since the design parameters in S1 are more sensitive to the optimization objective, the design

parameters in this space are optimized in the first step. In this step, the design parameters in S2

and S3 are fixed as initial values, and the design parameters in S1 are optimized separately. Through
the optimization of the robust multi-objective design method of the motor based on the Climbing
algorithm, the optimal design point that meets the motor design conditions is found. The optimized
design parameters in subspace S1 will be input into the next step.

Step2 : Parameters in S2 are optimized, while the parameters in S1 and S3 are fixed
The optimization process for this step is similar to the previous step. After the high sensitivity

parameters are optimized, the sensitive parameters will be optimized. In this step, the design parameters
in S1 are fixed to the results obtained by the optimization in the previous step; the design parameters
in S3 are fixed as the initial values; and the design parameters in S2 will be optimized. The result will
be output to the next step.

Step3 : Parameters in S3 are optimized, while the parameters in S1 and S2 are fixed
Since the design parameters in S3 are the least sensitive to the optimization objective, the design

parameters in this part are placed at the end for optimization. Similarly, the design parameters in S1

are fixed to the results obtained through Step1 optimization; the design parameters in S2 are fixed to
the results obtained through Step2 optimization; and the design parameters in S3 are optimized. After
the design parameters in S3 are optimized, all design parameters in the design space are optimized. The
optimization results of all design parameters will be output to the next step.

Step4 : Determine whether the convergence conditions are met, and if the convergence conditions
are met, stop the optimization and output the results. If the convergence conditions are not met, the
optimization of the design parameters continues until the convergence conditions are met.

Through the above three steps, all design parameters are preliminarily optimized. To ensure that
the optimization result does not fall into a local optimal solution, an optimization iteration consisting of
steps 1–3 will loop continuously. In this step, first, determine whether the number of current iterations
is greater than 1. If the current iteration is the first time, go directly to the next iteration process. If the
number of iterations experienced by the current optimization exceeds 1, continue to judge whether the
convergence condition is satisfied. The condition for convergence is whether the optimization produced
by the current iteration process is less than the given error, where ε0 is the given error, and the error
generated by the current iteration process can be calculated by:

ε = max

{
|f1(xi)− f1(xi−1)|

f1(xi−1)
,
|f2(xi)− f2(xi−1)|

f2(xi−1)
, . . . ,

|fj(xi)− fj(xi−1)|
fj(xi−1)

}
(1)

where f is the optimization objective, xi the current design parameter space, and xi−1 the design
parameter space generated by the previous iteration process.

2.2. Build Mathematical Models

The purpose of the initial design is to determine the design requirements of the BEESM according to the
actual situation and to determine the initial design parameters of the motor for different motor design
requirements. After the initial design is completed, it is necessary to determine the parameters of the
motor that need to be optimized according to the motor structure obtained from the initial design, and
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determine the target to be optimized according to the design requirements. The optimization objective
of the motor is defined as:

min :


f1(x)
f2(x)

...
fj(x)

(2)

where x is the design space composed of all design parameters and

xmin ≤ x ≤ xmax (3)

where xmin is the lower bound of the design parameters, and xmax is the upper bound of the design
parameters. In addition to the constraints imposed by the upper and lower boundaries of the design
parameters on the design parameters, there may be constraints between different design parameters,
which can be expressed as: 

g1(x) ≤ 0
g2(x) ≤ 0

...
gm(x) ≤ 0

(4)

2.3. Sensitivity Analysis

To divide the design parameters into different design spaces, it is necessary to judge the influence
degree of different design parameters on the optimization objective. Therefore, a sensitivity analysis
of the design parameters is necessary. Three correlation analysis methods, Pearson, Spearman, and
Kendall, are usually used to judge correlation. Due to the equidistant orthogonal experimental design
and the Kendall coefficient having better performance in many cases, the Kendall correlation coefficient
was selected to be used in this sensitivity analysis [39]. The Kendall rank correlation coefficient can be
defined as:

K =
c− d√(

1

2
N(N − 1)−

∑ ti(ti − 1)

2

)(
1

2
N(N − 1)−

∑ ui(ui − 1)

2

) (5)

where c is the number of pairs in the same order, d the number of pairs in the opposite order, N the
number of experiments, and ti, ui are the design parameters and the number of elements contained in
the ith small set in the optimization objective, respectively. Since there is often a nonlinear relationship
between the design parameters of the BEESM and the optimization objective, the Kendall coefficient
can help determine sensitivity. The value of the Kendall correlation coefficient ranges from −1 to 1.
The closer the absolute value of the Kendall correlation coefficient is to 1, the greater the correlation
is between the two variables, and the closer it is to 0, the smaller the correlation is between the two
variables. A positive or negative Kendall coefficient indicates whether the relationship between two
variables is positive or negative. Local sensitivity can be defined as:

S =

∣∣∣∣(f (x0 ±∆xi)− f (x0)) /f (x0)

±∆xi/x0

∣∣∣∣ (6)

where ∆xi is the variation of the design parameters, and x0 is the initial design value of the design
parameters. In this paper, Kendall coefficients are used to judge the nonlinear relationship between
motor design parameters and optimization objectives. The final sensitivity calculation method is:

P = |K ∗ S| (7)

2.4. Subspace Optimization

The optimization of each subspace has a similar process. As shown in Figure 2, a full factorial
experimental design was firstly performed based on the design parameters in S1. The purpose of the full
factorial experimental design is to better cover the design space and ensure the accuracy of the surrogate
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Figure 2. Subspace optimization flowchart.

model. The corresponding test results will be calculated by FEM. To improve the optimization efficiency,
a surrogate model is introduced into the optimization process. This paper uses the Kriging model to
build a suitable proxy model. The Kriging model is a semi-parametric model whose response value
contains a mean trend term and a variance term [40]. The Kriging model has significant advantages
in nonlinear modeling and has been widely used in the field of electrical design. The results obtained
through the experimental design and FEM calculations will be used as training data for the Kriging
model. The trained Kriging model will be used as a substitute for FEM in the next optimization process.

The next optimization will be carried out from two aspects. Due to the mutual constraints between
different optimization objectives, it is impossible to optimize the design parameters of the motor to
obtain the optimal solution for all the optimization objectives at the same time. The final optimization
result is often a compromise among all optimization objectives. Usually, people call the solution set
composed of all solutions in the design space that do not have other solutions superior to the current
solution as Pareto frontier solutions. NSGA II is a multi-objective optimization algorithm and is widely
used in electrical equipment optimization problems [41–43]. In this paper, NSGA II is used as a multi-
objective intelligent optimization algorithm to obtain the Pareto frontier solution set of the motor. On
the other hand, the peak points in the motor design space will be obtained by an improved climbing
algorithm. These peaks will be verified to be on the Pareto front.

To ensure the efficient use of motor resources, only design points on the Pareto frontier will be
retained. These reserved design points will be evaluated for their robustness, and the design points that
satisfy the optimal robust design will be output as the result.

3. ROBUST OPTIMIZATION METHODS

3.1. Robust Optimization

The design point of the motor mentioned in the previous section will be evaluated for its robustness
because the design point obtained by the optimization algorithm cannot guarantee that it will still have
the same performance as the design value during the manufacturing process. There is always a certain
error between the actual size and the design size of the motor in the actual processing process, which
leads to a large deviation between the actual performance and the design performance of the motor. At
the same time, since the solutions on the Pareto front have the characteristic that there are no other
design points superior to the current solution, the selection and comparison of these solutions are also
difficult. Therefore, inspired by the climbing algorithm, this paper analyzes the robustness of the design
points based on the improved climbing algorithm to find the optimal robust design of the motor.

As shown in Figure 3, X1 and X2 are two extreme points, respectively, where X1 has better
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Figure 3. Solution of an optimization problem with noise problem.

performance than X2, so X1 is the local optimal solution and X2 the global optimal solution. Usually,
the global optimal solution is chosen. However, when we take noise into account, things change. Since
the actual design point may vary within the interval caused by noise, the local optimum has a better
performance than the global optimum. So X1 may be a better choice than X2 when considering
robustness issues in motor design. At the same time, the extreme points of an optimization objective
include the global optimal solution and local optimal solution. These solutions may exist on the Pareto
front. Find the optimal robust design of the motor by finding local peak points on the Pareto front and
performing robustness analysis.

3.2. Improved Climbing Algorithm

The climbing algorithm is a local optimization method, which adopts the heuristic method and is an
improvement to depth-first search. It uses the feedback information to help generate the decision of the
solution, which belongs to a kind of artificial intelligence algorithm. Climbing algorithms usually start
at a random point and change the position of the current point by constantly transforming. Decide
whether the current change is retained or not based on how good the change is. This process of change
continues until a local optimal solution is found. However, this method has the disadvantage that only
an uncertain local optimal solution can be found through the climbing algorithm.

To solve this problem, an improved climbing algorithm is developed in this paper. Figure 4 is a
flowchart of the improved climbing algorithm. As shown in the figure, a series of initial design points are
firstly randomized, and these design points collectively constitute the set S. The results are calculated
based on the Kriging model obtained through the previous training. Randomly generate new design
points within a given step size, and judge whether these design points are out of bounds. Design points
that are out of bounds will be discarded and regenerated until all design points are within the design
bounds. The new design points together constitute the set P. Same as set S, the new design points are
calculated based on the Kriging model. The design points in P and S are compared. If the design point
in P is better than the design point in S, the corresponding design point is replaced. If the design point
in P is not better than the design point in S, keep the design point in S and record the number of times
the current design point has undergone iterations and has not been replaced. After the replacement is
completed, a new design set S will be generated, and the set P will be regenerated within the given
step size range. The current loop is repeated until the iteration requirements are met. Record all
design points that have undergone iterations and have not been replaced a given number of times. After
that, a new initial design point is randomly generated, and the previous operation is repeated until
the termination requirement is met. After the algorithm is finished, all design points that satisfy the
requirements will be obtained.

3.3. Robust Selection

After determining the peak points through the climbing algorithm, continue to judge whether these
peak points exist on the Pareto front. To guarantee the performance of BEESM, all peak points that
are not on the Pareto frontier will be discarded. To evaluate the robustness of the remaining design
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Figure 4. The flowchart of the improved Climbing Algorithm.

points, random noise based on the Kriging model will be imposed on the design points. The robustness
at the design point is defined as:

R =
∑

ωi
fi (xp +∆xn)− fi (xp −∆xn)

fi (xp)
(8)

where ωi is the weight corresponding to the optimization objective, xp the current design point, and
∆Xi the possible noise. The smaller the robustness value is, the better the performance of the current
design point is.

4. INITIAL DESIGN AND ESTABLISHMENT OF MATHEMATICAL MODELS

Starting from this section, a robust multi-objective optimization design based on an improved climbing
algorithm will be implemented based on a specific BEESM motor. Based on past research, the topology
of BEESM has been roughly determined. Figure 5 shows the parameter description of the BEESM used
in the optimization in this paper. Table 1 gives the initial design values of the main design parameters
of BEESM and their ranges. The range of design parameters is mainly determined by the performance
requirements and constraints of the structure. Taking into account the errors existing in the actual
mass production process of the motor, Table 2 gives the possible noise of all design parameters. These
noises have a significant impact on the robustness of the motor.

The performance indicators such as torque, torque ripple, and efficiency of BEESM are usually
considered design goals. Since the thickness of the winding wire cannot be reflected in the FEM, it is
generally believed that the diameter of the winding remains unchanged during the optimization process.
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Figure 5. Parameter description of BEESM. (a) Main design parameters. (b) Design parameters of
stator slots.

Table 1. Main design parameters of BEESM and their ranges.

Parameter Unit Initial Design Range

Stator

Rso mm 65 -

Rsi mm 45 -

Hs0 mm 0.5 0.3–0.7

Hs1 mm 0.5 0.3–0.7

Hs2 mm 12.5 -

Bs0 mm 1.2 -

h mm 2 -

Rs mm 0.5 -

g mm 0.5

Rotor

Rro mm 44.5 -

Rri mm 20 -

α deg 44 42–46

O1 mm 6 4–8

O2 mm 4.5 3–6

B1 mm 1.5 1–2

B2 mm 2.5 1.5–3.5

L1 mm 1.5 1–2

L2 mm 1.5 1–2

Keep the windings operating at the rated current density, so the copper loss of the motor is considered to
be a fixed value. At this time, the biggest influence on motor loss is copper loss. At the same time, the
rated torque of the motor is the main indicator of the performance of the motor. To ensure the smooth
operation of the motor, the torque ripple of the motor also needs to be considered. Therefore, after
comprehensive consideration, the rated torque, torque ripple, and iron loss of the motor are selected as
the optimization targets, which are expressed as:

min :

{
f1(x) = −Te

f2(x) = PFe

f3(x) = Tr

(9)

And the motor also needs to satisfy certain constraints in the optimization process. These constraints
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Table 2. The noises of design parameter.

Parameter Unit Noises

Stator
Hs0 mm +/− 0.1

Hs1 mm +/− 0.1

Rotor

α deg +/− 0.5

O1 mm +/− 0.1

O2 mm +/− 0.1

B1 mm +/− 0.1

B2 mm +/− 0.1

L1 mm +/− 0.1

L2 mm +/− 0.1

are defined as: {
g1(x) = 0.7− η ≤ 0
g2(x) = Sslot − 0.65 ≤ 0
g3(x) = JC − 6 ≤ 0

(10)

5. SENSITIVITY ANALYSIS AND PARAMETER STRATIFICATION

To evaluate the correlation between different design parameters and optimization objectives, Kendall
correlation analysis was performed on all design parameters. Figure 6 shows the Kendall rank coefficients
for all design parameters. As shown, the correlations between different design parameters and design
goals tend to be different. The sensitivity analysis results for different design parameters are shown
in Figure 7, where Figure 7(a) is the local sensitivity of all design parameters. However, since the
sensitivity value of α is too large, we separately represent other design parameters except for α in
Figure 7(b). As can be seen from the figure, in addition to the higher sensitivity of α, B1 also has a
higher impact on the optimization objective. In contrast, design parameters such as B2 and L2 have
less influence on the optimization objective. In contrast, design parameters such as B2 and L2 have less
influence on the optimization objective. As shown in Table 3, all design parameters are divided into
three subspaces after sensitivity analysis.

-1

-0.5

0

0.5

1

Kendall's tau coefficient

Torque Core Loss Torque Ripple

B1 B2 Hs0 Hs1 L1 L2 O1 O2α

Figure 6. Kendall’ tau coefficient.

After Kendall rank coefficient and local sensitivity analysis, all design parameters are divided into
three subspaces. The highly sensitive parameter space (S1) contains parameters α and B1; the sensitive
parameter space (S2) contains parameters L1, O1, and O2; the non-sensitive parameter space contains
parameters B2, Hs0, Hs1, and L2.
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Table 3. Stratified results.

Subspace Parameter

S1
α

B1

S2

L1

O1

O2

S3

B2

Hs0

Hs1

L2

6. RESULTS AND ANALYSIS

The optimization results of the first iterative process are shown in Figure 8. Among them, the peak
points obtained by the improved climbing algorithm are marked as squares. All solution sets that
lie on the Pareto front are marked with ordinal numbers. It can be seen from the figure that after
the parameters in S1 are optimized, only two peak points are located on the Pareto front. Among
them, the maximum torque point 1-1 reached 6.69Nm, while the smallest torque point 1-2 was only
5.82Nm, and the maximum and minimum torque ripple reached 104.37% and 62.71%, respectively. In
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Figure 8. Results of the first iteration.
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the optimization of S2, a total of 6 peak points are generated, of which only three are located in the
Pareto front. In S3, only two peak points lie on the Pareto front and were selected for robustness
analysis.

The robust optimization results of all design points in the first iteration process are shown in
Figure 9. As shown in the figure, the performance of the motor changes to varying degrees after
applying noise to the design point. As can be seen from the figure, for Point 1-1, when noise is applied
to the design parameters, the torque changes by 0.65Nm; the iron loss changes by 0.32W; and the
torque ripple changes by 13.21%. The performance changes of other design points after applying noise
are shown in Table 4. After analysis by the method described in Section 3, Point 1-2 has better
performance than Point 1-1, so it is input into the optimization of the next subspace. Likewise, in S2,
Point 2-2 was selected because of its better performance in the robustness analysis results, and in S3,
Point 3-2 was output as the final design result. The optimization results of each subspace are shown in
Table 5.

After the first iteration is over, the optimization results are output to S1 for re-optimization. The
second iteration process is shown in Figure 10 and Figure 11. After the second iterative process, judge
whether the convergence condition is satisfied according to the method described in Section 2. After
calculation, the error between the two is less than 5%, which satisfies the set convergence condition.
Therefore, the optimization process ends, and the result of the second iteration process is output as the
final result. The final optimization results are shown in Table 6.
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Figure 9. Results of the first iteration of robustness analysis for all design points. (a) Point 1-1. (b)
Point 1-2. (c) Point 2-1. (d) Point 2-2. (e) Point 2-3. (f) Point 3-1. (g) Point 3-2.
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Table 4. Performance change after applying noise at all design points in the first iteration.

Point ∆ T(Nm) ∆PFe (W) ∆Tr (%)

Space1
1-1 0.65 0.32 13.21

1-2 0.30 0.30 9.36

Space2

2-1 0.02 0.02 2.28

2-2 0.02 0.02 2.16

2-3 0.02 0.03 2.57

Space3
3-1 0.73 0.25 7.77

3-2 0.71 0.24 7.54

Table 5. Optimization results of the first iteration process.

Parameter Unit Initial S1 S2 S3

α deg 44.00 46.00 46.00 46.00

B1 mm 1.50 1.03 1.03 1.03

L1 mm 1.50 1.50 2.00 2.00

O1 mm 6.00 6.00 8.00 8.00

O2 mm 4.50 4.50 6.00 6.00

B2 mm 2.50 2.50 2.50 3.38

Hs0 mm 0.50 0.50 0.50 0.30

Hs1 mm 0.50 0.50 0.50 0.37

L2 mm 1.50 1.50 1.50 2.00

Torque Nm 5.36 5.82 5.90 6.75

CoreLoss W 11.21 10.93 10.79 10.15

Ripple % 79.86 62.71 57.49 46.17
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Figure 10. Optimization results for the second iteration.

Figures 12–14 show the comparison of the main performance of the motors before and after
optimization. To verify the robustness of the initial and optimal designs, random noise was imposed
on the two motor models. As shown in Figure 12, after applying noise, the torque at the initial design
point has a change of 0.22Nm, while the torque change at the optimal design point is only 0.04Nm.
The loss change at the initial design point is 0.15W, and the torque ripple change is 16.73%, while the
loss change and torque ripple change at the optimum design point are 0.09W and 11.84%, respectively.
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Figure 11. Robust optimization results for all design points in the second iteration. (a) S1. (b) S2.
(c) S3.

Table 6. Final optimization result.

Parameter Unit Initial Optimal

α deg 44.00 45.21

B1 mm 1.50 1

L1 mm 1.50 1.79

O1 mm 6.00 8

O2 mm 4.50 5.69

B2 mm 2.50 1.5

Hs0 mm 0.50 0.3

Hs1 mm 0.50 0.3

L2 mm 1.50 2

Torque Nm 5.36 7.06

Core-Loss W 11.21 10.13

Ripple % 79.86 55.00
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Figure 12. Comparison of motor robustness before and after optimization.
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For all optimization objectives, the motor designed with optimal robustness has better performance
than the initial design.

The torque comparison between the initial design and the optimal design is obtained through the
FEM experiment, and the torque curve is shown in Figure 13. As can be seen from the figure, the
optimized motor has more torque and less torque ripple. Figure 14 shows the distributions of motor
losses before and after optimization. It can be seen from the figure that in the optimized motor loss
distribution diagram, the area of the high loss area is smaller than that of the initially designed motor,
so the optimized motor has a smaller iron loss than the initially designed motor.

7. CONCLUSION

In this paper, a robust multi-objective optimization design method of BEESM based on an improved
climbing algorithm is proposed. After the initial design of the motor and the establishment of the
mathematical model of the optimization problem, all the design parameters are divided into three
subspaces according to the sensitivity by the sensitivity analysis method combined with Kendall’s
rank coefficient. The optimization process of the motor will be carried out sequentially in these three
subspaces. By dividing all parameters into three subspaces, the cost of FEM computation is greatly
reduced. At the same time, through sensitivity analysis, more computing resources can be allocated
to highly sensitive parameters, which can improve the accuracy and efficiency of optimization while
reducing computing consumption. The screening problem of Pareto frontier solutions is solved by an
improved climbing algorithm. The candidate points to be optimized are screened through the improved
climbing algorithm, and only the candidate points located on the Pareto frontier will be optimized,
which ensuring the high performance of the candidate points. Based on the noise problems that may
occur in actual production and processing, the candidate points are robustly analyzed, and the optimal
design is screened out. The final optimization results and the initial design were analyzed and compared
by FEM. The results show that the robust optimization design method proposed in this paper reduces
the computational cost and improves the optimization efficiency based on improving motor performance.
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