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An Optimization Analytical Method for Synchronous Machine
Model Design from Operational Inductance Ld(s)

Farid Leguebedj*, Djamel Boukhetala, and Mohamed Tadjine

Abstract—This paper presents an analytical method for the optimal estimation of time constants of
synchronous machine from Stand Still Frequency Response Testing (SSFR). We show that the analytical
method is advantageous over the conventional one since the latter is based on curve fitting representing
the variation of the operational inductance as a function of the frequency and provides inaccurate and
non-unique solutions. In fact, the analytical method applies the standard theory of linear systems to
locate the values of poles and zeros in the frequency response and determines the optimal order of the
equivalent circuit that can model the machine accurately. The proposed method is simple, practicable,
and effective. However, it needs an optimisation process based on parameter differentiation to improve
the values of time constants. Based on the measured data, realistic tests are given to show the advantages
of the method.

List of Symbols

s: Laplace’s operator

V d: d-axis stator voltage

V f : d-axis field voltage

Zd(s): d-axis operational impedance

Ld(s): d-axis operational inductance

Ld: d-axis synchronous inductance

Ra, Rf : armature and field resistances

Rk, Rb, Re: d-axis damper resistances

Lk, Lb, Le: d-axis magnetizing inductance

Lmd: direct-axis armature to rotor mutual inductance

Lamd: the parallel combination of Lmd and La

Lamdf : the parallel combination of Lmd, Lf and La

Lmdf : the parallel combination of Lmd and Lf

Td0′, Td′: d-axis transient open circuit and short-circuit time constant

Td0′′, Td′′: d-axis subtransient open circuit and short-circuit time constant

Td0′′′, Td′′′: d-axis sub-subtransient open circuit and short-circuit time constant

Td0′′′′, Td′′′′: d-axis sub-sub-subtransient open circuit and short-circuit time constant

Fce: center frequency

β: constant
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1. INTRODUCTION

Synchronous generators are the most important parts of a supply system. Analysis of the behavior
of synchronous generators for studying the stability and power control requires the knowledge of
the parameters of synchronous machine [1]. The accurate identification of these parameters is very
important. Several measurement techniques and identification methods have been reported in the
literature for the determination of synchronous machine model parameters [2]. The graphical analysis
of short-circuit tests [3, 4] is a classic of the IEEE standard 115 [5] allowing to obtain the parameters of
d-axis and cannot identify the parameters of q-axis. Some investigations [6–8] based on the time analysis
of the machine’s response to standstill (Standstill Time Response or SSTR) have been examined. A
similar approach with a rotating rotor (Rotating Time-Domain Response or RTDR) is described in the
IEEE standard 115 [5]. RTDR has been used to determine machine parameters along both axes [9, 10].

The rapid development of computers has allowed the emergence of several other identification
methods for the model of a synchronous generator. Indeed, it is possible to estimate parameters
during normal operation of the machine (On-line measurements). Such methods are classified into
two categories. The first is based on a “grey box” modeling in which we assume a known model
structure such as the use of orthogonal series [11, 12] or the use of Kalman filter [13]. The second uses
a “black box” modeling in which no model structure is assumed to be known a priori. In this case, the
only objective of the identification is to establish the correspondence of the inputs to the outputs of the
system using the method of neural networks [14, 15] or Volterra series [16].

Currently the most widespread approach for determining the parameters of the d-q model from
SSFR stand still frequency response test has been introduced in [17]. During the SSFR frequency
tests at standstill, the machine is stationary, and the rotor is aligned along the d-axis or q-axis. Two
phases of the stator are supplied in series by a sinusoidal voltage source of variable frequency. The
machine parameters are then determined by a transfer function optimization process characterizing the
d-q model.

Despite the popularity of SSFR, only some publications [18] present the experimental setup in
detail (for example the technical characteristics of the measuring and recording devices, the range
and number of frequencies tested, the magnitude of source voltage). Such information is necessary to
obtaining satisfactory measurements for data analysis. Some authors have investigated issues that can
affect SSFR results, including the level of machine magnetization during testing [19, 20] and variation
in stator resistance [21].

Apart from these experimental considerations, another difficulty of the SSFR method concerns the
identification of the parameters from the measured data. Indeed, as in any problem of identification
of a system, it is necessary to choose the type of model, estimator, the algorithm of minimization, and
the initial values to be imposed. The different possible structures of the d-q model are presented in the
IEEE standard 1110 [22]. The variants mainly depend on the number of branches used to represent the
rotor circuit in each axis according to the type of construction of the rotor [23].

Regarding the identification method used, the method suggested in the IEEE standard 115 [5] is
the method of least squares. It consists in minimizing the weighted sum of the errors between the
transfer functions predicted by the chosen model and those measured experimentally. This method is
straightforward and easy to implement using the Levenberg-Marquardt and Gauss-Newton algorithms.
A major drawback of this method is that the result can converge to a local minimum depending on
the initial values used and the choice of model. Other more robust alternatives are presented in some
publications, such as the Maximum Likelihood Method [24], genetic algorithms [25, 26], and particle
swarm optimization [27], or stochastic fractal search algorithm [28]. However, their implementation
is more complex and requires more computing power than the methods suggested in the IEEE 115
standard [5].

In this paper, the results of the time constants estimation of synchronous machine from Standstill
Frequency Response Testing (SSFR) are presented. An efficient identification method is used for optimal
estimation of the time constant based in differentiation of frequency, magnitude, phase, and slope, and
directly determines the exact order of the model representing the equivalent circuits. This analytical
method is applied to real data, and the results are very satisfactory.
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2. DIRECT-AXIS MODEL STRUCTURE OF A SYNCHRONOUS MACHINE AND
PARAMETERS

The determination of synchronous machine parameters from the transfer function represents the
operational inductance as a function of frequency. The operational inductance is derived from the
machine’s impedance which is measured at the terminals of the stator. This method has three main
steps:

• Conversion of impedance to the operational inductance.

• Determination of the time constants from the operational inductance.

• Determination of machine’s parameters from inductances and time constants.

The conversion of the machine’s impedance to the operational inductance is based on the equivalent
circuit of the direct axis of a synchronous machine used for the transient studies, Figure 1.

Figure 1. Equivalent Circuit of a fourth order model for direct axis.

2.1. Analysis of Synchronous Machine Models

2.1.1. First Order Model

Figure 1(a) shows the equivalent circuit for the first order model, and the Ld(s) of this circuit is
calculated as below [29]:

Ld(s) =
Rf (La+ Lmd) + s(LaLmd+ LaLf + LmdLf)

Rf + s(Lmd+ Lf)
(1)

Equation (1) can be written in standard form as follows:

Ld(s) = Ld
(1 + sTd′)

(1 + sTd0′)
(2)

Ld = La+ Lmd (3)

2.1.2. Second Order Model

Figure 1(b) represents the derivation of the operational inductance of the second order model. The
operational inductance of this model can be written as [29]:

Ld(s) =
(La+ Lmd) (Rf + sLf) (Rk + sLk) + sLaLmd(Rf + sLf +Rk + sLk)

(Rf + sLf) (Rk + sLk) + sLmd(Rf + sLf +Rk + sLk)
(4)
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Equation (4) can be simplified, giving:

Ld(s) = (La+ Lmd)

1 + s

[
Lf + Lamd

Rf
+ Lk+Lamd

Rk

]
+

s2 (LfLk + Lamd) (Lk + Lamdf)

RfRk

1 + s

(
Lf + Lmd

Rf
+

Lk + Lmd

Rk

)
+

s2 (Lmd+ Lf) (Lk + Lmdf)

RfRk

(5)

Equation (5) of the operational inductance becomes:

Ld(s) = Ld

(
1 + s (Td′ + T1) + s2Td′Td′′

)
(1 + s (Td0′ + T2) + s2Td0′Td0′′)

(6)

where:

T1 = (Lk + Lamd)/Rk;

T2 = (Lk + Lmd)/Rk
(7)

Applying the quadratic formula for the numerator and denominator of Ld(s), we obtain the roots
of the zero-pole extracted from Equation (6), and it has been proven that the roots of the last equation
are real whatever the time constants. Hence the operational inductance for a second order model can
be written as:

Ld(s) = Ld
(1 + sTd′) (1 + sTd′′)

(1 + sTd0′) (1 + sTd0′′)
(8)

2.1.3. Third Order Model

Using the derivation method described above, the transfer function of the operational inductance for a
model of the third order shown in Figure 1(c) can be expressed by:

Ld(s) = Ld
(1 + sTd′) (1 + sTd′′) (1 + sTd′′′)

(1 + sTd0′) (1 + sTd0′′) (1 + sTd0′′′)
(9)

2.1.4. Fourth Order Model

The equivalent circuit for the fourth order model is shown in Figure 1(d). It is clear from previous
analysis that a pair of poles zeros are added in each transfer function.

The operational inductance is given by:

Ld (s) = Ld
(1 + sTd′) (1 + sTd′′) (1 + sTd′′′) (1 + sTd′′′′)

(1 + sTd0′) (1 + sTd0′′) (1 + sTd0′′′) (1 + sTd0′′′′)
(10)

3. EXPERIMENTAL TESTS ON A PRODUCTION GENERATOR

In order to validate the method used, we choose a machine of power 277.8MVA and voltage 16.5KV.
The SSFR results are published in the work EPRI [30], and the d-axis impedance has been introduced
for the determination process of synchronous machine model and time constants.

4. THE OPERATIONAL INDUCTANCE

In order to explain the procedure of determination of a frequency response of Ld(s), we use the
experimental measurements of the impedance Zd(s) given in [30], Figure 2.

Equation (11) gives the expression of Ld(s):

Ld (s) =
Zd(s)−Ra

s
(11)

The stator resistance Ra is expressed by:

Ra = lim
s→0

|Zd(s)| (12)
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The principle of the method for measuring the armature resistance consists in considering the
asymptotic value (for frequency approaching zero) of the real part of the operational impedance. The
measured data was extrapolated using MATLAB’s Curve Fitting. The curve fitting was done using the
polynomial fitting option. The polynomial degree is chosen so as to have the best R-squared value. For
this, a 4th order polynomial fit, Figure 3, provides the value of Ra = 0.002000Ω.

Figure 2. Frequency response of the impedance
(measured data).

Figure 3. Variation of the resistance versus
frequency.

Figure 4 shows the magnitude of the operational inductance in Henry [H] as function of frequency.
When the frequency tends to zero, the asymptotic value of |Ld(s)| represents the value of synchronous
inductance Ld = 0.004898H.

Figure 5 illustrates the operational inductance magnitude in dB and its phase in degree as function
of frequency.

Figure 4. Variation of the operational
inductance (in H) versus frequency.

Figure 5. Frequency response of the operational
inductance in terms of magnitude (in dB) and
phase in (degrees).
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5. SENSITIVITY TO STATOR RESISTANCE

In this section, we analyse the effect of the the stator resistance on the operational inductance in terms
of magnitude and phase. For this, several stator resistances have been considered, as follows:

Ra− 2%Ra, Ra− 4%Ra,Ra, Ra+ 2%Ra and Ra+ 4%Ra

Note that Ra = 0.00200Ω.
Figure 6(a) (respectively 6(b)) shows the evolution of the operational inductance magnitude

(respectively phase) versus frequency for different stator resistances. We notice that there is a significant
difference in the phases and magnitudes of the operational inductance at the beginning of the frequency.
The difference between the curves decreases as the frequency increases. The values of the phases as well
as the magnitudes begin to coincide from the 0.08Hz frequency. For this frequency, all phase curves
pass through a minimum. The difference between them does not exceed 6 degrees. Such difference still
decreases with the frequency increase. Beyond 1Hz, a total coincidence among all curves is observed.

(a) (b)

Figure 6. (a) Frequency response of the operational inductance magnitude, for different stator
resistances. (b) Frequency response of the operational inductance phase, for different stator resistances.

In our study, we have interested in the minimum highlighting by the phase curves for 0.08Hz, since
such minimum is paramount in the determination of the initial time constants, using the analytical
method.

6. TIMES CONSTANT DETERMINATION

It is this part of the process that is most crucial for determining the parameters of the machine, since
the values of the resistances and inductances of the branches of the equivalent circuit are intimately
linked to these time constants.

6.1. Numerical Curve Fitting Techniques

Numerical curve fitting techniques were used to find the best time constants to fit the frequency response
data employing the magnitude and phase of the measured data. This process has several problems such
as:

• Before beginning the analysis, we predefine the model’s order.
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• Fit the curve, with an initial estimate of parameters.

• Define a cost function for optimising.

By using the commands ‘freqs’ and ‘invfreqs’ in MATLAB, we can convert the measured data of
frequency response to transfer function for different models.

The following results have been obtained with MATLAB.
First order model:

Ld(s) = 0.004500
(1 + 0.491032s)

(1 + 2.301883)
(13)

Second order model:

Ld(s) = 0.004898
(1 + 0.820584s) (1 + 0.005902s)

(1 + 3.858375s) (1 + 0.008495s)
(14)

Third order model:

Ld(s) = 0.004899
(1 + 0.896976s) (1 + 0.084855s) (1 + 0.002473s)

(1 + 3.944719s) (1 + 0.101208s) (1 + 0.003354s)
(15)

6.2. The Analytical Method

The analytical method is based on the standard theory of linear systems. Otherwise, the equivalent
circuits of the synchronous machine are formed by simple branches (R, L), connected in parallel. So,
these branches can be represented in the complex plane by a series of pairs poles-zero combinations.
With this, it is possible to separate the transfer function by applying iterative subtraction of individual
frequency responses for the particular branch. In a pole-zero the center frequency corresponds to the
point with minimum phase. As a consequence, a parameter beta can be defined, related to both the
value phi of the minimum phase and the gain change Gch of the pole-zero pair:

sin (φ) =
1− β

1 + β
(16)

Gch = −20log10 (β) (dB) (17)

The values of time constants Td and Td0 can then be obtained from:

Td =

√
β

2πFce
(18)

Td =
Td0

β
(19)

In order to identify the time constants, the analytical method begins with the first identification
of pole-zero pair from the operational inductance shown in Figure 5. The subtraction of the frequency
response of the operational inductance gives a new residue frequency response. From this, the other
pole-zero pair is identified from the next minimum phase. The substraction of the frequency responses
of successive pole-zero pairs is done until there are no peaks of phase. The process is finished, and the
model order is finally determined.

To implement the analytical method we propose the following steps:

• Step 1: first pole-zero pair
According to Figure 5, the minimum phase of the operational inductance data φmin = −39.37 degree
corresponds to the center frequency Fce = 0.08Hz. Using Equation (16), we find β = 4.4693, and
by Equations (18) and (19), respectively, we get Td0′(sec) = 4.207969, Td′(sec) = 0.941527, where
Td0′ is the first pole, and Td′ is the first zero.

H1(s) =
(1 + sTd′)

(1 + sTd0′)
(20)

is the transfer function of the 1st pole-zero pair.



122 Leguebedj, Boukhetala, and Tadjine

• Step 2: second pole-zero pair
We define Error1 as follows:

Error1magnitude = |Ld(s)|+ 46, 1991− 20 log10 |H1(s)| (21a)

Error1phase = PhaseLd(s) −Arg(H1(s)) (21b)

where Ld(s) is operational inductance (measured data).
The variation of Error1 as a function of frequency is shown in Figure 7(a).
The first minimum phase φmin = −5.211 degrees, which corresponds to the center frequency
Fce = 1.3Hz, then β = 1.1997, Td′′(sec) = 0.111834, Td0′′(sec) = 0.134168, where Td0′′ is
the second pole, and Td′′ is the second zero.

H2(s) =
(1 + sTd′′)

(1 + sTd0′′)
(22)

is the transfer function of the 2nd pole-zero pair.

• Step 3: third pole-zero pair
Error2 is defined as follows:

Error2magnitude = |Ld(s)|+ 46, 1991− 20 log10 |H1(s)H2(s)| (23a)

Error2phase = PhaseLd(s) −Arg(H1(s)H2(s)) (23b)

(a) (b)

(c)

Figure 7. (a) Variation of magnitude and phase Error1 versus frequency. (b) Variation of magnitude
and phase Error2 versus frequency. (c) Variation of magnitude and phase Error3 versus frequency.
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Figure 7(b) represents the variation of the magnitude and the phase of the error2 according to the
frequency.
We find that the first minimum phase corresponds to the value φmin = −6.92 degree, with Fce =
30Hz. By applying Equations (16), (18), and (19), we find: β = 1, 2740, Td′′′(sec) = 0.0047025,
Td0′′′(sec) = 0.0059910, where Td0′′′ is the third pole, and Td′′′ is the third zero.

H3(s) =
(1 + sTd′′′)

(1 + sTd0′′′)
(24)

is the transfer function of the 3rd pole-zero pair.

• Step 4: fourth pole-zero pair
We calculate Error3 in the following way:

Error3magnitude = |Ld(s)|+ 46, 1991− 20 log10 |H1(s)H2(s)H3(s)| (25a)

Error3phase = PhaseLd(s) −Arg(H1(s)H2(s)H3(s)) (25b)

We note that the magnitude of the operational inductance |Ld(s)| = −46, 1991 dB for f = 0.001Hz.
The curve giving the evolution of the magnitude and the phase of the Error3 versus frequency is
represented in Figure 7(c).

We note that the frequency Fce = 200Hz corresponds to the last minimum phase φmin = −4.56
degree, so β = 1.1727, Td′′′′(sec) = 0.0007352, Td0′′′′(sec) = 0.0008622.

We conclude that there are no peaks of phase; therefore, output of the process and the optimal
model we have adopted is of the fourth order.

The operational inductance with the initial estimate time constants can be written as:

Ld(s) = 0.004898
(1 + 0.941527s) (1 + 0.111834s) (1 + 0.0047025s) (1 + 0.0007352s)

(1 + 4.207969s) (1 + 0.134168s) (1 + 0.0055991s) (1 + 0.0008622s)
(26)

Figure 8 shows the initial residual representing the difference between the operational inductance
frequency response giving by (26) and the experimental one. The error in the phase varies between
−0.2513 and 1.589 degrees, while the error in the magnitude is within the range of 0–0.7165 dB.

Figure 8. Variation of the operational inductance Residue versus Frequency.

7. OPTIMIZATION OF THE TIME CONSTANTS

When identifying the time constants of operational inductance of synchronous machine, we find that
many researchers [31, 32] consider only the error in the magnitude, whereas the other researchers [33]
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have used a weighting function containing both the magnitude and phase. Another study shows that
the errors resulting from both the magnitude and phase can be used in different manners in determining
the best values of time constants [34].

An optimization method will be presented in this study. This consists in taking the differential
of the magnitude with respect to the frequency. The real data will also be used as input for the
optimization process.

7.1. Optimization of Time Constants by Differentiation

The variables used in this process are frequency, magnitude, and phase of the real data. We started by
taking the difference between the 1st and 2nd data points of magnitude and so on. The same process
is repeated for phase and frequency data, then we divide the difference in magnitude by the difference
in frequency. Finally, we obtain the slope of the magnitude with respect to the frequency.

So the new data becomes: ∆M , ∆F , ∆φ and slope, where:

• ∆M1 = M2−M1; ∆M2 = M3−M2 . . . etc.

• ∆F1 = F2− F1; ∆F2 = F2− F1 . . . etc.

• ∆φ1 = φ2− φ1; ∆φ2 = φ3− φ2 . . . etc.

• slope1 = ∆M1
∆F1 ; slope2 = ∆M2

∆F2 . . . etc.

From the new data, we need to calculate the average value of two successive frequencies. This
process is repeated for different values of the frequencies.

Favg1 =
F1 + F2

2
; Favg2 =

F2 + F3

2
. . . etc.

We now have new variables available for the optimisation process. The two most important variables
we need to consider are ∆M

∆F and Favg.

7.2. Configuring Data for Optimization

After determining the variables, the optimization process will begin, and the results of the simulations
and discussions will be made, according to the following steps:

Step 1: we consider the frequency variation:

∆F1 = F2− F1; ∆F2 = F2− F1 . . . etc.

The variables ∆M
∆F , ∆φ

∆F against average frequency are presented in Figure 9.
The curve of Figure 9(a) is almost similar to that of Figure 5. However, for the first figure,
the maximum slope of the magnitude and the minimum phase are obtained for Fce = 0.035Hz
(Figure 9(a)) against 0.08Hz (Figure 5) as illustrated in the second figure. In order to obtain the
same shape and frequency for both figures, and since the x-axis is in logarithmic scale, we introduce
the logarithmic scale.

Step 2: We define actually the variable ∆F with a new form:

∆F1 = log10 (F2)− log10(F1); ∆F2 = log10 (F3)− log10(F2) . . . etc.

The result so obtained is presented in Figure 10(a). The shape of the latter totally coincides with
the desired curve of Figure 5. The maximum slope is set at a frequency of 0.09Hz. Thus, the
objective of this study has been achieved.

7.3. Discussions on the Simulations

From the simulation, we note that Figure 10(a) gives the desired curve which is characterized by a
maximum at the frequency 0.09Hz. This curve is important because it defines the minimum phase of
the desired curve. Through this analysis, it can be affirmed that the use of the differential magnitude
data gives the value of Fce by using the average value of two points, compared to the data of the phase
basing on the choice of only one frequency.
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(a) (b)

Figure 9. (a) Variation of differential magnitude against average frequency. (b) Variation of differential
phase against average frequency.

(a) (b)

Figure 10. (a) Variation of operational inductance differential magnitude (slope) against average
frequency. (b) Variation of operational inductance differential phase against average frequency.

7.4. Calculating the Frequency Response

This step is important in the optimization process because it explains how to obtain the frequency
response from the differential magnitude data. Equations (18) and (19) will be used here:

Also, we have:

Tf(s) =
(1 + sTd)

(1 + sTd0)
(27)

where Tf(s) is the transfer function to calculate the frequency response, by varying the frequency from
0Hz to 100Hz. To determine the relationship between the slope of the magnitude, the frequency curve
and β, we calculate frequency responses for eight values of β in the range [1.1, 5.5]. Note that the center
frequency has been taken equal to 1Hz.
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(a) (b)

Figure 11. (a) Variation of magnitude against frequency. (b) Variation of phase against frequency.

Figure 11 represents the variation of the magnitude and phase according to the frequency. We notice
that the maximum of the slope and the minimum of the phase are located at the center frequency of
1Hz.

The next step aims to determine the slope of each of the curves, from the frequency responses.

7.5. Slope Determination

The three points, frequency Fc = 1Hz for different values of β (see Figure 11(a)), with the frequencies
F1 just below and F2 just above, should be used to determine the slope.

We have:

∆F1 = F1− Fc; ∆F2 = Fc− F2

∆M1 = M1−Mc; ∆M2 = Mc−M2

slope1 = ∆M1
∆F1 ; slope2 = ∆M2

∆F2

We take the average value of the slopes:

slope =
slop1 + slope2

2

Figure 12 represents the variation of the slope in (dB/Hz) as a function of β.
According to this curve, we notice that the slope increases pseudo-linearly with β. However, the

scale of the slope should be changed. In accordance with the Bode diagram, the slope of the magnitude
is expressed in terms of dB/decade. This allows obtaining the graph shown in Figure 13.

The variation of the maximum slope in (dB/decade) as a function of β is given by the following
function:

slope = 20
(β − 1)

(β + 1)
(28)

7.6. Determination of the Optimum Time Constant

The curve in Figure 13 is essential to determining the optimal time constants which depend on β
according to Equations (18) and (19). In fact, Figure 10(a) permits obtaining the various maxima
slopes found for different frequencies Fce. The corresponding values of β are deduced from Figure 13.
The time constants are summarized in Table 1.



Progress In Electromagnetics Research B, Vol. 97, 2022 127

Figure 12. Variation of slope in (dB/Hz) against
β.

Figure 13. Variation of slope in (dB/decade)
against β.

Figure 14. Variation of the operational inductance Residue versus frequency (after optimization).

Table 1. Estimation of optimal time constants.

Slope (dB/decade) 12.5 1.958 2.086 1.986

β 3.9394 1.1343 1.3698 1.0768

Fce (Hz) 0.09 1.15 22.5 180

Td (sec) Td0′ = 3.950662 Td0′′ = 0.147473 Td0′′′ = 0.008286 Td0′′′′ = 0.000918

Td (sec) Td′ = 0.908283 Td′′ = 0.126934 Td′′′(sec) = 0.006788 Td′′′′ = 0.000760

7.7. Comparison of Results

The residue shown in Figure 14 represents the error between the frequency responses of the analytical
method after optimization and the measured of operational inductance. We show that the error in
the phase varies between −0.01822 and 0.02204 degrees, while the error varies between −0.002262 and
0.003836 dB in the magnitude.
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(a) (b)

Figure 15. (a) Operational inductance magnitude versus frequency. (b) Operational inductance phase
versus frequency.

We note that the introduction of the optimization process has improved the time constants
significantly, and the error becomes minimum.

Figure 15 shows the frequency responses of the different operational inductances, namely the
measured [30], analytical, and finally numerical ones. The numerical operational inductances have
been obtained according to first order, second order, and third order models.

We observe a satisfactory agreement between the measured curve and analytical one. Concerning
the numerical method for the 3rd order model, we note a slight disagreement for the magnitude in the
frequency range between 80 and 1000Hz. For the phase, it is seen that a clear difference appears in the
range of 8 to 1000Hz. For the second order model we see a slight difference in magnitude and phase
compared to the tests. Then for the first order model we notice a significant difference in the magnitude
and phase in the range of 0.006 to 1000Hz.

8. CONCLUSION

In this paper, we use an analytical method to estimate the time constants of the synchronous machine
from Standstill Frequency Response Testing. This method is based on the standard theory of linear
systems to locate the values of poles and zeros in the frequency response and determines the optimal
order of the equivalent circuit which can model the machine accurately. It also allows to use the values of
the initial time constants as an initial vector for numerical methods. We have also shown the importance
of the precision of the value of the stator resistance on the determination of the time constants. The
comparison of initial residue with the obtained after the optimisation process shows clearly that the
procedure based on the optimisation of parameters by differentiation allows obtaining optimal time
constants. Such comparison demonstrates the effectiveness of the method optimisation.
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