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A Preference Multi-Objective Optimization Method for Asymmetric
External Rotor Switched Reluctance Motor

Chaozhi Huang, Hongwei Yuan*, Yuliang Wu, Yongmin Geng, and Wensheng Cao

Abstract—To improve the performance (low torque ripple, high average torque, and high efficiency)
of the external rotor switched reluctance motor (ERSRM), a preference multi-objective optimization
framework for design and control of an ERSRM based on CD-NSGA-II (Chi-square distance fast non-
dominated sorting genetic algorithm) with gradient targets is investigated. Firstly, the structure of the
ERSRM is introduced, and the comprehensive sensitive analysis that evaluates the influence of each
design variable on optimization objectives is presented. Secondly, the initialization of population, cross-
mutation method, and sorting method of conventional NSGA-II are improved. Then, the practicability
of this method was proved by standard test functions. Finally, the NSGA-II and CD-NSGA2-II are
combined with the visual basic script (VBS) script to optimize the ERSRM, respectively. Finite-element
analysis results confirmed the validity and superiority of the optimized design.

1. INTRODUCTION

As a cost-effective, healthy, and environmental-friendly personal tool of transportation, electric bicycles
(E-bikes) are gaining an increasing market share from conventional bicycles and automobiles [1, 2].
Switched resistance motor (SRM) has become an ideal hub drive motor due to its good control
drive characteristics, high motor energy density, and system efficiency [3]. However, they also have
disadvantages such as high acoustic noise and torque ripple. Nowadays, there is increasing attention on
the study of torque pulsation reduction of SRM from the structure and control method [4].

The commonly used method for multi-objective optimization of SRM is to fit the surrogate models
between the design variables and the optimization objectives according to the finite element analysis
(FEA) experimental data, including the response surface model [5], neural network model [6], Kriging
model [7], and support vector machine model [8], and then the optimal solutions of these models can
be generated by the optimization algorithm.

Ref. [9] proposes a multi-objective differential evolution (MODE) algorithm combining generalized
regression neural network (GRNN) to enhance the performance of ferrite-assisted synchronous reluctance
(FASR) motor. The comparison of results of mode with multi-objective genetic algorithm (MOGA) and
multi-objective particle swarm optimization (MOPSO) algorithm indicates the suitability of MODE
to arrive at optimal solutions. However, some of these solutions may be unacceptable because they
are impossible to establish or to analyze in FEA dedicated software even though they are correct
and achieve the desired objectives from an analytical point of view. Thus, an accurate optimization
method combining multi-objective optimization and multi-physical field electromagnetic computing on
different platforms has become a research hotspot. This optimization method interfaces the optimization
algorithm with simulation software, and the model parameter values are generated by the optimization
algorithm and then passed to the simulation software for FEA. After FEA, the simulation results are
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returned to the algorithm for selection, realizing the optimization closed-loop. Ref. [4] uses MATLAB
and MotorSolve to jointly optimize the SRM conversion efficiency, average torque, and torque ripple
where the rotor and stator structure parameters and firing angles are defined as the optimization
variables. Refs. [8, 10] adopt a closed-loop optimization design method that connects FEA and intelligent
algorithm optimizer by the transformation of script files. In this way, each calculation step is a closed
loop. The implemented optimizer reshapes the FEA model automatically, and then the FEA simulation
results are sent back to optimizer. The traditional multi-objective algorithm first needs to obtain a
series of non-dominant solutions on the optimization objectives, and then the solutions that meet the
expectations of the decision maker according to the actual needs are selected. The motor optimization
time greatly depends on the search efficiency and convergence quality of the selected algorithm because
each iteration requires FEA to obtain the experimental data when using the accurate optimization
method. Traditional multi-objective evolutionary algorithms treat each objective equally and search
randomly in all solution spaces without using preference information. This might reduce the search
efficiency and the quality of solutions preferred by decision makers, especially when solving problems
with complicated properties or many objectives [11].

To improve the search efficiency and the quality of preferred solutions, some attention [12–14]
about incorporating preferences into the search process of multi-objective evolutionary algorithms has
been paid recently. Molina et al. [15] proposed a reference point method based on the optimization
algorithm, g-NSGA-II, which replaces Pareto dominance relation with a new variant, g-Dominance.
However, the algorithm is greatly affected by the reference point setting. If the reference point is
unreasonable, the algorithm will not converge. Said et al. [16] extended NSGA-II to r-NSGA-II based
on a new variant of Pareto dominance relation, that is, r-Dominance. The proposed algorithm converges
faster than the g-NSGA-II algorithm and has smaller requirements for reference point setting. Li et
al. [17] proposed an r-MOEA/D-STM (Stable Matching Based Selection in Evolutionary Multi-objective
Optimization with reference points) algorithm that applies weight vectors to introduce the decision
maker’s preference information, and this algorithm selects several weights closest to the reference point
set by the decision maker as preference regions. And this algorithm trades off the convergence and
diversity of the evolutionary search through a stable matching model. The effectiveness of algorithms
has been demonstrated by standard test functions. However, more efforts are needed to demonstrate
their effectiveness in real engineering problems, especially in motor optimization problems.

Based on the previous research above, we propose a CD-NSGA-II preference optimization algorithm
based on gradient adaptive objectives. The zero-ductility transition (ZDT) and diode-transistor logic
with Zener diode (DTLZ) functions are selected to prove the feasibility and effectiveness of the preference
algorithm. Then, the FEA and preference algorithm are connected here by the transformation of script
files to optimize an asymmetric external rotor switched reluctance motor (ERSRM).

2. STRUCTURE OF THE ERSRM

Figure 1(a) depicts the configuration of the proposed ERSRM with multiple teeth structures. The
motor is composed of three phases, and each phase has two concentrated windings. Each stator pole
consists of three teeth, and the rotor comprises 20 teeth, so the motor has a 18/20-tooth configuration.
The basic parameters of the motor are listed in Table 1.

Table 1. Basic parameters of simulation model.

Items value Items value

Rotor outer diameter (mm) 210 Stator outer diameter (mm) 164

Rotor inner diameter (mm) 165.4 Stator yoke width (mm) 26

Air-gap length (mm) 0.7 Operating voltage (V) 48

Stack length (mm) 50 Current limit value 20

Rated speed (rpm/min) 350 Output power (W) < 400W
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Figure 1. (a) 3-D structure diagram of the ERSRM. (b) 2-D structure diagram of the ERSRM.

3. FLOW OF THE OPTIMIZATION DESIGN

The optimization flowchart is shown in Fig. 2. From the flowchart, the optimization design procedure
includes four steps.

Figure 2. Flowchart of the multi-objective optimization design.

Firstly, the optimization objectives and design variables are determined, and then the sample data
are established to analyze the sensitivity index of each design variable to the optimization objectives.
As a commonly used scheme in the optimization design process, sensitivity analysis method can screen
out the variables that are strongly related to the optimization objectives, thus it can improve the
optimization efficiency [18, 19]. The design variables are divided into two categories according to their
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significance. The preference algorithm is used to further optimize the significant variables, and the
nonsignificant variables are determined by single-parameter scan results. Then, the Pareto front of the
optimization objectives will be generated by the preference algorithm. Accordingly, the optimal values
of the significant variables can be determined.

3.1. Optimization Objectives and Design Variables

The hub drive motor should have large torque, low torque pulsation, and relatively high efficiency to
fit the frequent acceleration and deceleration of electric bicycles in the driving process, as well as the
stability and endurance of the driving vehicle. Therefore, torque ripple (Trip), efficiency (η), and the
average torque (Tavg) are considered as the optimization objectives.

The motor will be simulated at rated condition with limit current of 20A and reference speed of
350 rpm. Trip is defined as:

Trip =
Tmax − Tmin

Tavg
× 100% (1)

where Tmax and Tmin are the highest torque and the lowest torque in one cycle, respectively. Tavg is
given by:

Tavg =
1

t2 − t1

∫ t2

t1

Tdt (2)

To facilitate the analysis, only the core loss and stranded loss of ERSRM are considered, and wind and
stray loss are not considered. The efficiency of the ERSRM is simply represented as the ratio of the
output power to the input power in one cycle.

η =
Pout

Pout + PLoss
× 100% (3)

PLoss = PCoreLoss + PStrandedLoss (4)

Based on the output performance and usage of the motor, the initial optimization constraints of
ERSRM are set as: {

Trip ≤ 40%, η ≥ 80%, Tavg > 7N ·m
Pout + Ploss < 400W

(5)

The ERSRM design variables are selected from motor structure and control parameters. The
parameterized cross-section in Fig. 3 includes 11 design parameters, which are rationalized and confined
according to Table 2.

Table 2. Design parameters of the ERSRM.

Parameters Description Unit Range/Value

Structure

parameters

N Windings turns turns 30 ∼ 50

θps Pole shoe angle mm 0 ∼ 3

Hps Pole shoe height mm 0 ∼ 3

θst1 Stator tooth 1 angle deg 4 ∼ 5

θst2 Stator tooth 2 angle deg 4 ∼ 5

θst3 Auxiliary tooth 3 angle deg 5 ∼ 9

W1 Auxiliary tooth branch width mm 5 ∼ 7

θmal Auxiliary tooth deflection angle deg −3 ∼ 1

Wrt Rotor tooth width mm 6.5 ∼ 8.5

Control

parameters

θon Turn on angle deg −1 ∼ 1

θoff Turn off angle deg 6 ∼ 9
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Figure 3. Parameterized model of the studied ERSRM.

3.2. Comprehensive Sensitivity Analysis

After the initial design and the optimized objectives are selected, experimental samples are established
by the Latin Hypercube sampling method, and then sample response data are obtained by FEA. Finally,
the prediction models of parameters about the optimization objectives based on the sample data are used
to evaluate the Pearson correlation coefficient of each design parameter on different design objectives.
Pearson correlation coefficient can be given by:

ρXi,Yi =
N

∑
XiYi −

∑
Xi

∑
Yi√

N
∑

X2
i − (

∑
Xi)

2
√

N
∑

Y 2
i − (

∑
Yi)

2
(6)

where Yi is the i-th optimization objective, Xi the design parameters, and N the sample size. The
sensitivities of all structure and control parameters on the optimization objectives can be calculated
based on (6), as shown in Fig. 4. The Pearson correlation coefficients of different optimization objectives
are listed in Table 3.

Figure 4. The Pearson correlation coefficient of the structure and control parameters to the three
optimization objectives.
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Table 3. Pearson correlation coefficients and comprehensive sensitivity indexes of design variables.

Items
STrip

(w1 = 0.5)

Sη

(w1 = 0.25)

STavg

(w1 = 0.25)
Stol

N −0.16 −0.30 −0.44 0.27

θps 0.27 −0.30 −0.19 0.26

Hps −0.11 −0.10 −0.14 0.12

θst1 −0.03 −0.05 −0.11 0.06

θst2 0.04 0.05 0.10 0.06

θst3 −0.34 −0.09 −0.10 0.22

W1 0.02 −0.09 −0.04 0.04

θmal 0.13 0.44 0.41 0.28

Wrt 0.06 −0.20 −0.14 0.12

θon 0.20 −0.36 −0.69 0.36

θoff −0.36 −0.53 0.03 0.32

However, because a single design variable has different sensitivities indices for different optimization
objectives, selecting the key design variables only through the corresponding correlation coefficient
results is difficult. In that, weight coefficients are introduced to calculate the comprehensive sensitivity
index of each design variable. A comprehensive sensitivity index Stol(xi) is defined as:

Stol(xi) = w1 ·
∣∣STrip(xi)

∣∣+ w2 · |Sη(xi)|+ w3 ·
∣∣STavg(xi)

∣∣ (7)

where STrip(xi), Sη(xi), and STavg(xi) are the sensitivity indices of Trip, η, and Tavg, respectively. w1,
w2, and w3 are the weights of Trip, η, and Tavg, respectively. Considering that the ERSRM’s inherent
high torque ripple affects the smoothness of torque output and stability of bicycle rack, w1 is set at 0.5,
and w2 and w3 are set at 0.25.

The comprehensive sensitivity index of the structure and control parameters for the three
optimization objectives can be calculated based on (7), as shown in Table 3.

The design variables are stratified according to the comprehensive sensitivity index. We set a
threshold λ, and if Stol(xi) ≥ λ, xi is determined as a significant variable related to the optimization
objectives, else xi is determined as a nonsignificant variable related to the optimization objectives. λ
here is set to 15%. Therefore, the variables N , θps, θst3, θmal, θon, and θoff are determined to be
significant variables related to the optimization objectives. And they are selected for the algorithm
optimization.

4. CD-NSGA-II

The NSGA-II, based on the dominant relationship proposed by Deb et al. [20], determines the rank
level by comparing the dominant relationship between individuals and takes the crowding degree as
the basis for sorting the same rank layer. The algorithm adds the championship mechanism and elite
retention strategy, which reduce the algorithm complexity and accelerate the convergence speed. The
proposed algorithm has good global optimization capability while ensuring the uniformity and diversity
of the Pareto frontier. The CD-NSGA-II is improved from the traditional NSGA-II, and we have made
the following specific improvements.

4.1. Population Initialization Using the Sobol Sequence

The distribution of the initial individuals in the solution space will greatly affect the convergence
speed and optimization accuracy, and the uniform initial individuals are beneficial for improving the
performance of the algorithm. Sobol sequence is a type of quasi random sequence with lower disparity
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(a) (b)

Figure 5. (a) Normal distribution sequence. (b) Sobol sequence.

than the pseudorandom sequence. Using the Sobol sequence for population initializing can keep the
population with high diversity [21, 22]. We chose Sobol sequence for the population initialization. Fig. 5
shows a population of 100 in two-dimensional space produced in the range [0, 1], and it shows that the
matrix generated by the Sobol sequence is more spatially evenly distributed.

4.2. Normal Crossover and Directional Mutation Strategy

The crossover operator of the conventional NSGA-II adopts the SBX (Simulated binary crossover)
operator with poor global search capability and premature convergence of the algorithm. To solve this
problem, normal distribution crossover (NDX) operator is proposed. After the parent P1 and P2 are
determined, the NDX operator is used to find the offspring x1 and x2. The location of the crossover is
determined by the bit mutation probability t. When t <= 0.5, the offspring x1 and x2 are given by:

x1,i =
P1,i + P2,i

2
+

1.481 (P1,i − P2,i) |N (0, 1)|
2

x2,i =
P1,i + P2,i

2
− 1.481 (P1,i − P2,i) |N (0, 1)|

2

(8)

When t ≥ 0.5, the offspring x1 and x2 are given by:
x1,i =

P1,i + P2,i

2
− 1.481 (P1,i − P2,i) |N (0, 1)|

2

x2,i =
P1,i + P2,i

2
+

1.481 (P1,i − P2,i) |N (0, 1)|
2

(9)

where |N(0, 1)| is the normal distributed random variable. The crossover operator adopts the NDX
operator, improving the ergodic of the solution space and enhancing the global search capability of the
algorithm.

The mutation operator of the conventional NSGA-II adopts the polynomial mutation. The location
of the mutation is determined by the bit mutation probability Pm. When a random number m is
randomly produced, if m > Pm, the mutation occurs at that location. In order to ensure that the
algorithm can evolve in the direction of optimization, we propose an optimization strategy for directional
mutation. The six variables and three-objective optimization of the ERSRM is taken as a case study.
The specific operation is as follows:

Firstly, three individuals containing optimal values on each optimization objective in the population
of the current evolutionary are selected, and the differences in six individual genes are compared. The
formula for calculating the genetic difference is given by:

σ =

n∑
j

|xi(j)− xi |

n
(10)
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where n is the number of optimization objectives; xi(j) is the i-th gene of individual j; xi is the mean
of the i-th genes of the three selected individuals.

Secondly, the threshold α is set. If σ < α, the algorithm distinguishes the gene as a non-differentially
expressed gene that causes individual differences, else the gene is distinguished as a differentially
expressed gene that causes individual differences. For non-differentially expressed gene, the offspring
gene takes a value within the range of the maximum and minimum values expressed by the three selected
parents. For a differentially expressed gene, the offspring gene selects a random number within the range
of value allowed by the gene. The mutation mode is shown in Fig. 6.

Figure 6. Schematic diagram of directional mutation.

4.3. Sort of the Weighted Chi-Square Distance Based on Adaptive Gradient Targets

Chi-square distance has been widely used in the field of pattern recognition and image processing, as
a kind of important information to measure the similarity between two individuals [23, 24]. Chi-square
distance formula can be given by:

d(x, y) =
n∑

i=1

(xi − yi)
2

xi + yi
(11)

where d(x, y) is the weighted Chi-square distance of solution x to the reference point y; n is the dimension
of solution x; xi and yi are the value on the i-th dimension of x and y, respectively.

Based on the traditional NSGA-II, we choose the comprehensive weighted Chi-square distance
between the individual and the gradient evolutionary targets to replace the traditional NSGA-II
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crowding operator, and it is used as a secondary merit criterion reserved for elites in the NSGA-II
algorithm championship.

The basic search steps of CD-NSGA-II are like NSGA-II: the non-dominated sorting is applied to
classify the combined population individuals into different levels of non-domination. Solutions selected
from subsequent non-dominated fronts in the order of their level ranking are kept as candidates, from
which the next generation population are chosen by the Chi-square distance operator. In CD-NSGA-II,
the shorter the weighted Chi-square distance is between the solution and gradient evolutionary targets,
the more likely it is to be preserved for the next generation.

The gradient evolutionary targets setting takes the union of the optimal values on each optimization
target in the population of the current evolutionary as the basic evolutionary target, and then sets the
step value of each target and progresses step by step. The rank coefficient is then assigned according to
the difficulty of each optimization target, and the comprehensive weighted Chi-square distance between
the solution to each evolutionary target is calculated.

The ERSRM optimization is taken as a case study. Assume that the optimal solution is
[Trip(min), η(max), Tavg(max)] in the population of the current evolutionary. The gradient evolution
targets values are set as:

Target (1) = [Trip (min) , η (max) , Tavg (max)]

Target (2) = [Trip (min) + ∆Trip, η (max) , Tavg (max)]

Target (3) = [Trip (min) + ∆Trip, η (max) + ∆η, Tavg (max)]

Target (4) = [Trip (min) + ∆Trip, η (max) + ∆η, Tavg (max) + ∆Tavg]

Target (5) = [Trip (min) + 2∆Trip, η (max) + ∆η, Tavg (max) + ∆Tavg]

(12)

where ∆Trip, ∆η, and ∆Tavg are the step value on Trip, η and Tavg, respectively. Here ∆Trip, ∆η, and
∆Tavg are set to 1%, 1%, and 0.5N·m, respectively.

Then, the comprehensive weighted Chi-square distance between the individual j and the gradient
evolutionary targets can be given by:

d(i) =

5∑
k=1

ωk ·
3∑

m=1

λm ·
(
(fm(i)− Target(k)m)2/(fm(i)− Target(k)m)

)
(13)

where k is the gradient evolutionary target number; m is the individual optimization target value
number; fm(i) is the m-th optimization target value of the individual i; Target(k)m is the m-th
optimization target value of the k-th gradient evolutionary target; wk is the rank coefficient of gradient
k-th evolutionary target; and λm is the weight for the m-th evolutionary target value. ω1 ∼ ω5 are set
to be 1, 2, 3, 6, and 12, respectively. It means that the higher-level target has higher priority than the
previous targets. The weight coefficients λ1, λ2, and λ3 are determined at 0.5, 0.25, and 0.25 according
to the optimize preferences, respectively.

The flowchart of ERSRM optimization based on CD-NSGA-II is in Fig. 7.

5. CD-NSGA-II TEST

To prove the feasibility of local optimization of the proposed algorithm and the effectiveness of the
improvement strategy and objective preference, we used the two-objective ZDT1 functions and three-
objective DTLZ4 functions. We select the inverted generational distance based on the composite front
(IGD-CF), which was proposed by Mohammadi et al. [25] to analyze the effect of different strategies
on the convergence of the proposed algorithm. The metric defined a region of interest (ROI) based on
the location of a user-supplied reference point. It uses a composite front which is a type of reference
set, and it is used as a replacement for the Pareto-optimal front. Then the classic inverted generational
distance (IGD) [26] is calculated in this ROI. IGD-CF can be obtained as:

IGD − CF (PROI , PFROI) =

∑
x∈PFROI

d (x, PROI)

|PFROI |
(14)

where PROI are the obtained solutions in the ROI ; PFROI are the real composite front solutions in
the ROI ; d(x, PROI) is the closest Euclidean distance of sample points in the PFROI to the obtained
solutions in the PROI .
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Figure 7. Flowchart of ERSRM optimization based on CD-NSGA-II.

5.1. Two-Objective Test Problems

The double-objective ZDT1 test problem is taken as a case study. The population size is set to 100 for
ZDT1, and the number of iterations in each run is 50.

We used [0.2, 0.55] as the reference point for ZDT1. To specify the size of the ROI on the Pareto-
optimal front of ZDT1, the radius of ROI is set to 0.02. Under the same population and the number of
iterations, the mean IGD-CF of 10 independent runs is obtained with different population initializing
modes. Fig. 8 shows the change curves of IGD-CF under different population initializing modes.

It can be seen from Fig. 8 that the algorithm convergence speed is significantly improved after
using the Sobol sequence on the ZDT1 problem.

Under the same population and the number of iterations, the mean IGD-CF of 10 independent runs
is obtained with different cross-mutation strategies and same Sobol sequence population initializations.
Fig. 9 shows the change curves of IGD-CF under different cross-mutation strategies.

Figure 9 shows that the algorithm using normal crossover and directional mutation has better
convergence result than the algorithms with simulated binary crossover and polynomial mutation before
the 31st generation.

We use [0.2, 0.55] and [0.4, 0.4] as the reference points for the Chi-square distance calculation.
When the coefficients of the two reference points are set to 1&1, 1&3, 3&1, respectively, the Preto
frontier distributions after the algorithm iterations are shown in Fig. 10, respectively.

It can be seen from Fig. 10 that when the coefficients of the two reference points are equal, the
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Figure 8. Comparison of IGD-CF under different
population initializing modes.

Figure 9. Comparison of IGD-CF under different
cross-mutation strategies.

(a) (b)

(c)

Figure 10. (a) The coefficients of the two reference points are equally. (b) The coefficient of [0.2, 0.55]
is higher. (c) The coefficient of [0.4, 0.4] is higher.

algorithm convergence area is in the middle area of the two reference points. When the coefficients of
the two reference points are different, the algorithm convergence region moves to the reference point
with a higher coefficient.
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Figure 11. Comparison of IGD-CF under
different population initializing modes.

Figure 12. Comparison of IGD-CF under
different cross-mutation strategies.

5.2. Three-Objective Test Problems

The three-objective test problem is taken as a case study. The population size is set to 100 for DTLZ4,
and the number of iterations in each run is 50.

We use [0.5, 0.5, 0.7] as the reference point for DTLZ4. To specify the size of the ROI on the

(a) (b)

(c)

Figure 13. (a) The two reference points with equally coefficient. (b) [0.4, 0.4, 0.8] coefficient is higher.
(c) [0.5, 0.5, 0.7] coefficient is higher.
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Pareto-optimal front of DTLZ4, the radius of ROI is set to 0.1. Under the same population and the
number of iterations, the mean IGD-CF of 10 independent runs is obtained with different population
initializing modes. Fig. 11 shows the change curves of IGD-CF under different population initializing
modes.

It can be seen from Fig. 11 that the algorithm using the Sobol sequence has bigger IGD values
than the algorithm using the normal distribution sequence before 16th iteration, which means that
the solution set distribution is more dispersed in the early iteration of the algorithm using the Sobol
sequence. After the 16th generation, the IGD value of the algorithm using the Sobol sequence is always
lower than the algorithm using the normal distribution sequence.

Under the same population and the same number of iterations, the mean IGD-CF of 10 independent
runs is obtained with different cross-mutation strategies and the same Sobol sequence population
initialization. Fig. 12 shows the change curves of IGD-CF under different cross-mutation strategies.

Figure 12 shows that the algorithm using normal crossover and directional mutation has better
convergence result than the algorithm with simulated binary crossover and polynomial mutation.

We use [0.5, 0.5, 0.7] and [0.4, 0.4, 0.8] as the reference points for the Chi-square distance calculation.
When the coefficients of the two reference points are set to 1&1, 1&3, 3&1, respectively, the Preto frontier
distributions after the algorithm iterations are shown in Fig. 13, respectively.

It can be seen from Fig. 13 that when the coefficients of the two reference points are equal, the
algorithm convergence area is in the middle area of the two reference points. When the coefficients of
the two reference points are different, the algorithm convergence region moves to the reference point
with a higher coefficient.

To sum up, it can be seen that the main CD-NSGA-II search area and algorithm convergence
domain will change accordingly with the reference point selection. When the grade coefficients of the
reference points are different, the algorithm convergence area will move to the reference point with a
higher coefficient. Therefore, we can obtain optimal solutions by setting gradient evolutionary targets
to make the population evolve in a better direction.

6. COMPARISON OF PARETO OPTIMAL SOLUTIONS AND SIMULATION
VERIFICATION

Based on the above experiments, we select NSGA-II and CD-NSGA-II combined with VBS script to
optimize the ERSRM. The main parameters of NSGA-II and CD-NSGA-II are listed in Table 4.

The optimization results for NSGA2 and CD-NSGA-II are shown in Fig. 14(a) and Fig. 14(b),
respectively. The color maps illustrate the progression of the search; the final population is illustrated
in red.

From Fig. 14, we can conclude that the NSGA-II is biased toward global convergence, while the

(a) (b)

Figure 14. (a) Optimization objectives results for all studied points of NSGA-II. (b) Optimization
objectives results for all studied points of CD-NSGA-II.
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Table 4. The main parameters of NSGA-II & CD-NSGA-II.

Parameters NSGA-II CD-NSGA-II

Population 30 30

Max iterations 50 30

Crossover coefficient 0.8 0.8

Mutation coefficient 0.2 0.2

CD-NSGA-II is more inclined to local convergence.
The value function is given by:

u(Trip, η, Tavg) = λ1

(
− Trip −min(Trip)

max(Trip)−min(Trip)

)
+ λ2

η −min(η)

max(η)−min(η)
+ λ3

Tavg −min(Tavg)

max(Tavg)−min(Tavg)
3∑

i=1

λi = 1

(15)
where u(Trip, η, Tavg)max is determined as the global optimal solution of the Pareto front solution. The
weight coefficients are determined as λ1 = 0.5, λ2 = 0.25, and λ3 = 0.25 according to the priority of the
optimization objective.

The weighted solutions of the optimized design in the obtained Pareto solution of NSGA-II and

(a) (b)

(c) (d)

Figure 15. Pareto frontier. (a) 3-D Pareto frontier of NSGA-II and CD-NDGA-II. (b) Torque ripple
versus efficiency. (c) Torque ripple versus average torque. (d) Efficiency versus average torque.



Progress In Electromagnetics Research C, Vol. 124, 2022 193

Table 5. Design variables and performance of initial and optimal.

Parameters Initial NSGA-II optimal CD-NSGA-II optimal

Motor parameters

N 38 39 41
θps (◦) 1 2.2 2.4

Hps (mm) 1.5 1.5 1.5
θst1 (◦) 4.5 4.5 4.5
θst2 (◦) 4.5 4.5 4.5
θst3 (◦) 5 7.95 8.48

W1 (mm) 5.6 5.6 5.6
θmal (◦) −1 −2.41 −2.35
Wrt (mm) 7.2 7.2 7.2
θon (◦) 0 −0.9 −1
θoff (◦) 6 7.6 7.5

Output performance

Pcore loss (W) 25.56 32.98 33.21
Pstranded loss (W) 19.35 27.11 28.04

Trip (%) 144.67 19.41 14.99
η (%) 85.78 82.35 83.07

Tavg (N ·m) 7.39 7.65 8.20

(a) (b)

(c)

Figure 16. (a) Comparison of transient torque. (b) Comparison of single-phase torque. (c) Comparison
of single-phase current with inductance.
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CD-NSGA-II are selected by (15), as shown in the blue and brown pentagram in Fig. 15, and the specific
parameters of the weighted solutions are shown in Table 5.

Figure 15 shows that torque ripple is positively correlated with efficiency and average torque, which
means that pursuing lower torque ripple will lose a part of the average torque and efficiency.

It can be seen from Table 5 that although the optimized motor of CD-NSGA-II efficiency has
decreased by 3.16% from 85.78% to 83.07%, the average torque has increased from 7.20N·m increased
by 10.96% to 8.20N·m, the torque ripple decreased by 89.64% from 144.67% to 14.99% compared with
the motor of the initial design, and the torque ripple was significantly reduced. Meanwhile, the torque
ripple of the optimized motor of CD-NSGA-II was decreased by 22.93%, the efficiency improved by
0.87%, and the average torque increased by 7.19% compared with the out performance of the optimized
motor of NSGA-II. From the 2-D projection of the optimization objectives, CD-NSGA-II can better
handle optimization preferences; the scheme is more optional; and the calculation amount is only 55%
of NSGA-II.

Figure 16(a), Figure 16(b), Figure 16(c) show the comparison of transient torque, comparison of
single phase torque, and comparison of single-phase current with inductance, respectively.

It is worth noting that, after the θoff delay of the motor of the optimization schemes, the single-
phase current still does not drop to zero in the inductance drop area, producing a part of negative
torque, but the overall synthetic torque is smoother. It means that the starting performance of the
motor is improved.

7. CONCLUSION

This paper introduces a preference multi-objective optimization framework for the design and control
of an ERSRM based on CD-NSGA-II. We have proved the feasibility of preference optimization of the
proposed algorithm and the effectiveness of the proposed strategy by ZDT and DTLZ functions. We
combine the algorithm with FEA through VBS script to optimize the asymmetric structure ERSRM. The
experimental results show that the CD-NSGA-II algorithm has faster convergence speed and convergence
quality than the traditional NSGA-II. It achieves a better optimization effect than the traditional NSGA-
II algorithm when the calculation amount is only 55% of the traditional NSGA-II algorithm. Therefore,
the proposed optimization design for the ERSRM can obtain the optimal stator and rotor structure
design conveniently and efficiently.
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