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Electromagnetic Wave Propagation through Stratified Lossy
Conductive Media
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Abstract—It is commonly believed that electromagnetic waves cannot propagate in lossy conductive
media and that they quickly decay inside such media over short length scales of the order of the so-called
skin depth. Here we prove that this common belief is incorrect if the conductive medium is stratified.
We demonstrate that electromagnetic waves in stratified lossy conductive media may have propagating
character and that the propagation length of such waves may be considerably larger than the skin depth
in homogeneous media. Our findings have broad implications in many fields of science and engineering.
They enable radio communication and imaging in such strongly lossy conductive media as seawater,
various soils, plasma, and biological tissues. They also enable novel electromagnetic metamaterial
designs by mediating the effect of losses on electromagnetic signal propagation in metamaterials.
Our results demonstrate a new class of inherently non-Hermitian electromagnetic media with high
dissipation, no gain, and no PT-symmetry, which nevertheless have almost real eigenvalue spectrum.

1. INTRODUCTION

From the point of view of electromagnetic theory, all non-magnetic media can be sorted out into
two broad categories, such as transparent dielectric (or non-conductive) media, which transmit
electromagnetic waves, and conductive media, which are commonly believed to disallow electromagnetic
wave propagation below their plasma frequency. It is generally assumed that electromagnetic waves
quickly decay inside lossy conductive media over short length scales of the order of the so-called skin
depth. The goal of this paper is to prove that this common belief is incorrect if the conductive medium
is stratified.

Stratification occurs naturally in many conductive media under the influence of gravity. Examples
of such stratification include many underground sedimentary rocks and soils [1] (see for example
Fig. 1(b)), seawater layer on top of sandy seabed, and many other terrestrial and astronomical [2]
settings. Biological tissues are also often stratified into layers of different electric conductivity (for
example, skull bone and grey matter [3]). Artificial stratification is also often implemented in various
electromagnetic metamaterial structures, which typically exhibit very high losses [4]. Therefore, our
surprising results on long-distance electromagnetic wave propagation in strongly lossy conductive media
have broad implications in many fields of physics and engineering. As we will discuss below, our
results also complement recent observations of loss-enhanced transmission due to PT-symmetry in non-
Hermitian optical systems [5].

Let us consider solutions of the macroscopic Maxwell equations in a geometry in which a medium
is non-magnetic (B = H), the dielectric permittivity of the medium is continuous, and it depends only
on z coordinate: € = e(z), as illustrated in Fig. 1(a). Under such conditions spatial variables in the
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(a) (b)

Figure 1. Geometry of the problem of interest. (a) The dielectric permittivity e(z) of a bulk conductive
medium is continuous and depends only on z coordinate, which is illustrated by halftones. In a
strongly lossy conductive medium the dielectric permittivity is almost pure imaginary: e(z) =~ ie”(z) =
io(z)/eow. (b) Example of a conductive layered sedimentary rock.

Maxwell equations separate, and without the loss of generality we may assume electromagnetic mode
propagation in the x direction, leading to field dependencies proportional to e¢i(kr=wt) The macroscopic
Maxwell equations lead to a wave equation

w28 =
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After straightforward transformations described in detail in [3], the wave equation for the TM polarized
light may be written in the form of one-dimensional Schrédinger equation
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where the effective “wave function” has been introduces as F, = 1/1/61/ 2 and the —k? term plays
the role of effective energy in the Schrodinger equation. Let us consider the TM polarized solutions of
Eq. (2) inside a medium having almost pure imaginary dielectric permittivity £(z) = ic”(z) = io(z)/eow
where ¢¢ is the dielectric permittivity of vacuum, ” is very large, and the medium conductivity o(z) is
expressed in practical SI units. Based on Eq. (2), the effective potential in such a case may be written
as
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The second and third terms in Eq. (3) are real, and they may become much larger than the first term
if the medium conductivity changes fast enough as a function of z. Note that a more general case
when the real part of e(z) in Eq. (2) is comparable to its imaginary part has been considered in [3].
It was demonstrated that the Im(V) <« Re(V) situation may also be realized in such a more general
lossy medium case, if the loss tangent § of the medium remains approximately constant as a function
of z. In addition, since the loss tangent would remain almost constant in a multilayer structure made
of such low loss plasmonic metals as gold and silver, our treatment will also be applicable in such cases.
However, in order to emphasize the novel aspects of our results, let us focus our attention on the case
of highly lossy multilayer materials.

V =

2. ANALYTICAL MODEL

In general, solutions of the effective Schrodinger Eq. (2) with an effective potential V' (z) given by
Eq. (3) must be obtained numerically [3]. However, these equations may be solved analytically for some
simple spatial distributions of £(z). As an example, let us assume that Re(e) < Im(e) and consider the
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following simple parabolic spatial distribution of the dielectric permittivity inside a single conductive
stratum:

e(z) = A+ B2, (4)

where both A and B are large imaginary coefficients, so that a?> = A/B is real and positive. These
assumptions are typically valid for seawater and different ground layers in the radio frequency range [6].
The resulting effective potential for the TM electromagnetic wave is
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where )¢ is the free space wavelength. We may also introduce a notional “wavelength” inside a
conductive homogeneous medium with a dielectric permittivity ¢ = A as A = Ao/ \/W The plot
of V(z) in the limit A > a (so that Re(V) > Im(V)) is shown in Fig. 2(b). We may cutoff this
potential at z = +a/v/2 (and keep £ = 1.54 constant at larger distances on both sides of the stratum)

as illustrated in Fig. 2(a), so that the effective energy level inside such a potential well may be obtained
analytically using the well-known shallow well approximation [7] as

1 1
k= / V)~ (6)

(note that a 1D Schrodinger equation describing a potential well of arbitrary shape always has at least
one eigenstate [7]). Let us demonstrate that the so found TM solution of Maxwell equations inside a
strongly conductive absorptive medium has propagating character, and that the propagation length of
such a wave may greatly exceed the skin depth.

In the limit &” > &' considered above, the conventional skin depth [6] inside a homogeneous
nonmagnetic medium having e ~ ie” = A equals
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where once again we have used the fact that £(z) ~ ie”(2) = io(z)/eow (recall that A is imaginary).

On the other hand, the propagation length L of the newly found TM wave may be obtained based on
the magnitude of Im(k) calculated using Egs. (5) and (6) as follows:
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As a result, the ratio L/d may be obtained as
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which means that the TM wave propagation length may indeed be much larger than the skin depth if
A > a. Moreover, the obtained TM wave has propagating character. Its wavelength Arj; calculated as
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appears much smaller than L in the A > « limit:
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We should also note that Eq. (10) may be used to provide an additional straightforward justification
for the fact that the propagation length of the TM wave in such a geometry may greatly exceed the
skin depth. Indeed, based on Eq. (2) we may now write
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where Appr ~ a < A, As a result,

2m Py
kz)\TM(l—&—zQ)\Z), (13)

which leads to L = (Imk)™" ~ A—2— > A\ ~ §. In effect, via the specified distribution of conductivity

TAT M
and dielectric constant we create a 2D waveguide inside a highly lossy material.

Also note that LAy ~ A2 ~ §2, which makes our results quite natural from the point of view
of electromagnetic energy conservation. Anisotropic dielectric properties of the absorptive medium are
supposed to deform the shape of the volume in which the electromagnetic energy is absorbed compared to
the homogeneous and isotropic case, while keeping the effective volume in which the energy is absorbed
approximately the same. The resulting shape is supposed to be “squeezed” along the x direction. Since
we were solving a two-dimensional propagation problem in the xz plane, while disregarding the field
behaviour in y-direction, the effect of medium anisotropy leads to the effective mode area conservation
in the zz plane, which is exactly the result we obtained (if we note that based on Eq. (2) the field
penetration in z direction approximately equals to Apps, which is considerably smaller than ).

3. NUMERICAL SIMULATIONS

These analytical results are supported by numerical simulations shown in Fig. 2(c). The stratified
conducting media (both single-well and periodic conductivity profiles) have been modeled with planar
multilayer lossy dielectric structures. Wave propagation in such media have been simulated with
commercial EM solver Altair Feko (www.altair.com/feko). Feko’s special Green’s function formulation
(method of moments extension) implements 2D infinite planes with a finite thickness to model each
layer of the dielectric. This simulation approach allows to verify the basic predictions of our theory, and
also to illustrate that the wave propagation remains qualitatively the same in a more practical 3D case
in contrast to the 1D (planar wave) formulation of our analytical theory.

Each dielectric layer of the multi-layer structure is characterized by the real part of the dielectric
constant €, = 1 (the same for each layer) and by the unique conductivity o (defining the imaginary
part of the dielectric constant). The conductivity profile o(z) used in Figs. 2(d) and (e) is represented
by a step-wise function approximating single-well parabolic dependence

o(z)=(1+ 0.122) S/m (14)

where z is the distance in meters. The step-wise conductivity profile has been implemented with a stack
of 10 cm thick layers for |z| < 1m and with 1m thick layers for 1m < |z| < 19m. The finer structure
of the multilayer medium has been used near z = 0, since this is where most of the power flow occurs.
We assumed that the medium is homogeneous for |z| > 19m and its conductivity is ¢ = 37.1S/m.
Electromagnetic waves have been excited by a point electric dipole with magnitude of Idl = 1 A*m
and frequency 15kHz. The point dipole source is placed in the center of the conductive stratum (d) or
inside the homogenous medium 0.5m away from the interface with the conductive stratum (e). It is
directed parallel to the layers and perpendicular to the observation plane in Figs. 2(c)—(e). Figs. 2(d)
and (e) show the magnitude of the Poynting vector for the “single-well” parabolic conductivity profile.
For comparison, Fig. 2(c) shows distribution of the magnitude of the Poynting vector in the medium
with homogeneous conductivity ¢ = 1S/m. The latter is totally defined by the skin depth which
is about 4.1m at the frequency of excitation. As one can see from Fig. 2(d), the introduction of the
conductivity gradient (parabolic conductivity well) leads to generation of the surface wave confined near
the center of the well and propagating in the x-y plane. Thus, the point source excites simultaneously a
volumetric small-k wave (the central circle), attenuating in accordance with the skin depth prediction,
and a long-propagating confined 2D mode in accordance with Eqs. (12), (13). This 2D surface wave
has a TM character with electric and magnetic field structure similar to the structure of the symmetric
fundamental mode of the dielectric waveguide. This wave has 2D (cylindrical) structure and attenuates
much slower than a 3D spherical wave. By comparing Figs. 2(c) and (d), one can notice that the
power distribution of the 3D mode in the bottom figure is squeezed in z-direction. This is because
of larger effective conductivity of the stratified medium in comparison with homogeneous medium.
In complete agreement with the analytical theory, it is evident that introduction of the conductivity
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Figure 2. TM wave propagation in a one-layer configuration. (a) Spatial distribution of &” inside a
“parabolic” conductive stratum defined as ¢ = A 4+ Bz?, where both A and B coefficients are large
and imaginary, so that A/B = o? is positive and real. In this example A = 100i and o = 7. The
parabolic behavior is cut off at z = a/2'/2. (b) The effective potential energy V(z) inside such a
“parabolic” conductive stratum. When the potential well is cut off at z = «/ 21/2 " as indicated by
the red line, the shallow energy level (shown in green) may be obtained analytically as k? ~ 1/8a2.
(¢) Numerical simulations of TM wave propagation away from a point dipole source in a homogeneous
medium having conductivity ¢ = 1S/m (top). (d)—(e) Numerical simulations of TM wave propagation
away from a point dipole source in a conductive stratum having a parabolic conductivity dependence
o(z) = (14 0.122) S/m (where z is the distance in meters in the range —19m < z < 19m (see inset)),
sandwiched between infinite homogeneous media having o = 37.1 S/m . Images (c)—(e) show maps of the
total Poynting vector for the TM wave at 15 kHz and are in the same scale shown in Fig. 2(c). The point
dipole source is placed in the center of the conductive stratum (d) or the homogenous medium 0.5 m
away from the interface with the conductive stratum (e). Propagation length of the TM mode along
the “parabolic” stratum considerably exceeds the conventional skin depth in a homogeneous medium.
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gradient leads to much longer propagation range in the x direction, in spite of the overall increase in
the conductivity value. Note that the medium conductivity in these examples (o ~ 1S/m) roughly
corresponds to a typical conductivity of seawater [6]. For many applications it is crucial to consider
boundary effects. Fig. 2(e) shows TM wave propagation away from the dipole point source placed in the
homogeneous medium 0.5 m away from the conductive stratum layer. As can be seen from Fig. 2(e), the
long range surface wave in this case propagates along the interface between homogeneous medium and
the conductive stratum. The mode centered in the stratum is also visible but its intensity is lower than
in Fig. 2(d), and it attenuates faster. Our numerical simulations confirm that electromagnetic waves in
stratified conductive media may have propagating character, and that the propagation length of such
waves may be considerably larger than the skin depth.

The fact that the system having high loss starts behaving as a low-loss low-dimensional system is
non-trivial and quite remarkable. The physical origin of this seemingly paradoxical behavior is in fact
quite straightforward. It may be traced back to the well-known effect of charge accumulation whenever
there is a gradient of conductivity in a medium and a non-zero component of electric field parallel to
it. In the electrostatic case the corresponding volumetric charge density p is obtained as

oc-FE
p=— €0v (1 5)

o
(see for example [8]). Therefore, at non-zero frequencies the obtained low loss TM wave solution of
Maxwell equations may be characterized as a propagating wave of charge density. Note also that
this wave is deeply subwavelength (Arys < Ag), which means that a periodically stratified conductive
medium, in which the conductivity distribution in each individual layer looks like in Fig. 2(a), should
behave as a very high refractive index metamaterial. Based on Eq. (10), the effective refractive index
in such a metamaterial in the x and y directions may be estimated as

oo X
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4. MULTILAYERED STRUCTURES

Since the properties of such periodically stratified media are of interest in many fields of science
and engineering (e.g., in super-resolution optical microscopy, underground and underwater radio
communication, plasma etc.) let us study these properties in more detail. In particular, let us determine
the transmission properties of such a periodically stratified conductive media along z direction.

As an example, let us consider the following straightforward periodic extension of the parabolic
distribution of the dielectric permittivity given by Eq. (4):

c(z)=A (1 + sin? 2) : (17)

where A > 1 is an imaginary coefficient, and oz < A is real. The corresponding effective potential V'(2)
for the TM wave is

) 2z 3 sin? 2z
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Once again, Re(V') > Im(V) in the limit A > «. This effective potential is plotted in Fig. 3(a). Similar
to Fig. 2(b), the regions of positive V(z) have been cut off, so that we may use the same approximate
energy level given by Eq. (6) in our analysis. According to the Bloch theorem [9], the solution of the
effective Schrodinger Eq. (2), when the potential is periodic, can be written as:

b(z) = e*Fu(z), (19)
where u(z) is a periodic function which satisfies u(z) = u(z + ma) — see [10]. Using the Born-von
Karman boundary conditions y(0) = y(Mm«), where M is the number of layers, results in the following

quantization for k.:

2 M
k,=-—m, where m=0,+£1,...,+—

Mo 2 (20)
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In the limit M — oo a continuous transmission band is formed for 0 < k, < 1/a. The periodic function
u(z) may be expressed as a Fourier series:

u(z) =Y Upem=/o (21)
On the other hand, the periodic potential V' (z) may also be expanded as a Fourier series as:
V(z) =) Vpelme/e (22)

As a result, the Schrodinger equation may be re-written as

2m \ 2
<kz + > + k2
(6%

Using the tight binding approximation, its solution may be written approximately as

k* = k2 — 28 cos (mak.) (24)

U + Zm, Vit Uy = 0 (23)

where kg ~ 1/21/2a is the energy level of a single potential well given by Eq. (6), and S is the hopping
integral S ~ —kZ (o|11), which is calculated using the wave functions of the original potential well

(Eq. (5)) centered at z = 0 and z = 7o planes, respectively. Using the approximations ¢ ~ e~ %0%| and
Y1 ~ e k(=7 “the hopping integral may be estimated as

S ~ —makie ko (25)

This analytical theory is supported by numerical simulations shown in Figs. 3(b)-(d). The
conductivity profile used to produce these figures is a periodic stack of layers where each period consists
of 10 cm thick layer of 0 = 1.5S/m and 1.9 m thick layer of ¢ = 1S/m. This periodic structure consists
of 113 periods and is sandwiched between homogeneous medium having conductivity o = 1S/m. The
radiating dipoles in these figures are oriented perpendicular to the layers. Figs. 3 and 4 demonstrate
that introduction of the periodic conductivity variations in the transverse direction enables power flow in
z-direction. In addition to the volumetric small-k wave and long propagating confined 2D mode (similar
to Fig. 2), the point source (vertical electric dipole) also excites volumetric high-k waves (predicted by
Eq. (24)) which manifest themselves as four perturbances emanated from the central circle (see Fig. 3(b)
and Fig. 3(d)). The difference between low-k and high-k 3D modes is especially clear on Fig. 3(d)
showing Poynting vector distribution in X-Y cut. The inset in the center shows the corresponding
phase of E, component of electric field. It clearly indicates the difference in wave numbers of these
two 3D modes. The high-k mode attenuates faster than the confined 2D mode due to its volumetric
3D character, but still can propagate longer than the small-k wave. The beam propagating in the x-y
plane becomes considerably broader in z-direction. The complicated interference pattern revealed by
Fig. 3(c) is a manifestation of the fact that the wavelength of the volumetric high-k modes becomes
comparable to the period of the stratified medium. In addition, the distribution of z-component of the
Poynting vector has well pronounced beam splitting typical, for example, for hyperbolic media [13]. By
comparing Figs. 3(b) and 3(c), one can see that z-component of the Poynting vector makes a significant
contribution to the total magnitude. This is mostly related to the vertex nature of the excited field,
rather than with loss during propagation along x direction. When a single point dipole source is replaced
with a periodic array of sources as shown in Fig. 4, the resulting TM mode structure looks even broader
and becomes even closer to the analytical model predictions.

It is also interesting to note that somewhat related effects may be obtained in the effective medium
theory limit while analyzing the properties of multilayer metal-dielectric structures [14]. Using the
Maxwell-Garnett approximation, the dielectric tensor components of such a multilayer “metamaterial”
may be written as follows:

€y = Nem + (1 —n)eq (26)
EmEd

= 27

© (1 —n)em + neq (27)

where n is the volume fraction of metal, and €, and ¢4 are the dielectric permittivities of the metal
and dielectric, respectively [15]. In the limit e, > ¢4, the z component of the dielectric tensor is real
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Figure 3. TM wave propagation in a periodic conductive multi-layer configuration. (a) The periodic
dielectric constant is defined as e(z) = A(1 + sin?(z/a)). Similar to Fig. 2(b), the positive sections of
the periodic potential well are cut off, as indicated by the red line. (b), (c), (d) Numerical simulations of
TM wave propagation along such a multilayer conductive stratum geometry. The wave is excited by a
single point dipole indicated by the red arrow. The width of the central beam visible in the maps of the
total Poynting vector (b) and its z-component (c) is considerably broader compared to the central beam
in a single stratum shown in Fig. 2(c). (d) The total Poynting vector distribution in X-Y cut made
44m above the dipole source. The inset in the center shows the corresponding phase of E, component
of electric field. Images (b)—(d) are plotted in the same scale shown in Fig. 3(b).
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Figure 4. The total Poynting vector of TM wave excited in the same structure by a periodic
configuration of 10 point dipoles (one per period). The scale, size and orientation of the plane are
the same as in Figs. 3(b) and (c).

and positive: €, ~ £4/(1 —n), which results in existence of long-distance propagating modes within the
“hyperbolic” frequency bands inside such a “metamaterial”, which is mostly made of non-transparent
metal. However, we must point out that a dramatic difference between our results and the hyperbolic
media example is that hyperbolic media are made using low loss dielectrics as one of their components.

In a somewhat similar fashion, a single layer structure depicted in Fig. 2 supports a single
frequency-dependent propagating mode which is defined by the eigenstate of the one-dimensional
effective Schrodinger equation (Eq. (2)). In the particular case which is solved analytically in our
manuscript (see Egs. (4)—(6)), the dispersion law w(k) of this mode is defined by the dispersion of the
frequency-dependent parameter «, which in tern is determined by the frequency-dependent e(w) via
Eg. (4). In the case of the multilayer structures depicted in Fig. 3, the single mode defined by Eq. (6)
becomes a band, which is described by Eq. (24). This behaviour is in fact quite similar to the behaviour
of the multilayer metal-dielectric structures discussed above, in which a plasmonic band of a single
metal layer becomes a “hyperbolic band” of the multilayer hyperbolic metamaterial.

5. CONCLUSIONS

In conclusion, we have demonstrated that contrary to common beliefs, electromagnetic waves may
propagate through some lossy conductive media. Typically, such media are characterized by non-
Hermitian Hamiltonians having complex eigenvalue spectrum, which results in strong wave attenuation.
It has been recently demonstrated however that a non-Hermitian system may have real eigenvalue
spectrum if such a system exhibits PT-symmetry [11]. Usually, the real spectrum leading to long-range
wave propagation in such systems is enabled by engineered counterplay between loss and gain [5]. The
fundamental importance of our findings consists in the demonstration of a new class of electromagnetic
media with inherently high dissipation, no gain and no PT-symmetry, which nevertheless has almost
real eigenvalue spectrum, and which supports propagating electromagnetic waves. The non-trivial non-
perturbative character of these newly found propagating electromagnetic waves is revealed by the fact
that unlike conventional wave-like solutions of source-free Maxwell equations, these waves completely
disappear in the lossless limit. The very existence of these newly found highly non-trivial electromagnetic
waves depends on the presence of very high losses (£” > ¢).

Our findings have broad implications in many fields of science and engineering. They enable radio
communication and imaging through conductive media, such as seawater [6], various soils, plasma and
biological tissues [3]. For example, since natural stratification is often observed in many underground
sedimentary rocks and soils (as illustrated for example in Fig. 1(b)) and these rocks and soils typically
have ¢ > ¢ at radio frequencies, using our theoretical results it may become possible to greatly
improve spatial resolution and ground penetrating performance of the ground penetrating radar (GPR)
techniques. Our findings may also enable novel super-resolution microscopy techniques and lower-loss
electromagnetic metamaterial designs working across such previously inaccessible frequency ranges as
deep UV, in which all the conventional optical materials suffer from very large losses [12]. Compared to
the earlier results reported in [3, 12] where the propagation length of the surface waves remained similar
(or even below) the skin depth, the findings reported here are quite novel and striking, since several
analytically solvable model distributions of £(z) have been found which give rise to electromagnetic
waves propagating in highly lossy media over distances which greatly exceed the conventional skin
depth.
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