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Human Motion Recognition in Small Sample Scenarios Based
on GAN and CNN Models

Ying-Jie Zhong and Qiu-Sheng Li*

Abstract—In the research of radar-based human motion classification and recognition, the traditional
manual feature extraction is more complicated, and the echo data set is generally smaller. In view of
this problem, a method of human motion recognition in small sample scenarios based on Generative
Adversarial Network (GAN) and Convolutional Neural Network (CNN) models is proposed. First,
a 77GHz millimeter wave radar data acquisition system is built to obtain echo data. Secondly, the
collected human motion echo data is preprocessed, the micro-Doppler features are extracted, and the
range Doppler map (RDM) is used to project the velocity dimension and accumulate the two-dimensional
micro-Doppler time-frequency map data set of the human motion frame by frame. Finally, the deep
convolution generative adversarial network (DCGAN) is constructed to achieve data augmentation
of the sample set, and the CNN is constructed to realize automatic feature extraction to complete
the classification recognition of different human motions. Experimental studies have shown that the
combination of GAN and CNN can achieve effective recognition of daily human motions, and the
recognition accuracy can reach 96.5%. Compared with the manual feature extraction, the recognition
accuracy of CNNs is improved by 7.3%. Compared with the original data set, the system recognition
accuracy based on the sample augmentation data set is improved by 2.17%, which shows that the GAN
has an excellent performance in human motion recognition in small sample scenarios.

1. INTRODUCTION

Human motion recognition research based on sensors [1] and video data [2] has been developed rapidly
and widely used in safety intelligent monitoring, somatosensory games, automatic driving, etc. However,
this passive imaging method is greatly affected by the environment, and the recognition rate fluctuates
greatly under camouflage conditions. Radar technology has the advantages of all-day, all-weather, and
strong penetration ability, and its application in human motion recognition has received more and more
attention. Among them, human motion recognition based on radar target micro-Doppler effect [3] is
an important research direction. However, in practice, using radar to collect target echoes is time-
consuming and labor-intensive, and radar data samples are generally small in scale. Therefore, further
research on the expansion algorithm of radar sample data sets is undoubtedly of great significance to
the research on human motion recognition.

The performance of radar-based human action recognition schemes largely depends on the effective
extraction of micro-motion features. At present, most of them use traditional machine learning methods,
rely on statistical theory, and rely on shallow features extracted from raw echo data for recognition.
Reference [4] uses Principal Component Analysis (PCA) to extract features from the raw echo signal and
combines it with support vector machine (SVM) for motion recognition and classification. Reference [5]
extracts the weighted distance-time-frequency spectra, uses PCA for feature selection and reduction, and
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performs performance verification through SVM. Reference [6] uses PCA to analyze the characteristics
of the raw echo signal and uses the improved SVM to classify and recognize human motions.

Deep learning can learn the essence of data from a large amount of data. It has made breakthrough
progress in image classification [7], speech processing [8], text classification [9], etc. At present, deep
learning has also begun to be applied to the classification of micro-motion signals. Kim and Moon of the
University of California first used CNNs for human object detection and human gait classification [10],
as well as the recognition of different swimming styles and ships underwater [11]. Their research work
shows that deep learning has important potential in solving human micro-motion feature extraction and
target classification and recognition.

However, although deep learning has the advantages of strong learning ability and high accuracy
of target classification and recognition, it requires a large amount of training data. In addition, it is
difficult and expensive to obtain labeled samples for human motion recognition, and overfitting is prone
to occur when training in scenarios with a lack of data. Therefore, in recent years, many studies have
focused on expanding datasets, mainly including random cropping, rotation, flipping, etc. However, for
the micro-Doppler time-frequency map with different human motion features, the traditional extension
method will change the feature semantics, making the motion change in time and space, and cannot
describe the real motion information. This requires the study of new learning strategies to expand
the sample size, effectively utilize prior knowledge, and achieve data augmentation with fewer labeled
samples. Generative Adversarial Networks (GANs) have been used in dataset generation in recent
years [12–14]. Therefore, in order to construct a reasonable network model, it is necessary to design
effective learning strategies and make better use of prior knowledge to achieve effective recognition
of human motions. Using GAN to construct a network model that describes the small differences of
human micro-motion signals and characterizes the time series characteristics is an effective way to use.
This paper intends to explore a new method for human motion recognition based on deep convolutional
generative adversarial networks (DCGANs) by using millimeter-wave radar.

2. THEORETICAL BASIS

2.1. Millimeter Wave Radar Echo Model

Different from the traditional pulse radar system that periodically transmits short pulses, this paper
adopts a 77GHz frequency-modulated continuous wave (FMCW) radar to measure the distance and
speed of the target by continuously transmitting a frequency-modulated signal (Chirp signal) whose
signal frequency increases linearly with time [15]. At the same time, the Short Range Radio (SRR)
band in the 77GHz frequency band can provide a scanning bandwidth up to 4GHz, and the range
resolution and accuracy are significantly improved, which is conducive to the capture of subtle human
movements. The radar uses sine wave to modulate the carrier frequency. At this time, the radar
transmission frequency can be expressed as

ft = f0 +
∆f

2
cos 2πfmt (1)

The transmitted signal can be expressed as

ut = Ut sin

(
2πf0 +

∆f

2fm
sin 2πfmt

)
(2)

At this time, the echo signal reflected by the target is expressed as

ur = Ur sin

[
2πf0(t− T ) +

∆f

2fm
sin 2πfm(t− T )

]
(3)

where fm is the modulation frequency, ∆f the frequency offset, and T = 2R/c the residence time. The
intermediate frequency (IF) signal is obtained by subtracting the transmitted signal from the received
signal in the mixer. Therefore, the differential frequency voltage is expressed as follows:

ub = kUtUr sin

{
∆f

fm
sinπfmT ∗ cos[2πfm(t− T ) + 2πf0T ]

}
(4)
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2.2. Micro-Doppler Effect Analysis

The radar transmits electromagnetic signals to the target through the transmitting antenna, while the
receiving antenna receives the target echo. If the target is in motion, the frequency of the received
signal will change and deviate from the frequency of its transmitted signal, which is called “Doppler
effect” [16]. The degree of Doppler shift depends on the radial velocity of the moving radar target.
Generally speaking, the radial velocity v of the target relative to the radar is much less than the
electromagnetic wave propagation velocity c. When there is movement between the moving target and
the observation radar, the distance between them at time t is

R(t) = R0 − vt (5)

The time delay can be expressed as

T =
2R(t)

c
=

2

c
(R0 − vt) (6)

High frequency phase difference is

φ = −2π
2

λ
(R0 − vt) (7)

Therefore, the total Doppler shift of the target is

fD =
1

2π

dφ

dt
=

2

λ
v = f

2v

c
(8)

The movement of the main body of the target generates Doppler offset frequency. If any part
of the target has small movement, the micro-motion will induce additional frequency modulation on
the radar echo, thus resulting in signal side frequencies. This additional Doppler modulation is called
“micro-Doppler effect”. Therefore, micro-Doppler effect refers to the physical phenomenon that the
vibration, rotation, and other small movements in the radar target or target structure produce Doppler
frequency modulation in the radar echo signal.

2.3. GAN

GAN is a new deep network framework. It abandons the traditional way of improving learning ability
through the simple stacking of network layers. It has two parts, the generator and discriminator. It uses
their “countermeasure game”, that is, the discriminator feeds back the difference between the identified
real samples and the generated samples to the generator, improves the generator to continuously improve
its ability to “forge” data, and finally realizes that it is difficult for the discriminator to distinguish the
real and generated data. The structure of the GAN model is shown in Figure 1. Random noise and latent
variables are input into generator G in the GAN model to generate realistic samples. The distribution
of the samples is as consistent as possible with the distribution of the real micro-motion signals. The
real data and generated data are input into the discriminator D at the same time to discriminate the
authenticity; the discriminant result is fed back to the generator; and the training is repeated in a loop

Figure 1. The overall framework of the GAN model.
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until the Nash equilibrium is reached. The training of GAN can be regarded as a minimax optimization
process, as shown in Equation (9).

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (9)

where x represents the real data, z the random noise, Pdata(x) the distribution of real data, and Pz(z)
the prior distribution of random noise.

V (D,G) is a binary cross entropy function. The discriminator D attempts to maximize V (D,G)
while the generator G attempts to minimize it, thus forming a minimax relationship, which is solved by
alternately performing the following two gradient updates.

θt+1
D = θtD + λt∇θDV (Dt , Gt) (10)

θt+1
G = θtG + λt∇θGV (Dt+1 , Gt) (11)

3. MODEL BUILDING

3.1. Extraction of Human Micro-Doppler Features

Human walking is formed by the association of scattering points of various parts of the body, and its
motion forms are extremely rich, which is a typical articulated non-rigid body motion. When the radar
detects the human target, its echo signal contains the mixed Doppler information modulated by the
human body’s translation and non-rigid micro-motion, and the expression is also extremely complex.
In the research of human motion recognition, the micro-Doppler effect is considered to be the unique
reflection of human target movement characteristics in radar echoes and is a unique feature that marks
human targets. Nowadays, the effective extraction of micro-motion features of radar targets and the
analysis of micro-Doppler effects have become a research hotspot in the field of radar technology [17].
Aiming at the problem of human motion recognition, this paper preprocessed the echo of human behavior
to extract the unique features that reflect different human motions, and then constructs a micro-Doppler
time-spectrogram dataset. Figure 2 shows the processing flow of radar echo data.

Figure 2. Data processing flow.

For radar data, the IF signal after mixing is sampled at the mth sampling point of the nth cycle
to obtain a discrete IF signal, which is parsed into a two-dimensional data matrix R[m,n], where m is
the sampling points in a frequency modulation cycle, that is, m is the fast time sampling point, and n
is the total number of frames in a sampling period, i.e., n is the slow time sampling point.

R = [ r1 . . . r2 . . . rn ] (12)

rn = [ r1,n . . . r2,n . . . rm,n ]T (13)

After the radar echo is effectively analyzed, in order to effectively eliminate the influence of the
other clutter in the detection environment, it is necessary to suppress the echo data. In this paper, the
mean value filtering is used to process the echo. This method is mature in technology and simple in
principle. The time-frequency diagram comparison after mean filtering is shown in Figure 3. It can be
seen from Figure 3 that the preprocessing reduces the blurring and covering, and the motion features
in the time-frequency map are clearer.
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Figure 3. Comparison of clutter suppression.

Using the mean filtering processing matrix R, firstly average all received signals rn, and then
subtract the mean reference received signal from each received signal to obtain the target echo signal
after clutter suppression. The mathematical expression can be expressed as

R[m,n] = R[m,n]−K[m] (14)

where K[m] is the mean value reference received signal, expressed as follows:

K[m] =
1

N

N∑
n=1

R[m,n] (15)

Based on the obtained data matrix R, the windowed range Fast Fourier Transform (FFT) is
performed after adding Hamming window to the fast time dimension to obtain high-resolution one-
dimensional range information. And then the Doppler FFT is performed in the slow time dimension
with a Hamming window to obtain a Range-Doppler Map (RDM). RDM effectively extracts the range
and velocity related features of all scattering points of human targets in the radar signal frame. Different
RDMs can be obtained based on the differences between different human movements.

For the echo processing of a single human target in this paper, it is assumed that RD(i, j, t) is used
to represent the signal power value of the tth frame of the RDM at the ith distance gate and the jth
speed gate. Then, the extracted RDM of human motion is further projected to the velocity dimension
and accumulated column by column to obtain the micro-Doppler time-spectrogram generated by the
target movement, as shown in Figure 4. The horizontal axis represents the frame number corresponding
to the echo signal, and the vertical axis represents the corresponding speed under the speed gate label.
Therefore, the micro-Doppler frequency can be expressed as

DP (t, j) =
∑
i

RD(i, j, t) (16)

3.2. Data Augmentation Recognition Model Based on DCGAN

Human motion recognition based on Radar generally has the problem that the echo dataset is too
small. Therefore, it is necessary to expand the number of training samples and improve the recognition
accuracy. At present, the commonly used data augmentation methods include rotation, mirroring, local
cropping, etc. The rotation of the time-spectrogram will cause the direction of the motion feature to be
opposite to the real motion, which cannot be applied to the recognition experiment. Also, mirroring will
cause the time-varying micro-Doppler frequency to reverse the time sequence, so it is not suitable for the
human motion recognition. Local cropping can easily lead to the lack of complete motion information.
In the cropping process, it is necessary to strictly control the region to obtain complete information of
a motion, and the operation is complicated. Therefore, this paper uses a GAN to expand the sample
dataset. Figure 5 shows the specific flowchart of the recognition model, that is, the dataset is first
expanded by using DCGAN and then input to the CNN for classification and recognition.

DCGAN is an improvement on the basis of GAN. It uses CNN to replace the multi-layer perceptron
in the GAN discriminator and generator to improve the stability of the model. In the discriminator, a
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(a) Bend (b) Clap (c) Run

(d) Squat (e) Walk (f) Wave

Figure 4. Micro-Doppler time-frequency map of different human motions.

Figure 5. Flow chart of DCGAN and CNN model construction.

convolutional layer is used to extract features; in the generator, a transposed convolutional layer is used
to restore the information in the image. The structures of the DCGAN generator and discriminator are
shown in Figure 6 and Figure 7.

As can be seen from Figure 6, the generator network structure consists of a total of 5 layers of
transposed convolutions. The convolution kernel size of the first four layers in the generator network is
set to 4 × 4, and the last layer is set to 5 × 5. The convolution stride is [1, 2, 2, 2, 3]. The input to
the generator network is random normally distributed noise with dimension Z = 100. The transposed
convolutional layer is used for upsampling. Except for the last layer, the rest of the layers are sampled
and then processed by Batch Normalization (BN), and processed by the nonlinear Rectified Linear
Unit (ReLU) activation function. The Tanh activation function is used behind the last transposed
convolutional layer to output a 3×96×96 RGB image. As can be seen from Figure 7, the discriminator
network structure consists of 5 layers. The size of the convolution kernel of the first convolutional
layer is 5 × 5; the remaining convolutional layers is 4 × 4; and their convolution strides are [3, 2, 2,
2, 1], respectively. BN is performed after each convolution layer, and then processed by the nonlinear
LeakyReLU activation function. The last layer uses the Sigmoid activation function, and finally judges
the authenticity of the input image. The optimizer selected by DCGAN in this paper is Adam. The
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Figure 6. Schematic diagram of the structure of the generator.

Figure 7. Schematic diagram of the structure of the discriminator.

Figure 8. Recognition model based on convolutional neural network.

batch size of the training process is set to 10, the learning rate of the generator and discriminator set
to 0.0002, and the total number of training times is 100.

There are various convolutional neural network structures for different classification and recognition
applications. The samples of human motion recognition studied in this paper are based on measured
radar echo data, which is a small sample dataset, and the feature differences between samples after
preprocessing are obvious. Therefore, the constructed convolutional neural network is a small shallow
network as shown in Figure 8. The shallow CNN structure is composed of three layers, each of which
contains a convolution layer and a maximum pooling layer, and the number of channels in each layer
is [4, 8, 16]. In this paper, the CNN recognition model adopts the cross entropy loss function; the
iteration batch is set to 20; and the total number of training times is 100. Using stochastic gradient
descent (SGD) optimizes the model parameters. In the experiment, to achieve a better training effect,
the learning rate is adjusted at equal intervals, and the learning rate is set to decrease every epoch. At
this time, the learning rate decay factor is set to 0.98.
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4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Experimental Setup and Data Acquisition

The experiment uses the industrial millimeter wave radar sensor IWR1642 and DCA1000 data
acquisition board to build a real-time data acquisition platform to obtain the radar echo data of human
motion. IWR1642 radar equipment development platform is equipped with PC (Personal Computer)
control terminal mmWave Studio, which can realize real-time acquisition, transmission processing, and
visualization of target echoes. The acquisition module of this radar equipment is shown in Figure 9. The
mmWave sensor IWR1642 has a continuous bandwidth of up to 4GHz covering 76 to 81GHz, uses a low-
power 45 nm Radio-Frequency Complementary Metal-Oxide Semi-Conductor (RFCMOS) process, and
its TX Power (transmission power) is 12.5 dBm, making it an ideal solution for low-power radar systems.
The IWR1642 continuously emits FMCW forward to capture radar echoes of moving humans in its path.
The echo contains the speed and distance information of the human target. After preprocessing the echo,
the two-dimensional micro-Doppler time spectrum of human action can be obtained. The performance
and application scenarios of the radar system depend on the different parameters of the radar. The
main indicators that determine its performance are the Maximum Unambiguous Range (Rmax), the
Maximum Unambiguous Speed (Vmax), the Range Resolution (∆R), and the Velocity Resolution (∆V ).
Their expression is as follows

Rmax =
Fsc

2S
(17)

Vmax =
λ

4Tc
(18)

∆R =
c

2B
(19)

∆V =
λ

2NTc
(20)

where Fs is the Analog to Digital Converter (ADC) sampling rate, S the frequency modulation (FM)
slope, Tc the frequency modulation period, B the bandwidth, and N the number of pulses per frame.
In order to ensure the validity of the training data, the data collection work in this experiment is
selected to be carried out in an outdoor semi-open open environment, and there is no other moving
target interference in the environment. The radar antenna is fixed on a tripod with a height of 0.9m.
The measured target is 2.5m away from the radar and moves radially relative to the radar. Figure 10
shows the data acquisition site. In the experiment, the radar is set as a transmitter-receiver type, and
the radar parameter settings are shown in Table 1. The number of tested human targets is five people.
Choose six kinds of human motions, which are: (1) bending; (2) clapping; (3) running; (4) squatting;
(5) walking; (6) waving. To ensure the integrity of the acquisition actions, the acquisition duration is
set to 2 s. The six human motions belong to daily behaviors, and these motions have both similarities
and great differences in range profiles. The target moves towards the radar, and each motion is repeated
50 times.

Table 1. Radar equipment parameter settings.

Parameter Value

FM start frequency (GHz) 77

FM slope (MHz/µs) 64

ADC sampling points 256

Pulses per frame 128

Sampling Rate (msps) 5.12
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Figure 9. Radar equipment. Figure 10. Data collection site.

4.2. Construction of Experimental Sample Set

In the experiment, millimeter wave radar echoes sample data were acquired for each human motion.
In the experiment, 250 sets of radar echo data have been collected for each different human motion.
After the micro-Doppler feature extraction is performed on the raw echo data, a two-dimensional micro-
Doppler spectrogram containing motion features is obtained; 150 spectrograms are randomly selected
as the training sample set D1; and the remaining 100 spectrograms are used as the test sample set D2.
On the basis of D1, the constructed DCGAN is used to generate the time-spectrograms of 6 different
types of human motions at a ratio of 1 : 1 to obtain the extended sample training set D3. The specific
information statistics of the sample sets are shown in Table 2.

Table 2. Statistics of sample set information.

Human

motions
Label

Training sample

set D1

Test sample

set D2

Augmented training

sample set D3

bending bend 150 100 300

clapping clap 150 100 300

running run 150 100 300

squatting squat 150 100 300

walking walk 150 100 300

waving wave 150 100 300

The sample sets in Table 2 are randomly scrambled. From the statistical information of training
samples, test samples, and extended samples in Table 2, it can be seen that the total number of samples
in D1 is 900; the total number of samples in D2 is 600; and the number of samples in D3 is 1800.

4.3. Analysis of Experimental Results

4.3.1. Model Evaluation

The DCGAN and CNN models in this paper are trained using the processed sample set. Use the
augmented training sample set D3 to train the neural network, save the training model, and test the
performance of the designed model using the test sample set D2 that is not involved in the training.
Define Accuracy acc as:

acc =
Ptrue

Pn
(21)

where Ptrue is the number of all correctly classified samples, and Pn is the total number of samples.
Figure 11 shows the change curves of the recognition accuracy of the training set and the test set in the
experiment. The prediction accuracy of the test set is about 96%.
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Figure 11. Accuracy change curves. Figure 12. Confusion matrix.

The confusion matrix is a visual representation of what is correctly identified and what is incorrectly
identified by the network. Each column element of the matrix represents the actual type of the input
time-spectrogram; each row element represents the model’s predicted type; and the diagonal elements
represent correctly identified cases. In this paper, the confusion matrix evaluation model is used to
obtain the results shown in Figure 12. Observing Figure 12, it can be seen that the values on the
diagonal are generally higher, indicating that the proposed network model can correctly identify most
of the time-spectrograms in various motions. The accuracy of the model recognition rate is 96.5%.
Figure 12 also shows that two motions, clapping and waving, are prone to misrecognition, followed by
the two motions of running and walking, while the proposed model has higher recognition accuracy for
other daily motions.

There are four indicators in the classification task, namely: True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN). Indicators such as precision, recall, and specificity are
commonly used to evaluate the performance of the model. These performance indicators are defined as
follows:

(1) Precision: represents the probability that the predicted positive samples are actually positive
samples, and its expression is:

precision =
TP

TP + FP
(22)

(2) Recall: represents the probability that the actual positive sample is predicted to be a positive
sample, and its expression is:

recall =
TP

TP + FN
(23)

(3) Specificity: represents the proportion of predicted negative samples to actual negative samples, and
its expression is:

specificity =
TN

FP + TN
(24)

where TP and TN represent the number of each type’s human actions correctly predicted as this
type of action. FP is the number of other actions incorrectly identified as this type of action, and
FN is the number of this type’s actions incorrectly predicted as other actions. Table 3 shows the
evaluation results of the model using the above three indicators. It shows that the model presented
in this paper shows good performance.
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Table 3. Model evaluation indicators.

Tag category Precision Recall Specificity

bend 1.0 0.99 1.0

clap 0.907 0.98 0.98

run 0.97 0.96 0.994

squat 1.0 0.96 1.0

walk 0.96 0.96 0.992

wave 0.959 0.94 0.992

4.3.2. Comparison with Manually Extracted Features

In order to make an objective and fair evaluation of the system that uses CNN to solve human motion
recognition in this paper, this system is compared with different human posture recognition schemes,
such as the most commonly used and classic SVM recognition methods. In the following experiment,
we will analyze the performance of the CNN-based classification method proposed in this paper with
the PCA+SVM-based human motion recognition method adopted in [5] as a contrast. Table 4 shows
the comparison of accuracies of the two methods. It can be seen from the table that the accuracy
of the deep model based on CNN is much higher than that of SVM, and the accuracy of different
motions by the CNN-based method is nearly 92%. The PCA+SVM-based method has slightly better
classification performance for waving than the CNN method in this paper, and the accuracies for the
other five motions (bending, clapping, running, squatting, and walking) does not exceed the CNN
method, especially for bending and squatting. Therefore, the overall performance of the CNN model in
this paper is significantly better than the SVM method.

Table 4. Comparison of the Accuracies of PCA+SVM and CNN/%.

Compare items PCA+SVM CNN

bend 80 99

clap 83 90

run 91 97

squat 82 92

walk 93 96

wave 93 92

Average Accuracy 87 94.3

4.3.3. Model Validation

For the model test of data augmentation, this paper chooses to compare and analyze the CNN network
without data augmentation and the DCGAN-CNN model after data augmentation using DCGAN. The
confusion matrix for classification recognition using only the CNN model is shown in Figure 13. In
the contrast experiment, the uniform iteration number is set to 100, and the two different classification
methods are discussed, respectively. Figure 14 shows the accuracy change curves of the training set
and test set of the two classification methods. The comparison of precision and recall of the models is
shown in Table 5.

It can be seen from Figure 12 to Figure 14 that the accuracy of using only the CNN model is
94.33%, while the accuracy of the model after data augmentation reaches 96.5%, which is 2.17% higher
than that of the model without data augmentation. It can be seen from Table 5 that the precision
of bending, running, squatting, and waving has been improved, and better classification performance
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Table 5. Model performance comparison.

Comparative indicators Model bend clap run squat walk wave

precision
CNN-DCGAN 1.0 0.907 0.97 1.0 0.96 0.959

CNN 0.99 0.909 0.96 0.979 0.97 0.86

recall
CNN-DCGAN 0.99 0.98 0.96 0.96 0.96 0.94

CNN 0.99 0.90 0.97 0.92 0.96 0.92

Figure 13. CNN identification confusion matrix. Figure 14. Comparison of training results.

has been obtained, especially the precision of waving. For the two types of motions, clapping and
walking, the precision of the data-augmented model is slightly lower than that of the model without
data augmentation, but the recall rate of the two types of actions is significantly higher than or equal to
the model without data augmentation. In general, the recognition experiments after data augmentation
using GAN have achieved better results. Experiments show that the CNN-DCGANmodel can effectively
handle the classification tasks of different daily motions of the human body, so it is an effective way to
use GAN to realize the effective expansion of the radar human motion echo dataset.

5. CONCLUSION

In this paper, a human motion recognition model of millimeter wave radar based on the GAN and
CNN in small sample scenes is proposed, which can recognize human motions on the basis of effective
data augmentation. By building a 77GHz millimeter wave radar data acquisition system, the human
motion radar echo data set is obtained to effectively extract the micro-Doppler information of complex
human motion echo. At the same time, DCGAN is constructed to enhance the sample data, and the
CNN is combined to recognize different human motions. Compared with artificial feature extraction,
the recognition accuracy of CNN is improved by 7.3%. Compared with the original data set without
sample augmentation, the recognition accuracy of the system based on sample augmentation data set
is improved by 2.17%. The above results prove that the recognition model proposed in this paper has
high practical value in improving the recognition accuracy and complexity. However, the experimental
simulation is set up in an ideal environment without other target interference. In the follow-up research
and practical application, it is also necessary to consider the recognition and detection of human motions
in complex environments.
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