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Abstract—As a noninvasive imaging technique for the interior of objects, Electrical Impedance
Tomography (EIT) is widely used in many fields of biomedicine. Sparse reconstruction algorithms
have made major breakthroughs in the field of image reconstruction in recent years. The K-SVD
algorithm is an adaptive dictionary signal sparse representation algorithm, which could improve the
reconstruction accuracy. However, the parameters in the K-SVD algorithm are fixed, which cannot
match all the measurement data of EIT very well. Moreover, the K-SVD algorithm adopts a greedy
algorithm in the sparse coding stage, which has high computational complexity. In this study, an
electrical impedance sparse imaging method based on DK-SVD (deep k-singular value decomposition)
was designed. It provides the corresponding optimal model parameters for each set of measurement
data through the method of multi-layer perceptron (MLP) network training, thereby improving the
imaging quality. At the same time, the iterative soft threshold algorithm (ISTA) is used in the sparse
coding stage to improve the convergence speed. The reconstruction results show that compared with the
KSVD algorithm and Total Variation (TV) algorithm, the reconstruction error of the DK-SVD method
is smaller, and the irregular and sharp inclusions can be accurately reconstructed. Image artifacts are
also greatly reduced.

1. INTRODUCTION

Electrical Impedance Tomography (EIT) is known as a noninvasive, low-cost, zero-radiation, and
easy-to-operate functional imaging technique inside objects. EIT has been applied in many practical
applications, e.g., detection of breast cancer, localization of epilepsy foci, chest EIT imaging, and
functional lung imaging during mechanical ventilation [1–4].

The EIT imaging problem is understood as a nonlinear problem, which is underdetermined and ill-
conditioned. Measurement noise can easily affect the quality of the reconstructed image. Therefore, it is
of great significance to mine the effective information from the measurement data and further improve
the imaging quality. In recent years, sparse reconstruction methods based on compressed sensing theory
have attracted extensive attention in the field of image reconstruction [5–7]. Reconstruction of high-
resolution imaging or signals from small amounts of data is allowed in this theory.

The exact determination of the sparsest representations proves to be an NP-hard problem [8].
Thus, approximate solutions are considered instead. A sparse dictionary is an overcomplete dictionary
composed of standard orthonormal bases. Efficient selection of a sparse dictionary is the key to accurate
EIT sparse reconstruction. A K-SVD algorithm has been proposed to make the designed dictionary fit
the sparse model better [9]. The purpose of the method is to use the generalized k-means clustering to
enable dictionary learning to be done so that the image reconstruction quality is improved [10, 11]. At
present, the K-SVD algorithm has been used in EIT reconstruction, which can reduce reconstruction
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artifacts and noise [12, 13]. However, image reconstruction using the K-SVD algorithm also creates
problems: (1) The regularization parameters in the dictionary learning process need to be adjusted
manually. (2) A simple tracking algorithm is used in the sparse coding stage, making the pseudo-
inverse operation of the matrix very inefficient.

Inspired by the application of the deep learning method in EIT imaging [14], this paper proposes
an EIT sparse reconstruction algorithm based on deep learning adaptive adjustment parameters,
namely DK-SVD (deep k-singular value decomposition). Aiming at the problem that the EIT image
reconstruction process is sensitive to the measurement data of different conductivity distributions, the
algorithm establishes the mapping between the measurement data and the model parameters. The
optimal regularization parameters are assigned to each image patch using the MLP network. The
parameter mismatch problem caused by K-SVD fixed parameters is avoided. In the sparse coding
stage, the ISTA algorithm based on l1 norm is used instead of the greedy algorithm, which makes
the convergence speed faster and the reconstruction speed faster. In addition, the DK-SVD algorithm
inherits the advantages of the KSVD algorithm in the process of dictionary learning. That is, sparse
coding based on the current dictionary and the dictionary atoms updating alternate to better fit the
data. This method aims to build a bridge between the deep learning network and the traditional sparse
reconstruction algorithm so that the advantages of the two kinds of algorithms can be integrated and
displayed to the greatest extent.

This paper is organized as follows. In Section 2, background and related work are introduced. In
Section 3, a model based on DK-SVD is constructed. In Section 4, the DK-SVD algorithm is evaluated.
The results show that the new method could achieve better image quality. In Section 5, the conclusions
and future research directions are presented.

2. BACKGROUND AND RELATED WORK

The EIT image reconstruction problem can also be understood as the EIT inverse problem. To solve
the EIT inverse problem, common image reconstruction algorithms are generally divided into iterative
algorithms and non-iterative algorithms [15–18]. As an iterative algorithm, the sparse reconstruction
method has the advantage of strong edge preservation.

In recent years, sparse algorithms have been widely applied to medical and industrial fields and
achieved good results [19–27]. Based on sparse decomposition and signal approximation, the theoretical
framework of compressed sensing was established [28]. The advantage of this theory is that data are
properly compressed while signals are acquired, thereby saving storage space. However, it is difficult to
guarantee the sparsity and quality of reconstructed images by directly applying the sparsity-promoting
methods based on a conventional EIT model [29]. The sparsity of EIT images in some transform domains
(finite differences, wavelets, contourlets, etc.) is the key to accurate sparse reconstruction [30]. Since the
l1 regularization method tends to produce a sparse solution, it is always used for sparse reconstruction
of EIT.

Adaptive dictionaries can sparsify images better since they are learnt for the particular class of
images or image instance. The shift from global to patch image sparsity effectively reduces noise
and artifacts in EIT without sacrificing resolution [31, 32]. K-SVD algorithm is a dictionary learning
method in which the sparse dictionary is optimized during iteration. K-SVD algorithm no longer
updates the entire dictionary at one time but updates the dictionary column by column. Therefore, the
reconstruction accuracy is greatly improved.

We have used K-SVD algorithm for dictionary learning in EIT reconstruction [33]. However,
the EIT image reconstruction process is sensitive to the measurement data of different conductivity
distributions, and the fixed regularization parameter in the KSVD algorithm cannot match all the
measurement data. Moreover, simple greedy algorithms (MP, OMP) used in the sparse coding stage
have high computational complexity. With network training, the DK-SVD algorithm in this paper
can provide the corresponding optimal model parameters for each set of measurement data, thereby
improving the imaging quality. Moreover, the ISTA algorithm is used in the sparse coding stage, which
greatly improves the convergence speed.
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3. MODEL CONSTRUCTION FOR DK-SVD

3.1. Patch Decomposition

The global image sparsification is changed to patch image sparsification, which enables local image
features to be captured effectively for DK-SVD method. Due to the irregularity of the imaging area of
the EIT image, a patch decomposition method suitable for different image shapes is proposed in this
paper. This method utilizes overlapping patches so that the equalization effect is generated, and the
image artifacts are reduced.

The local properties of the 2D reconstruction need to be preserved during the sparse representation.
Therefore, the EIT image vector needs to be rearranged according to the position of each pixel to form
a two-dimensional image. The image is processed in patches, with the size of

√
p ×√

p. In this paper, a
zero-padding method is proposed to solve the square patch decomposition problem, where the overlap
step R denotes the distance between corresponding pixels in adjacent image patches. Let R = 1. The
method has the following 5 steps (Figure 1):

1) The maximum lengths (expressed by the number of pixels) of the X-axis and Y -axis of the object
field are determined. For example, the maximum length of the X-axis is denoted as Nxmax, and
the maximum length of the Y -axis is denoted as Nymax.

2) Let a rectangular area of size Nxmax×Nymax be constructed. The reconstructed image is contained
inside the square area.

3) In the rectangular area, the pixels belonging to the measured object field are marked with 1, and
the other parts are marked with 0.

4) Let the entire rectangular area be traversed by square patches of size
√
p × √

p with overlapping
stride R.

5) For all patches, if each pixel in the patch is marked as 1, the patch is classified as a valid patch; if
there are pixels marked as 0 in the patch, it is classified as an invalid patch.

Figure 1. Patching principle for EIT image. It shows an example of a 32× 32 square grid.
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3.2. Mathematical Model of the New Method

The DK-SVD imaging algorithm proposed in this paper is mainly divided into two parts. The first part
is patch sparse coding and parameter learning; the second part is image reconstruction. The sparse
imaging process of electrical impedance based on DK-SVD is shown in Figure 2. First, the voltage is
initialized as a conductivity image by using the CG algorithm. Then the image is divided into patches,
which are sparsely reconstructed to reduce noise. Finally, all the patches are reconstructed through
weighted average, so that the whole image can be obtained. The bottom part in the green line box is
the details of patch denoising. The optimal regularization parameter is matched to each patch through
the network learning method, then the ISTA algorithm is used to solve the sparse coding model so that
the sparse coefficients and dictionary are obtained.

Figure 2. Flow chart of electrical impedance sparse imaging based on DK-SVD.

A possible formula to find the optimum compatible with the measured voltages is:

min
{ϕi}i,δβ,Z

µ

2

∥∥δβ − δβ0
∥∥2
2
+

∑
i

(
λi ∥ϕi∥1 +

1

2
∥Zϕi −Riδβ∥22

)
(1)

where δβ (unknown, of size (
√
N ×

√
N) represents a noise-free global EIT image. Suppose that the

initial δβ is equal to δβ0 (Obtained by Conjugate Gradient (CG) algorithm [34]). Riδβ (
√
p × √

p)
denotes the i-th EIT image patch in δβ. Sparse coding and parameter learning are represented in the
second term of (1). This entry guarantees that every position of δβ is traversed by Riδβ.

3.3. Algorithm

The solution of formula (1) mainly includes two steps: 1) The input EIT image patches are fixed, and
patch sparse coding and parameter learning are performed. 2) The sparse coefficients and dictionary
are fixed, and the optimal reconstruction result is obtained through multiple iterations.

3.3.1. Patch Sparse Coding and Parameter Learning

Since the l1 regularization method tends to produce a sparse solution, it is always used for sparse
reconstruction of EIT [35, 36].

The sparse solution model of the i-th patch corresponding to the sparse term in (1) is shown in (2):

ϕ̂i = argmin
ϕi

1

2
∥Zϕi − δβi∥22 + λi ∥ϕi∥1 (2)

where Z ∈ RL×S represents a sparse dictionary. ϕ̂i denotes the sparse coefficient corresponding to the
i-th image patch δβi. λi denotes a regularization parameter.
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The input EIT image patches are fixed, then the dictionary and sparse representation of the patches
are jointly learned. A popular and effective algorithm for solving the above problem is the ISTA [37],
which is guaranteed to converge to the global optimum.

ϕ̂t+1 = softλi/e

(
ϕ̂t −

1

e
ZT

(
Zϕ̂t − δβi

))
(3)

where ϕ̂0 = 0, e is the squared spectral norm of Z. softλi/e is the soft threshold operation function.

[softθ (x)]j = sign (xj) (|xj | − θ)+ (4)

The distribution of each image patch has different characteristics, so the optimal regularization
coefficients corresponding to the image patches are also different. The accuracy of EIT image feature
extraction is reduced if the same fixed parameters are used for all image patches. Therefore, adaptive
parameters are used in this paper. Consider having a learnable version of the ISTA algorithm generated.
Let e, Z, and λi be learned during the solution process. That is to say, each λi is matched to the
corresponding image patch.

Referring to the model in (1), an important issue is the need to set the parameter λi. We should
set λi for each patch so as to yield sparse representation with a controlled level of error. In this
paper, a regression function is established from the image patch δβi to its corresponding regularization
parameter λi.

In this paper, the relationship between image patch δβi and regularization parameter λi is mapped
by an MLP network [38, 39], where Θ is the vector of MLP parameters.

λi = fΘ (δβi) (5)

The input layer, hidden layer, and output layer are included in the MLP network. The network
structure using the MLP network to solve the regularization parameter λi is shown in Figure 3.

Figure 3. Schematic diagram of MLP network structure. The blue column is the input layer, the three
orange columns are hidden layers, the red column is the output layer.

The input layer has p nodes, which is the dimension of the vectorized patch. The regularization
parameter λi corresponding to the image patch δβi is obtained at the output layer. Three hidden layers
are included in the MLP network. Each hidden layer consists of a fully connected linear map and ReLU
(rectified linear unit) function (except the last layer). ReLU is used as an activation function:

H (x) =

{
0 (x < 0)

x (x ≥ 0)
(6)
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The application of ReLU can alleviate the phenomenon of overfitting and vanishing gradient. The
network introduces sparsity through ReLU for better feature extraction and fitting to training data.
Suppose that [f×d] represents a matrix of size f×d. The process of making the regularization parameter
λi learned by the MLP network can be expressed as: δβi → [p × 2p] → ReLU → [2p × p] → ReLU →
[p/2× 1] → λi.

3.3.2. Image Reconstruction

The dictionary Z obtained from (3) and the sparse coefficient ϕ̂i of the EIT image patches are fixed

and updated δβ̂i. The problem to be solved is shown in (7):

δβ̂i = argmin
δβi

µ

2

∥∥δβi − δβ0
i

∥∥2
2
+

1

2

∥∥∥Zϕ̂i −Riδβ
∥∥∥2
2

(7)

(7) is a simple quadratic problem that can be simplified to:

δβ̂i =
(
RT

i Ri + µI
)−1

(
µδβ0

i +RT
i Zϕ̂i

)
(8)

Since the diagonal matrix is included in the matrix required to be inverted, the calculation in (8)
is considered to be very simple.

To effectively minimize the cost function in (1), ϕ̂i and δβ̂i are updated multiple times until the
optimal result is produced.

It is worth mentioning that after all δβ̂i are updated, the reconstruction result is obtained by a
linear combination of weighted δβ̂i

δβ̂ =

∑
iR

T
i

(
ω ⊙Riδβ̂

)
∑

iR
T
i ω

(9)

where ω ∈ R
√
p×√

p denotes the weight of δβ̂i.

3.4. Dataset

The dataset consists of boundary voltage measurements and corresponding true conductivity vectors.
However, it is difficult to obtain that in an experimental system. Therefore, COMSOL Multiphysics is
used in this paper to obtain the simulation model. The conductivity distribution of the model is set
according to the conductivity of the lungs. The conductivity of the background (a mixture of fat and
tissue fluid) is 0.424 S/m. The conductivity of navy blue and light blue inclusions are set to 0.705 S/m
and 0.525 S/m, respectively. The working method of adjacent excitation adjacent measurement is
adopted. When all electrodes have been excited, the voltage measurements with 208 elements can
be obtained by the finite element method. The true conductivity distribution with a resolution of
32× 32 is also obtained from the model.

Six types of samples shown in Figure 4 are made. Different numbers of circles and squares of
different sizes were included in the samples. The radius of the circle in the defect is 0.5 cm and 0.9 cm,
respectively, and the side length of the square is 1 cm. A total of 24,000 samples were made by randomly
simulating inclusions of different numbers, positions, and shapes. A sampling method is used so that the
samples are divided into disjoint training and test sets. That is, the training samples are not included
in the test samples. Among them, 20,000 samples are included in the training set, and 4,000 samples
are included in the test set.

4. RESULTS AND ANALYSIS

4.1. Evaluation Index

Relative error (RE) is an indicator that reflects the deviation of the reconstructed image from the ground
truth. Structural similarity index measurement (SSIM) refers to the similarity of brightness, contrast,
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Algorithm 1 Pseudo code to reconstruct EIT images from measured voltage using DK-SVD.

Input: δV — EIT measured voltage
Output: δβ̂ — Reconstructed conductivity distribution
Initialization: δβ0 — Using the CG algorithm to obtain the initial conductivity

Z — Overcomplete discrete cosine transform (DCT) dictionary√
p×√

p — Size of each image patch

ϕ̂0 — Initial sparsity coefficient, ϕ̂0 = 0
Step1: Update dictionary Z and sparse coefficients ϕ̂i through alternate iterations for image patch
reconstruction

1) Sparse coding and regularization parameter learning
Using the ISTA algorithm and building a perceptron network with three hidden layers
for each ISTA algorithm iteration:

for each patch:
using MLP-Net to get the regularization parameter with the best fit

for the sparse solution model in (2):

using (3) to solve (2), updating the dictionary Z and sparse coefficients ϕ̂i

2) Patch-based image reconstruction

The dictionary Z and sparse coefficients ϕ̂i for the EIT image patch are fixed, δβ̂i is reconstructed
based on (7)
(8) is used to solve problem

Step2: Rebuild the global image

1) for all the updated Z and ϕ̂i

using (1) to reconstruct the global image

2) Take the weighted average of all patches. Obtain final solution δβ̂ based on (9).

(a) Model 1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5 (f) Model 6

Figure 4. Sample types.

and structure between two images. In this study, RE and SSIM are adopted to evaluate the quality of
reconstruction, as shown in (10) and (11):

RE =

∥∥∥δβ̂ − δβ∗
∥∥∥
2

∥δβ∗∥2
(10)
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SSIM
(
δβ∗, δβ̂

)
=

(
2µδβ∗µδβ̂ +D1

)(
2σδβ∗δβ̂ +D2

)
(
µ2
δβ∗ + µ2

δβ̂
+D1

)(
σ2
δβ∗ + σ2

δβ̂
+D2

) (11)

where δβ∗ denotes the true conductivity image. µδβ∗ and µα̂ denote the average of δβ∗ and δβ̂,

respectively. σδβ∗ and σδβ̂ denote the standard deviation of δβ∗ and δβ̂, respectively. σδβ∗δβ̂ is the

covariance of δβ∗ and δβ̂. D1 and D2 represent constants and are used to avoid division by zero.

4.2. Performance Evaluation of Different Patch Sizes

In the DK-SVD method, different patch sizes make the reconstructed images exhibit different qualities.
In the patch sparse process, a reasonable patch size should be selected so that the optimal result can
be obtained. The reconstructed image errors of the DK-SVD method using different patch sizes are
shown in Figure 5. The relative errors of Model 1, Model 2, and Model 3 all decrease as the patch size
increases from 3 × 3 to 9 × 9. As the patch size increases, the relative error of Model 4 and Model 5
firstly decreases and then increases. Taken together, a patch size of 6× 6 enables the relative minimum
of RE to be generated. In this paper, 6× 6 patches are selected for image reconstruction.

4.3. Running Time Comparison

Table 1 compares the reconstruction times of K-SVD and DK-SVD algorithms. Since the optimal
parameters of formula (1) can be obtained through deep learning, the number of iterations for the
DK-SVD algorithm is dramatically reduced compared with the K-SVD algorithm. According to the
experiment results of typical models, the iteration times of the K-SVD and DK-SVD algorithms are
selected as 100 and 50, respectively. In terms of imaging speed, a computer with Intel(R) Core(TM)
i5-10400F processor and 16G memory is used for reconstruction. It can be seen that the DK-SVD
algorithm takes less time than the K-SVD algorithm.

Table 1. Computational time of two imaging algorithms.

Simulation model
Running time(s)

KSVD algorithm DK-SVD algorithm

Model 1 31.97 22.36

Model 2 30.61 23.34

Model 3 30.33 23.64

Model 4 32.04 22.52

Model 5 30.88 22.94

Model 6 31.88 23.59

4.4. Comparison of Reconstruction Results

Figure 6 shows the reconstruction results of the four methods. The reconstruction results show that
the DK-SVD algorithm can better preserve the details and reduce the degree of artifacts than the other
three algorithms.

White Gaussian noise with 50 dB is added to the test set for testing the anti-noise ability of the
algorithm. We select random six groups of reconstruction results shown in Figure 7. The DK-SVD
algorithm shows good anti-noise ability for gaussian noise with 50 dB, which is enough to deal with
common noise and outliers in measurements of the EIT system. However, it is not sensitive enough for
the detection of multi-object inclusions which have different conductivities.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

Figure 5. RE values of different patches for 6 models.

4.5. Relative Error and Structural Similarity Assessment

The RE and SSIM of reconstruction images are calculated separately and are given in Figure 8. DK-SVD
has the best reconstruction performance.
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Figure 6. The reconstruction results of the four methods.

Figure 7. The reconstruction results of the four methods under 50 dB noise.

(a) (b)
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(c) (d)

Figure 8. RE and SSIM of reconstruction images. (a), (b) represent the noise-free case. (c), (d)
represent the 50 dB noise case.

5. CONCLUSION

In this paper, a sparse imaging method of electrical impedance tomography based on DK-SVD is
proposed. Simulation results have shown that the proposed method not only improves the quality
of the image but also enhances the imaging speed by the number of iterations being decreased. For
inclusions of different shapes and conductivities, the new algorithm can perform effective reconstruction
and has good generalization ability. It means that the proposed method has the potential of improving
the speed and accuracy of EIT imaging. In the future, we will simulate the conductivity distribution
according to specific scenarios (such as medical and industrial use, etc.) and conduct experimental
verification of the new method.
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