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Abstract—This letter, an ultra-wideband compact printed log periodic dipole (LPD) array antenna
is designed to operate between 500 MHz and 6 GHz frequencies. The proposed LPD antenna structure
consists of one bow-tie dipole and 15 regular dipole elements. The bow-tie element is introduced to
improve the antenna’s performance at the lowest frequencies below 1 GHz and at the same time to
reduce the antenna size maintaining a good performance. An experimental antenna prototype has been
designed, optimized, fabricated, numerically and experimentally assessed. The obtained results are very
promising, and they demonstrated that the presented antenna prototype is able to operate in the range
between 500 MHz and 6 GHz with an average gain of 6 dBi and a very compact size.

1. INTRODUCTION

In the last years, the rapid evolution of radio communication techniques able to transmit information
over a large portion of the radio spectrum at very low energy levels required the development of high
efficient high bandwidth antennas. An ultra-wideband (UWB) radiating device must accomplish the
legislation provided by the Federal Communications Commission (FCC) and European Communication
Committee (ECC) [1]. UWB antennas working at high frequencies present high propagation losses
with respect to low-frequency bands, so high gain and wideband antennas are required to mitigate the
losses in high-frequency ranges. Microstrip technology permits the development of a compact, light
weight antenna that can provide UWB characteristics with high performance in terms of radiation
properties. Radiofrequency identification (RFID) systems operating in the ultra-high frequency (UHF,
860-960 MHz) provide higher read-rate and data rate than those in low frequency (LF, 119-135kHz)
and high frequency (HF, 13.56 MHz) [2]. However, in UHF band, the selective loop is comparable to
the operating wavelength. Out-of-phase currents appear on the loop, which leads to nonuniform and
rapid magnetic field variation in the near-field range. Wideband antennas have various applications in
many fields, such as localization of the unknown signal source to track, radar imaging systems, sensors,
and surveillance. The current communication data transmission systems are based on short pulses. The
Federal Communications Commission (FCC) has restricted short pulse power; thus, communication is
limited to a 10m range in indoor environments. A well-known and diffuse wideband end-fire antenna
is a log periodic dipole (LPD) antenna, which is very famous thanks to its good radiating properties.
In particular, printed log-periodic dipole array antennas have light weight, low cost, and high gain.
Moreover, they present good directivity and wide bandwidth. The main limitations of UWB systems are
narrowband pulse dispersion and low fidelity factor that affect the antenna’s parameters. To improve
the performance of LPD antennas, several design structures have been proposed, such as sinusoidal
curve [3], T-shape slot dipole [4], printed Log-Yagi dipole array antenna (PLYDA) [5], passive-interface
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circuit module [6], square fractal antenna [7], dual-band dipole element [8], half bow-tie printed dipole
antenna [9], bow-tie patch [10], and top-loading technique [11]. A miniaturized LPD antenna with a
sinusoidal shaped dipole is proposed for wideband application in [3]. The antenna size is miniaturized
with a width of 420 mm (0.28)\) using dielectric-loaded and sinusoidal-shaped dipoles. The optimized
antenna has a bandwidth of 200-800 MHz and gain of 4.5 dBi. In [4], T-shape slot dipoles are arranged
in the array of 12 elements, in which 6 elements are for horizontal polarization and 6 for vertical
polarization. T-slits reduce the mutual coupling between the vertical and horizontal elements. The
printed log-periodic dipole (PLPD) array antenna using a director cell presented in [5] is designed for
21-40 GHz. A time-reversal UWB optimization technique is proposed in [6] to improve the fidelity
factor and radiated peak signal. In [8], a dual-band dipole element based printed LPD antenna is
proposed for an operating frequency of 0.5-10 GHz. A dual-band dipole replaces the need for two
straight dipoles; therefore, the axial length of the LPD antenna is reduced. The structured shape,
like a square, printed bow-tie, or bow-tie patch, explicitly reduces the antenna’s size and improves
the performance compared to other structures. In [7], a fractal geometry-based multi-band antenna is
proposed. The formation of fractal reduces the size of the element by 23%. Similarly, in [9] and [10] a
bow-tie based balun dipole element and a bow-tie patch element are proposed, respectively. The balun
shape dipole element provides wide impedance bandwidth of 47% for the 2.4 GHz ISM band, whereas
the bow-tie patch provides 60% impedance bandwidth with low cross-polar radiation 7dBi gain in
the ISM band. To further reduce the size of the bow-tie antenna element and improve the radiation
characteristics of the overall antenna, double-sided round bow-tie [12], sweeping the radiating slots in a
circular manner [13], and an asymmetric coplanar waveguide [14] have been presented. Research like [15—
17] mainly focuses on a frequency reconfigurable bow-tie antenna for Bluetooth, WiMAX, and WLAN
applications. In [15,17], reconfiguration is achieved by employing p-i-n diodes over the bow-tie arms,
changing the effective electrical length of the antenna, and leading to an electrically tunable operating
band. In comparison, [16] demonstrated a triple band slotted bow-tie monopole. A printed bow-tie
structure has an application in UWB, Ku/K/Ka bands, and millimeter-wave imaging [18]. In [19], a
flexible bow-tie antenna has been presented with a detailed explanation of design and fabrication. In
addition, the radiation characteristics of antennas, effects of the feeding structure, and conductor losses
on the radiation performance of the antenna have been discussed. The examination of bow-tie curvature
impact on the radiation pattern has been done in detail. This paper proposes a miniaturized microstrip
LPD array antenna for UWB applications. In particular, a bow-tie structure, consisting of two antipodal
empty triangular segments, operating at low frequencies, has been introduced to reduce the antenna size
and at the same time to improve the antenna performance. An antenna prototype has been designed,
optimized, fabricated, numerically and experimentally assessed. The agreement between simulated and
measured results is quite good. The antenna performances are very promising; they present a bandwidth
B of 0.5-6 GHz, peak radiation efficiency of 98%, and peak gain of 6.2 dBi in the operating frequency
band. The obtained promising results of the LPD antenna make it particularly suitable for several high-
speed short distance communication applications, including surveillance, explosive detection, sensing,
and security scanning. The work is organized as follows. Section 2 reports the mathematical formulation
and related design methodology. Section 3 reports the numerical and experimental assessment. Finally,
Section 4 reports the conclusions.

2. ANTENNA DESIGN

The structure of a UWB log-periodic printed antenna and the proposed prototype equipped with a
bow-tie structure is shown in Figures 1(a) and (b), respectively.

A classical printed LPD antenna, reported in Figure 1(a), is composed of a set of dipole elements
printed on both sides of the substrate to obtain an antipodal feeding network structure. The resonance
frequency of every antenna element changes periodically, considering a logarithmic function related
to the frequency. In particular, with reference to Figure 1(a) and considering N dipole elements,
the following set of geometrical parameters must be properly tuned to obtain a working antenna,
Pstandard = {Ln, Dn,n =0,...; N — 1, Wy, Wy, Lgtup } where L,, and D,, are the lengths and inter elements
distance of the dipoles; Wy is the microstrip width of the dipoles; Wy is the width of feeding microstrip;
and Lggyp is the length of a stub aimed at the antenna impedance matching. The design procedure of a
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Figure 1. Structure and geometrical parameter of (a) standard LPD antenna, (b) LPD antenna

equipped with the bow-tie structure.

printed LPD antenna is summarized in [22]. The starting point is the definition of antenna requirements
in terms of bandwidth by fixing the minimum f;; and maximum fy. frequencies. The relative
operating bandwidth B is defined as the ratio between the highest and lowest working frequencies of
the LPD antenna:

fIIlaX

fmin (1)

by considering the antenna dimensions L and H = 2Lg the angle « is estimated by using the following

relation: .
G
=at - 2
a = atan <2H) (2)

The angle a and scaling parameter 7, which can be chosen considering the empirical rules reported

in [20, 21], allow us to compute the total number of dipole elements N as follows:

By (1.1+7.7(1 — 7%) cot(a))) 3)
log (1/7)

The two most important antenna design parameters are the ratio between length of two consecutive

dipoles L, and L,+; known as the scaling factor 7, and the spacing between elements o. The optimal
relative inter-element distance o,,, which relates the spacings with dipoles length, is given by [20, 21]:

B =

Ny sl

D
oopt = 0.243 - 7 — 0.051 = - (4)
Ly
The ratio between distances of two consecutive dipoles 0 = L,,/L,,—1, n = 1,..., N, and the ratio

between the distance of an arm and the spacing from next one is related to the scaling factor 7 as
follows, 7 = D, /Ly, n=1,...,N.

The arms impedance is the ratio between arm’s length L,, and arm’s width W,,. Given that the
exponential trend that these two parameters are the same, this ratio is constant for all antenna elements.
Following [20] the average arm width that permits setting the characteristic impedance Zj is given by:

Ln (5)

2 25+ 120
The last remaining geometrical parameters to set are the arm width, W, main feeding microstrip
width Wy, and stub length L, aimed at tuning the antenna impedance. The above semi-empirical
formulas (1)—(5) provide a guideline for the design of a standard printed LPD antenna. The performances
and dimensions of a standard LPD antenna are not so satisfactory especially at low frequencies. Modern

n —
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telecommunication systems require very compact antennas, so the goal of a new antenna design is to
improve antenna performances in terms of return loss S1; especially at low frequency, to further reduce
the antenna dimension with respect to standard design, and finally to obtain a flatter behaviour in
terms of return loss S7; and gain versus frequency. The main problem is the dimension reduction
especially at low frequency. To obtain a more compact design, different techniques can be used, such
as the use of high dielectric permittivity substrate or the use of fractal geometries. Both methodologies
are very effective, but the use of high dielectric permittivity substrates is quite expensive, while the
use of fractal geometries does not permit the proper control of resonances. The solution proposed for
this design considers an empty triangular bow-tie structure able to resonate at low frequencies and
provide a very compact structure with respect to the standard design and the other methodologies
presented in scientific literature. With the knowledge of authors the obtained antenna design is the
most compact with respect to the other prototypes presented in scientific literature. To properly design
and tune the antenna geometrical parameters reported in Figure 1(b), a tuning phase provided by a
suitable optimization tool has been considered. However, a final tuning phase provided with a suitable
optimization tool is mandatory to accomplish the antenna requirements.

3. NUMERICAL AND EXPERIMENTAL RESULTS

The following subsections present the antenna prototype design, numerical and experimental assessment.
The obtained results are commented on and discussed.

3.1. Numerical Assessment

Let us start with the design of a standard LPD printed antenna on a commercial dielectric substrate,
namely Arlon25N (e, = 3.38, tan(d) = 0.03, thickness ¢ = 0.8 mm). The antenna requirements are
fmin = 0.5 GHz, finax = 6 GHz, antenna impedance Zy = 50€). The first step is the preliminary choice
of the scaling factor 7 and the relative spacing ¢ that can be made from the normalized graph reported
in [20]. The determination of boom length L, and number of elements N are provided by relations (2)
and (3), respectively. In particular, considering the required bandwidth of B = fyax/fmin = 12.0 a
number of N = 12 dipole elements are obtained. The most extended dipole Li corresponds to the
lowest resonance frequency, and it can be computed by considering the following equation

)\eﬁ max c
Lp~ = 6
R 4 vV Eeff fmin ( )

where e.g is the effective dielectric permittivity; €, and h are relative permittivity and height of the
substrate; and w is the width of antenna element. The length L,, and spacing D,, of the others elements
are estimated by considering the ratio between distances of two consecutive dipoles o = L, /Ly, _1,
n=1,...,N,and 7 = D, /L,, n =1,...,N. For the proposed N = 12 elements LPD antenna with
an operating frequency of 0.5-6 GHz the other design parameters are provided in Table 1. The antenna
has been numerically assessed with the Advanced Design System (ADS) from Keysight Company. The
geometrical parameters reported in Table 1 have been optimized by using the optimization tool of ADS
software in order to maximize the antenna performances.

Concerning the last two geometrical parameters, namely the width of the main feeding stripline
W; = 2.0mm and the stub length L1, = 7.0mm. In order to improve the antenna performances, the
longest dipole of LPDA has been replaced with a printed bow-tie structure, which is similar to the design
of rectangular microstrip patches. The bow-tie geometrical parameters are estimated by modifying the
semi-empirical design relations for rectangular patches given in [22]. Then the final antenna geometrical
parameters are fine-tuned and finalized via numerical simulations and the optimization tool of the
ADS software. In particular, the bow-tie structure presents the following geometrical dimensions
Ly = 29.5mm and Hg = 90.0mm. The overall dimension of the standard LPD antenna structure is
66 x 95 mm?, while the dimension of LPD antenna equipped with the bow-tie structure is 91 x 95 mm?.
The simulated return loss obtained with the ADS structure in the whole considered frequency band is
reported in Figure 2 for standard and bow-tie LPD antenna. As can be noticed, the introduction of
the bow-tie element slightly increases the antenna length. The introduction of the bow-tie structure
produces an improvement of the return loss (S11) at low frequency, as reported in Figure 2.
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Table 1. Geometrical design parameters of proposed printed LPD antenna.

. Length of dipoles Width of dipoles Spacings
Dipoles (n) (in) in mm (W,) in mm (Dy,) in 1gnm

0 Lr =445 Wy = 2.8 Dy=175
1 Ly =38.0 Wy =27 Dy =6.0
2 L =320 Wy =23 Dy =5.0
3 Lo =270 W3 =22 D3 =45
4 L3 =23.0 Wy=1.9 Dy=39
5 Ly =19.0 W5 =1.8 Ds=3.1
6 Ls =16.0 We = 1.7 Dg =238
7 Lg =14.0 Wr=1.7 D7 =20
8 Ly =12.0 Wg=1.6 Dg=1.9
9 Lg =10.5 Wy =15 Dg=1.6
10 Lo = 9.0 Wio = 1.4 Do = 1.1
11 Lyp=17.5 Wi =1.3
12 L1 =6.5
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Figure 2. Numerical assessment, return loss (a) (red-line) standard LPD antenna, (b) (blue-line) LPD
antenna equipped with the empty bow-tie triangular structure.

3.2. Experimental Assessment

The geometrical parameters estimated in the previous subsection are used to fabricate two antenna
prototypes, a standard antenna and the proposed LPD antenna. The two prototypes have been printed
on a commercial dielectric substrate ARLON 25N (g, = 3.38, t = 0.8 mm, and tan(d) = 0.001) with a
computer numeric control machine and equipped with a subminiature type A (SMA) coaxial connector.
The photos of antenna prototypes are reported in Figures 3(a) and (b), respectively. The antenna
prototypes have been arranged inside a semi-anechoic chamber, and the return loss |Si;| has been
measured with a network analyzer (NA). The results are reported in Figure 4. As can be noticed from
the data reported in Figure 4, the bow-tie antenna outperforms a standard LPD antenna, and the
return loss is well below |S1;| < —10dB for almost the entire considered frequency band. For the sake
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Figure 3. Photographs of the two antenna prototypes (a) standard LPD antenna, (b) LPD antenna
equipped with the bow-tie structure.
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Figure 4. Comparison of experimental and numerical return losses for the standard and bow-tie LPD
antennas.

of completeness in Figures 5(a) and (b), the measured and numerical return losses are compared for
the standard and bow-tie LPD antenna. The agreement between numerical and measured data is not
perfect but still satisfactory. The gain of two prototypes has been measured using three antennas to
complete the antenna characterization. The results are reported in Figure 6; also, in this case, the bow-
tie antenna outperforms the standard LPD antenna about 3 dBi in the whole considered frequency band.
In particular, the gain versus frequency, related to the standard printed LPD antenna design, reported
in Figure 4 (red line) reports a slightly low gain with respect to the theoretical value that should be
about 6.5 dBi. Figure 4 (red line) presents a gain about 5.0 dBi and different strong fluctuations of the
antenna gain vs. the frequency. As reported above, the gain versus frequency obtained with the proposed
LPD bow-tie antenna design outperforms the standard design of 1.5 dBi reaching the theoretical value
of a gain about 6.5dBi. Moreover, the data reported in Figure 4 (blue line) related to the new design
show a very flat behaviour in the whole considered frequency range. The numerical data obtained
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Figure 7. E-plane and H-plane beam pattern estimated for the whole considered frequency band form
500 MHz to 6 GHz with step of 500 MHz. (a) Electric and magnetic far field pattern at 500 MHz. (b)
Electric and magnetic far field pattern at 1 GHz. (c) Electric and magnetic far field pattern at 2 GHz.
(d) Electric and magnetic far field pattern at 2.5 GHz. (e) Electric and magnetic far field pattern at
3 GHz. (f) Electric and magnetic far field pattern at 3.5 GHz. (g) Electric and magnetic far field pattern
at 4 GHz. (h) Electric and magnetic far field pattern at 4.5 GHz. (i) Electric and magnetic far field
pattern at 5 GHz. (j) Electric and magnetic far field pattern at 5.5 GHz. (k) Electric and magnetic far
field pattern at 6 GHz.
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with a commercial software have also been compared with experimental measurements obtained with
the method of three antennas in a semi-anechoic chamber. The agreement between numerical and
experimental results is quite good with a discrepancy less than 5%.

For the sake of completeness, the E and H plane far field beam patterns for bow-tie LPD antenna
are presented in Figures 7(a)-(k). The considered starting and stop frequencies are 500 MHz and
6 GHz, respectively, with a step of 500 MHz. The beam patterns have been firstly numerically obtained
with ADS commercial simulator (Keysight company), then the beam pattern has been experimentally
assessed in the semi-anechoic chamber kindly provided by the company EMC (srl), Genoa, Italy,
confirming the numerically obtained data. As can be noticed from the data reported in Figure 7,
the directive antenna behaviour due to the arms and empty bow-tie structure is well defined especially
in the range between 2.0 and 3.5 GHz as indicated in Figures 7(c), (d), (e), and (f). The beam pattern
and gain of the proposed LPD antenna equipped with the empty bow-tie structure outperform the
performances obtained with standard design LPD antenna in the whole considered frequency range.

4. CONCLUSION

This work proposes a printed LPD antenna equipped with a bow-tie structure to improve the radiation
characteristics at a low-frequency band. The antenna parameters have been first obtained following
semi-analytic formulas and then optimized with the ADS optimization tool. An antenna prototype
has been designed, optimized, fabricated, and experimentally assessed. The obtained results have been
compared with a standard LPD antenna, and they are rather promising.
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