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A Charged Particle Model Based on Weber Electrodynamics for
Electron Beam Trajectories in Coil and Solenoid Elements

Christof Baumgärtel and Simon Maher*

Abstract—To aid with the design, evaluation, and optimisation of charged particle instrumentation,
computer modelling is often used. It is therefore of interest to obtain accurate predictions for trajectories
of charged species with the help of simulation. Particularly for solenoids and coils, which are often
used for guiding, deflecting or focussing particle beams, knowledge of the magnetic field is required,
especially in the fringing field regions. A novel model, which is based on a direct-line-of-action force
between interacting charges, is described in this paper which accurately predicts the deflection of an
electron beam trajectory traversing through a coil and the fringe field region. The model is further
compared with a standard field model and a commercially available software package. Additionally,
a relatively straightforward experiment has been designed and implemented to verify the simulation
results, where it is found that the presented direct-action model is equally as accurate as field-based
simulations compared with the experimental results. Furthermore, the magnetic field of a solenoid is
visualised and analysed in terms of its radial, axial, and total field strength and compared to a force
map obtained from the direct-interaction model. This representation allows for further comparison of
the field and force interaction models and it is found that they are qualitatively the same.

1. INTRODUCTION

Solenoids and coils are electromagnets which are used to generate magnetic fields of desired strength
by supplying a suitable current. A solenoid is defined as an elongated coil of wire whose length is
equal to or greater than twice its radius, and most of the field strength is concentrated on the inside
of the solenoid. They are common electromagnetic devices which are used in conjunction with many
technologies, such as plasma applications [1–5], charged particle optics [6–12], engineering [13–15], and
medicine [16–19].

Particularly in charged particle optics, they have become essential elements for guiding and
focussing particle beams consisting of protons, ions, or electrons. They are imperative in the
functionality of particle accelerators and storage rings, such as the LHC, RHIC, and ELENA. Since
the manufacture of these high-tech applications for testing purposes is impractical, it is of interest to
obtain accurate simulation of the behaviour of particle beams in the vicinity of electromagnets to aid
in the design process of apparatus, so that cost- and time-effectiveness can be ensured. Computer
simulation of particle beams is therefore an important tool in the design phase and involves the solution
of field equations to obtain information about the electromagnetic field generated by current carrying
coils. Numerical methods, such as FEM, FDM and BEM are commonly employed to solve Maxwell’s
field equations or the Biot-Savart law and the Lorentz force is then used to calculate the action of the
field on the beam. Further, the beam can be subject to several disturbing effects, e.g., space charge
effects [20–24], which gives further motivation to obtain accurate models of beam trajectories.
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As electron beam deflection and the calculation of fields produced by electromagnets is well known,
such an arrangement can provide a foundational setup (for experiment and simulation) to test and
compare different models of computation. To this end, this paper tests three models for electron
beam deflection — a direct-interaction model, a field based model, and predictions obtained with a
commercially available software package. We present a direct-interaction model that considers the
forces acting between the charge carriers of the electron beam and a coil to predict the deflection
experienced by the beam due to the magnetic field, within the low velocity limit v ≪ c. The standard
field model [25] is based on the derivations of Derby & Olbert [26] and Callaghan & Maslen [27], which
has been further applied to solenoids with permeable cores, off-axis solenoids, parallel solenoids and axis
alignment measurements [28–33]. These two models will be further compared to commercially available
software CPO [34].

In order to further test the fidelity of these models, a standard and relatively straightforward
experiment is performed where an electron beam travels through a current carrying coil which alters its
trajectory. By utilising an initial electrostatic offset it is possible to investigate the deflection experienced
by the beam when entering the coil at different angles, i.e., it will propagate through the fringe field
region, entering into the inside of the coil where the field is strongest, and its deflection measured on
a fluorescent screen at the other end of the coil. Lastly, we will show a visual representation of the
magnetic field where the field strength is shown on a two dimensional intensity map and compared with
the vectorial force components obtained from the direct-interaction model.

2. MATHEMATICAL MODELLING

This section will present three different models used for predicting the deflection caused by a coil on
a beam passing through any field region. First, we will present a direct-action model based on Weber
electrodynamics which calculates the force between coil and electron beam without the necessity of field

entities E⃗ & B⃗. Second, a standard Maxwellian field approach is shown where the fields are calculated
first and then substituted into the Lorentz force [25–27]. Third, the software package CPO [34] is used to
calculate beam deflections, which employs the BEM to obtain numerical solutions. Recently, research
interest in Weber electrodynamics has increased, where Weber’s force has not only been applied to
electron beam deflection [35–37], but also to other electromagnetic phenomena, such as induction [38–
40], and superconductivity [41, 42]. Moreover, the theory has further been connected to the fine structure
of the hydrogen atom [43, 44] and even Planck’s constant [45, 46]. We will thus show how our model
can predict accurate beam trajectories.

2.1. Weber Model

The basis of the present model is given by the direct-action-at-a-distance force for electrodynamic
interaction given by Wilhelm Weber in 1846 [47], which was published 15 years prior to Maxwell’s
first work on electromagnetic vortices [48]. In Maxwell’s Treatise [49], first published in 1873 where a
rigorous treatment of fields and aether was given [50], he even expressed praise for Weber’s force law.
This electrodynamic force law determines the interaction of charged particles, and in modern vector
notation and SI-units is given as:

F⃗21 =
q1q2
4πε0

r̂12
r212

(
1− ṙ212

2c2
+

r12r̈12
c2

)
. (1)

Here, we have r⃗12 as the relative position, ˙r12 as the relative velocity, and ¨r12 as the relative acceleration
between the charges q1 and q2, with ε0 being the permittivity of free space and c the speed of light. We
note the relative quantities as

r⃗12 = r⃗1 − r⃗2, (2)

ṙ12 =
dr12
dt

= r̂12 · v⃗12, (3)

r̈12 =
d2r12
dt2

=
dṙ12
dt

=
[v⃗12 · v⃗12 − (r̂12 · v⃗12)2 + r⃗12 · a⃗12]

r12
, (4)
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as well as their magnitude and unit vector

r12 = |r⃗1 − r⃗2|, r̂12 =
r⃗12
r12

. (5)

As Weber’s force acts along the line joining the particles it follows Newton’s third law, conserving linear
momentum, and it further follows conservation of energy and angular momentum. The force reduces
to Coulomb’s force in the static case for charges at rest, and for the interaction of current elements
Ampère’s force is derived from it. While it does not conceptually depend on electromagnetic fields,
the force has been shown to be consistent with Maxwell’s field equations as well [51–55], although
as a direct-action formulation such a form of mediation is not needed to transmit the force between
charges. Previously, a model has been derived for the deflection of electron beams travelling across
current carrying solenoids based on this force approach in earlier work [35, 37]. In this work we present
a similar 3D model based on Weber’s force. For the first time, this is applied to the electron beam
travelling through the current carrying coil with predictions compared to experimental results.

First, we can assume the positions of the electrons in the beam and the current in a coil or solenoid
w.r.t. to the coordinate origin, set in the very centre of the coil and obtain the position vectors r⃗1, r⃗2
and r⃗12 (see Fig. 1).

r⃗1 =

(
x1
y1
z1

)
, r⃗2 =

(
R cos(θ)
R sin(θ)
z2 + dzθ

)
, (6)

r⃗12 =

(
x1 −R cos(θ)
y1 −R sin(θ)
z1 − z2 − dzθ

)
, (7)

r12 =
√

(x1 −R cos(θ))2 + (y1 −R sin(θ))2 + (z1 − z2 − dzθ)2. (8)

Here, the initial position of the electron beam is kept arbitrary with the general variables x1, y1 , z1 to
allow for any desired point of emission. The current through the coil I is considered as the movement of
the electrons in a helical motion along the windings, entering the coil at z2 = −l/2 and moving towards
the opposite end with infinitesimal steps of dzθ. In this case, dz acts as a fixed increment which can be
obtained from the coil geometry. The motion of the electron beam itself is also kept as general velocity

x

z

y

l/ 2

Solenoid

electron beam

 -l/2

 r12

 r2

 r1

→

→

→

Figure 1. Coordinate system situated in the centre of a solenoid with an electron beam entering at
one end and exiting the other. The positions r⃗1, r⃗2 and r⃗12 are used to calculate the force on the beam
exerted by the current in the coil, elongating from −l/2 to l/2.
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variables v1x , v1y , v1z , which leads to the velocities

v⃗1 =

(
v1x
v1y
v1z

)
, v⃗2 =

−v2 sin(θ)
v2 cos(θ)
v2
R
dz

 , v⃗12 =

v1x + v2 sin(θ)
v1y − v2 cos(θ)

v1z −
v2
R
dz

 . (9)

The beam is then set to travel parallel to the axis of the coil by setting the initial value of v1z equal to
the electron velocity ve and can then enter the coil at an angle by setting initial values for v1x or v1y .
The initial values are achieved by an electrostatic offset which will be further explained in Section 3.

These velocities and positions can now be substituted into the Weber force (1) to formulate a force

F⃗2−1−between the electrons in the beam q1− and the electrons in the coil q2− and respectively a force

F⃗2+1− between q1− and the lattice charges q2+ . Here we will assume that q1− = −q1+ and q2− = −q2+ .

F⃗2−1− =
q1+q2+
4πε0

r⃗12
r312

1− 3

2c2
1

r212

(x1 −R cos(θ)
y1 −R sin(θ)
z1 − z2 − dzθ

)
·

v1x + v2 sin(θ)
v1y − v2 cos(θ)

v1z −
v2
R
dz



2

+
1

c2


v1x + v2 sin(θ)
v1y − v2 cos(θ)

v1z −
v2
R
dz


2

+

(
x1 −R cos(θ)
y1 −R sin(θ)
z1 − z2 − dzθ

)
·

(
a1x − a2x
a1y − a2y
a1z − a2z

)


=
q1+q2+
4πε0

r⃗12
r312

{
1− 3

2c2
1

r212

[
(v1x + v2 sin(θ))(x1 −R cos(θ)) + (v1y − v2 cos(θ))(y1 −R sin(θ))

+
(
v1z −

v2
R
dz
)
(z1 − z2 − dzθ)

]2
+

1

c2
((
v21x + 2v1xv2 sin(θ) + v22 sin

2(θ)

+ v21y − 2v1yv2 cos(θ) + v22 cos
2(θ) + v21z − 2

v1zv2
R

dz +
(v2
R
dz
)2)

+ (a1x − a2x)(x1 −R cos(θ)) + (a1y − a2y)(y1 −R sin(θ))

+ (a1z − a2z)(z1 − z2 − dzθ))

}
(10)

F⃗2+1− = −q1+q2+
4πε0

r⃗12
r312

1− 3

2c2
1

r212

[(
x1 −R cos(θ)
y1 −R sin(θ)
z1 − z2 − dzθ

)
·

(
v1x − 0
v1y − 0
v1z − 0

)]2

+
1

c2

(v1x − 0
v1y − 0
v1z − 0

)2

+

(
x1 −R cos(θ)
y1 −R sin(θ)
z1 − z2 − dzθ

)
·

(
a1x − 0
a1y − 0
a1z − 0

)
= −q1+q2+

4πε0

r⃗12
r312

{
1− 3

2c2
1

r212

[
(v1x)(x1 −R cos(θ)) + (v1y)(y1 −R sin(θ))

+(v1z)(z1 − z2 − dzθ)]2 +
1

c2

((
v21x + v21y + v21z

)
+ (a1x)(x1 −R cos(θ)) + (a1y)(y1 −R sin(θ)) + (a1z)(z1 − z2 − dzθ))

}
(11)

We can see that acceleration terms a⃗1 of the beam cancel out and with the additional assumptions of
v1 ≫ v2 and a2 being negligibly small, we can sum the two forces as

F⃗w = F⃗2−1− + F⃗2+1−

=
q1+q2+
4πε0

v2
c2

r⃗12
r312

{
− 3

r212

[
(v1x sin(θ))(x1 −R cos(θ))2

+ (v1y sin(θ)− v1x cos(θ))(x1 −R cos(θ))(y1 −R sin(θ))
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− (v1y cos(θ)) (y1−R sin(θ))2+

(
v1z sin(θ)−v1x

dz

R

)
(x1−R cos(θ))(z1−z2−dzθ)

+

(
−v1z cos(θ)− v1y

dz

R

)
(y1 −R sin(θ))(z1 − z2 − dzθ)

+

(
−v1z

dz

R

)
(z1 − z2 − dzθ)2

]
+
[
v1x sin(θ)− v1y cos(θ)−

v1z
R

dz
]}

. (12)

To transition from discrete current sources q1,2 to continuous currents, we consider the following
assumption: while a continuous current is flowing through the coil, each current element (consisting of
a moving electron and a stationary lattice charge) is immediately replaced with the next. This holds a

linear charge density λ and we can apply the transformation qv → λvd⃗l → IRdθ, replacing q2v2. When
this is integrated over the helical path of the entire coil, the total force exerted on the beam can be
evaluated, giving:

F⃗whelix
=

q1+IR

4πε0c2

∫ N2π

0

{
r⃗12
r312

. . .

}
dθ. (13)

Here, N is the total number of windings of the coil. Next to just the helical model, it can also be assumed
that the coil consists of individual stacked loops and their action on the beam can be superposed to
arrive at a summation approach. In this case v1z = 0 and the infinitesimal dz is replaced with a position
for each loop determined by the pitch of the coil p · (n− 1), with n = 1 . . . N , so that we have

r⃗2 =

(
R cos(θ)
R sin(θ)

z2 + p · (n− 1)

)
, v⃗2 =

(−v2 sin(θ)
v2 cos(θ)

0

)
. (14)

This can be again substituted into the Weber force with the same assumptions, which then leads to the
summation of all individual loops as

F⃗wsum =
q1+q2+
4πε0

v2
c2

r⃗12
r312

{
− 3

r212

[
(v1x sin(θ))(x1 −R cos(θ))2

+ (v1y sin(θ)− v1x cos(θ))(x1 −R cos(θ))(y1 −R sin(θ))

− (v1y cos(θ))(y1 −R sin(θ))2 + v1z sin(θ)(x1 −R cos(θ))(z1 − z2 − p(n− 1))

−v1z cos(θ)(y1−R sin(θ))(z1−z2−p(n− 1))]+[v1x sin(θ)−v1y cos(θ)]

}
, (15)

F⃗wsum =
q1+IR

4πε0c2

N∑
n=1

∫ 2π

0

{
r⃗12i
r312i

. . .

}
dθ. (16)

Both (13) and (16) can be used to simulate the behaviour of the beam travelling through the coil. The
simulation first defines the initial values for v⃗1 and r⃗1 and then utilises equations of motion to update
the positions and velocities for each step. To this end, the propagation of the beam is transitioned
from the spatial to the time dimension. The time step is set to be the total distance travelled by an
undeflected beam (from emission to detector screen) over the initial electron velocity, so that

∆t =
∆z1
ve

, (17)

with t0 = 0 and tlast = z1last/ve.
At every time step the force (13) (respectively (16)) is then calculated, and this force will subject

the beam to a certain acceleration a⃗f . Within the low velocity limit, we can assume the electron mass
me as constant and obtain a⃗f through the Weber force acting on the beam:

a⃗f =
1

me
F⃗w. (18)
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With this the positions and velocities for the following time step can be calculated according to the
equations of motion

x1k+1
= x1k + v1xk∆t+

1

2
afx∆t2, (19)

y1k+1
= y1k + v1yk∆t+

1

2
afy∆t2, (20)

z1k+1
= z1k + v1zk∆t+

1

2
afz∆t2, (21)

v1xk+1
= v1xk + afx∆t, (22)

v1yk+1
= v1yk + afy∆t, (23)

v1zk+1
= v1zk + afz∆t, (24)

where k is an index value denoting the current time step and k + 1 the following time step. The
simulation itself is carried out in MATLAB (Mathworks, USA) where the trapezium rule is used to
integrate for θ at each time step with a step size of 0.5◦. The beam position r⃗1 can then be read at the
penultimate time step to obtain the horizontal and vertical deflections xd and yd respectively, where
they are intercepted by the detector screen. Both approaches, helical and summation, predict the same
deflection values for a given coil, as expected, and the simulation results are further compared with
experiments and the other models in Section 4. Further, it is found that the force component acting
longitudinal to the beam (Fwz in this case) is zero, which is in agreement with the Lorentz force.

2.2. Field Model

To calculate the deflections of the beam due to the magnetic field, one needs to obtain the Lorentz
force,

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
, (25)

where a charge q is moving at speed v⃗ and is deflected by the electrical field E⃗ and the magnetic field

B⃗. In our case, the magnetic field B⃗ is generated by the current carrying coil and acts on the beam
electrons. In order to obtain the magnetic field itself, a useful tool in the form of a MATLAB code by
Cébron is utilised [25]. This code incorporates the work of Derby and Olbert [26] and Callaghan and
Maslen [27] who derived the magnetic field expressions inside and outside of any finite solenoid with
help of the Biot-Savart law.

In their model [26], Derby and Olbert obtained formulations for the radial component Bρ as well
as the axial component Bz, where the residual field Bres = µ0nunitI is extracted as a factor. (Here,
nunit is the number of turns per unit length, giving Bres as the idealised uniform field inside a long
solenoid.) This expression is modified for radial and axial components through complete elliptic integrals
depending on the geometry of the coil, and solving these gives numerical values for the field for any
given position inside and outside of the coil or solenoid. They are calculated as follows:

Bρ =
Bres

π

√
R

ρ

[
ω2
± − 2

2ω±
K(ω±) +

E(ω±)

ω±

]+
−
, (26)

with K and E representing complete elliptic integrals of the first and second kind respectively. Here,
the + and − signs are used to indicate the upper and lower bounds after integration. We further have
geometrical parameters depending on the dimensions of the coil, which are

ω± =

√
4Rρ

(R+ ρ)2 + ξ2±
, (27)

ξ± = z ± L/2 (28)

γ = (R− ρ)/(R+ ρ), (29)
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ζ± =

√
(R− ρ)2 + ξ2±
(R+ ρ)2 + ξ2±

, (30)

χ± =
ξ±√

(R+ ρ)2 + ξ2±

. (31)

The axial field can then be calculated for ζ+ < 1 as

Bz =
Br

π

R

R+ ρ

1

γ + 1

[
χ±

(
K
(√

1− ζ2±

)
+ γΠ

(
1− γ,

√
1− ζ2±

))]+
−

(32)

and for ζ± > 1 as

Bz =
Br

π

R

R+ ρ

1

γ(γ + 1)

[
χ±
ζ±

(
γK

(√
1− 1

ζ2±

)
+Π

(
1− 1

γ2
,

√
1− 1

ζ2±

))]+
−

, (33)

where Π is the complete elliptic integral of the third kind, and ρ is the radial coordinate.

To find the deflection values it is considered that the electric field E⃗ of a coil is negligibly small, so
that the Lorentz force reduces to

F⃗L = q(v⃗1 × B⃗). (34)

The beam is simulated to travel from emission to detector screen in the time domain at constant speed,
with the same time step, distance of travel and initial beam position and velocity as the Weber model in
the previous section. At each time step the field values of Bρ and Bz are calculated, and Bρ transformed
to Cartesian coordinates through the following relations

Bx = Bρ ·
x1
ρ
, (35)

By = Bρ ·
y1
ρ
. (36)

With these the vector cross product can be performed to obtain the Lorentz force by substituting the
field values into the force equation and the resulting acceleration on the beam can be obtained similar
to (18), as

a⃗f =
1

me
F⃗L. (37)

Through this the same equations of motion (19) can be applied to calculate beam position and velocity
for every time step. Horizontal deflection xd and vertical deflection yd are thus obtained as the positions
at the penultimate time step of the simulation.

2.3. Modelling with CPO

Lastly, beam deflections through the coil are also predicted with a state-of-the-art commercially available
software package CPO [34]. With this software the coil is modelled as a stack of current loops set along
the z-axis following the geometry of the coil. In the software conventional current is considered, thus a
current of 1.00A is supplied to rotate in the mathematically negative sense, which represents positive
rotation of the electrons moving through the coil. Like in the previous models, the coil is centred on the
origin and the initial parameters, such as position and velocity of the beam, are set in the software. The
beam is set to be treated as individual rays of electrons and the direct method is chosen for tracing of
the beam, where the beam is travelling over the whole distance from emission to screen at fixed velocity
in direction of the z-axis. After travelling from emission through the inside of the coil, the beam is
intercepted by a test plane where the detector screen would be, so that the horizontal and vertical
deflections xd and yd can be read.
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3. EXPERIMENTS

An experiment has been performed to obtain deflection values from the magnetic action exerted on
the beam by a current carrying coil. The standard experimental arrangement is congruent with the
simulations and represents a well-understood test case for the purpose of comparison. The beam is
emitted by an electron gun in a Cathode Ray Tube (CRT) and its position recorded on the fluorescent
screen of the CRT. A Hameg 203-6 oscilloscope has been disassembled and modified to adapt the CRT
for experimentation, with an external cable connecting electron gun and control circuit. A single wound
coil with 290 windings has been placed around the glass body of the CRT, with a radius of R =159.5mm
and a length of l =170mm, which is supplied with a current of 1A. A sketch of the cross section of this
setup can be seen in Fig. 2.

z

y

x

Electron Gun

Anodes

Deection Plates

Solenoid

Fluorescent Screen

CRT

Figure 2. Cross section of the experimental setup comprising a CRT with fluorescent detector screen,
surrounded by a coil through which an electron beam is deflected. The electron gun emits the beam, it
is accelerated by a set of anodes and then imposed with an initial deflection by the deflection plates to
enter the coil at an angle.

With the electron gun operating at an acceleration voltage of 2000V between cathode and anode,
the electrons reach a terminal velocity of

ve =

√
2eV

me
≈ 2.65× 107ms−1. (38)

The coil is positioned around the CRT so that the detector screen sits at the end of the coil after
the beam has travelled a total distance of 27.5 cm from the point of emission at terminal velocity
ve (38). The electrons are accelerated over a distance of 2.5 cm until they pass the anode and from there
travel another 25 cm to the detector screen. The fluorescent screen is factory-equipped with a graticule
divided in 10mm steps and subdivisions of 2mm, which can give a rough indication of where the beam
is intercepted after it has been deflected by the coil. With the control circuit the size of the beam spot
can be focused to roughly 1mm diameter. As the centre of the coil aligns vertically with the point
of beam emission (see Fig. 2), the beam is given an initial deflection with the electrostatic deflection
plates of the CRT so that it will enter the coil at an angle to the z-axis, which allows one to investigate
different magnitudes of deflection. The beam that is initially travelling in a straight line is off-set on
the y-axis in steps of 5mm, which gives the beam an additional velocity component v1y . Due to the
beam travelling a distance of 250mm after the anode where the vertical deflection plates sit, we obtain
a ratio of vy/ve in steps of 1/50, reaching from the least initial deflection of 5mm as 1/50 to 40mm as
8/50.
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These initial deflections, however, necessitate a slight simplification in the simulations so that the
deflections can be included through the velocity component v1y accordingly. It must be assumed here
that the beam travels in a straight line from the cathode for the first 25mm up to the anode and is only
deflected by the deflection plates from this point onwards, and respectively not noticeably affected by
the magnetic field of the coil up to this point. The closer end of the coil is 80mm away from the anode
and the assumed deflected path of 250mm is ten times the assumed straight path. It will be seen from
the results (in the following section) that this assumption appears reasonable for the present setup and
the beam is not significantly deflected by the field for the initial acceleration phase up to the anode.

With this consideration experimental values can be obtained with the following procedure. First
the beam is focused and centred in the middle of the graticule on the fluorescent screen. Then it is offset
vertically through the deflection plates by the desired amount and lastly the power supply is turned
on to deflect the beam with the magnetic field. The vertical and horizontal deflection are both read
from the screen with the help of a plastic vernier and the power supply is switched off. This process
is repeated five times for each initial deflection value on the y-axis, which allows for obtaining mean
values and standard deviations of the experimental data.

4. RESULTS

The observed and predicted deflections in horizontal and vertical directions can be shown as points
on the xy-plane and are depicted together in Fig. 3 as a bubble chart. Here horizontal deflection is
represented on the axis of abscissae and vertical deflection on the axis of ordinates. The observed data
from the experiments is shown as a blue square, and they are directly contrasted with the simulation
values in the figure. Results from the Weber model are shown as a red x, field-based values as a
yellow triangle and deflections obtained with CPO as a purple circle. Additionally, the data points have
different sizes for each of the initial offsets and have been labelled with the ratio of vy/ve that initially
deflected the beam, so it would enter the coil at different angles, resulting in different deflection values.

0 5 10 15 20 25 30
0

2

4
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8

10

12

14

16

18

20

Figure 3. Horizontal and vertical deflections of the beam travelling through a coil with 290 windings.
The blue squares represent experimental data, while the red x shows predicted values from the
simulations with the Weber force, the yellow triangle predictions with field theory and the purple
circle simulation results from CPO. Each data point is labelled with the respective ratio of vy/ve.
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From this figure we can see that the deflection values follow a trend of increasing vertical and
horizontal deflection that seems to grow linearly for stronger initial offset values. The deflection through
the magnetic field is minimal for a vertical velocity of 1/50 of the electron velocity, but greatest for the
maximum offset value of 8/50 utilised in this experiment. Further, the vertical deflection value yd can
be seen to be nearly half of the initial offset value in mm. The predictions of the three models all follow
the overall trend equally well, and they are additionally presented in Table 1, where numerical values
from the simulations can be readily compared with the observed experimental data.

Table 1. Deflection results for an electron beam traversing through the 290 turn coil showing simulation
results for Weber, field and CPO models next to the observed data acquired from experiment.

vy/ve Weber Field CPO Observed

xd yd xd yd xd yd xd yd
1/50 3.27 2.51 3.27 2.51 3.23 2.52 2.6 (±0.28) 2.5 (±0.23)
2/50 6.53 5.02 6.53 5.02 6.53 5.03 5.9 (±0.12) 5.3 (±0.18)
3/50 9.80 7.53 9.80 7.53 9.80 7.52 9.3 (±0.31) 7.8 (±0.25)
4/50 13.07 10.02 13.07 10.02 13.07 9.99 12.9 (±0.04) 10.1 (±0.20)
5/50 16.33 12.50 16.34 12.49 16.35 12.42 15.6 (±0.30) 12.4 (±0.27)
6/50 19.60 14.96 19.60 14.96 19.63 14.82 19.1 (±0.23) 14.8 (±0.18)
7/50 22.86 17.40 22.88 17.39 22.92 17.16 22.5 (±0.27) 16.7 (±0.19)
8/50 26.13 19.81 26.14 19.81 26.22 19.44 25.6 (±0.23) 19.1 (±0.48)

From this table and Fig. 3 it is clear that all three models, CPO, field and Weber give the same
deflection results and agree well with experimental measurements for this setup. For the biggest offsets
7/50 and 8/50 Weber and field model seem to marginally overestimate the deflection compared to CPO
which is very slightly closer to experimental values in these two cases, but with a difference of only
about half a millimetre the values are still almost virtually the same.

Further to the 290 turn coil where experimental values have been obtained, a short coil with
20 turns was additionally simulated to check the behaviour of the beam when travelling through an
inhomogeneous field. The hypothetical coil has a radius of 52mm, length 10mm and is sitting 100mm
away from the emitting electron gun and 75mm from the anode respectively, with the coordinate system
still considered in the centre of the electromagnet. With a current of 1A and the same offset values for
vy/ve simulation results are obtained in exactly the same way as described in Section 2 of this paper,
the results of which are presented in the following Table 2.

It appears from these results that, even though the coil is relatively short with only 20 windings
and producing a rather inhomogeneous field, there is barely any noticeable deflection on the beam. As

Table 2. Predicted vertical and horizontal deflections for an electron beam traversing through a 20
turn coil where only simulation results are presented for Weber, field and CPO model.

vy/ve Weber Field CPO

xd yd xd yd xd yd
1/50 0.39 4.87 0.39 4.87 0.39 4.87
2/50 0.78 9.73 0.78 9.73 0.78 9.73
3/50 1.17 14.60 1.17 14.60 1.17 14.60
4/50 1.56 19.46 1.56 19.46 1.57 19.46
5/50 1.95 24.33 1.95 24.33 1.96 24.32
6/50 2.34 29.19 2.34 29.19 2.35 29.19
7/50 2.72 34.05 2.73 34.05 2.75 34.05
8/50 3.11 38.91 3.11 38.91 3.15 38.90
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the vy/ve ratios correspond to initial offsets in 5mm steps, the beam is almost not shifted from the
vertical y-offset at all. Further, only an ever so slight displacement is predicted for the position on the
x-axis, so overall the electron beam is barely shifted at all. Nevertheless, all three models predict very
similar deflection values and are in good agreement with each other.

5. FURTHER ANALYSIS OF THE MAGNETIC FIELD

Upon demonstrating the similarity of the electron deflection results with Weber’s force and field theory
alike, it appears feasible to analyse the field itself further. It has been argued by Slepian [56] that lines
of force do not need to be continuous, individual or closed curves and that it is enough to know only
the local vectorial value of the field in direction and magnitude to predict observable phenomena. In
this sense, the field can be thought of as a vectorial map that indicates how much interaction of charged
particles is possible in which direction at any point in space. It is possible to compare this with Weber’s
theory directly if we obtain a similar map of the force values like the map of the field values.

The total magnetic field of a given solenoid at any point can be expressed as B =
√

B2
ρ +B2

z which

gives the magnitude of the vectorial components. A similar expression can be obtained with the Weber
force. With the electrons at 2000 eV, the force values in the yz-plane can be calculated, where x = 0
and ρ = y with the electrons moving in x-direction, in order to give a cross section of a solenoid’s field in
the ρz-plane. In order to compare this with the total field values B, the total force is similarly obtained
as

Fw =
√

F 2
x + F 2

y + F 2
z (39)

and can then be scaled by the electron velocity to the total field values according to

Bw =
Fw

qve
. (40)

Here, Bw can be interpreted as the magnitude of total “force-field” values based on Weber’s force. It
must be noted that this is not a strict equivalence since only the magnitudes have been manipulated
and this does not apply in the same way to the vectorial values themselves, as the Lorentz force is based
on a cross product. Nevertheless, for the magnitudes we can now see that Bw is also in units of T and
a comparison of the field and the Weber force becomes possible.

These calculations have been carried out for a solenoid of 255mm length, 27mm radius, and 560
turns. The field and force values were simulated to an accuracy of 1mm for both z- and ρ-axis and
in Fig. 4(a) we can see the total field B from the Derby & Olbert model and the values for Bw are
shown next to it in Fig. 4(b). The white lines in the Figure are situated at ρ = ±R and their value
is undefined. This is due to the definition of γ (29), which will inevitably lead to a division by zero
problem and the algorithm did not converge in this case.

As can be seen from this juxtaposition, both field and Weber force represented by these magnitudes
are exactly the same, qualitatively as well as quantitatively. The black lines represent the dimension of
the solenoid and it can be seen that most interaction is possible inside of the solenoid, where the field
is strongest. Anywhere outside of the solenoid (except very close to the ends) the field values are much
smaller than inside. As expected, it can also be seen that the field outside has a tendency to concentrate
closer to the poles and falls off with increasing distance, which seems consistent with the notion that
an ideal, infinitely long solenoid only produces a field inside of itself and does not have a field outside.
(Note: Since the field values outside the solenoid are one or two orders of magnitude smaller than the
strong values inside the solenoid, the shades of blue might be difficult to distinguish in printed version.
However, their structure can be better seen in the digital version.)

Further to the comparison of the total field values, we can also analyse the individual components
of the field and the force respectively. Since the values for both field and force have been obtained in
the yz-plane, we find that Fx = 0, Bx = 0 and of course Bρ = By. This way we can compare the
axial field values Bz (Fig. 5(a)) with the vertical force values Fy (Fig. 5(b)) and the radial field values
Bρ (Fig. 6(a)) to the horizontal force values Fz (Fig. 6(b)). However, in this case, we cannot apply a
scaling factor for the vectorial values, so only a qualitative comparison is possible. Nonetheless, it is
instructive to look at the magnitudes of the respective field and force components. (Since the direction
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(a) (b)

Figure 4. A comparison of the magnitude of field B⃗ as produced by a solenoid in the ρz-plane with

the magnitude of Weber force scaled to a ‘force field’ representation B⃗w, both in units of T; (a) field
magnitudes calculated with the model by Derby & Olbert and respective code [25]; (b) representation
of the Weber force as a field magnitude scaled by charge q and electron velocity ve according to
Equation (40).

(a) (b)

Figure 5. Direct comparison of individual components of field and force values, represented by their
magnitude in the ρz-plane; (a) axial field component Bz; (b) vertical Weber force component Fy.

of the field, respectively force, changes inside and outside of the solenoid, it is advantageous to look at
just the magnitudes again, as it allows for easier comparison of the values.)

Even though the magnitude of the force is much smaller than the field value (as the field is in units
of T while the force is in N, of course,) it is easy to see that they are qualitatively the same, i.e., Bz

and Fy are similar and so are Bρ and Fz. These relations are hardly surprising as we have seen in the
previous section that the deflection values are similar, so the field and force values must be similar too.
Furthermore, it can be seen that the axial field is primarily responsible for the strong field inside of the
solenoid and also contributes to the field outside of the solenoid and close to the poles. The radial field
is mostly only contributing to field values around the poles themselves, which suggests that the radial
field component has a notable influence in the fringe field region.
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(a) (b)

Figure 6. Direct comparison of individual components of field and force values, represented by their
magnitude in the ρz-plane; (a) radial field component Bρ; (b) horizontal Weber force component Fz.

6. CONCLUSION

This paper has investigated the suitability of a particle-based model (derived from Weber
electrodynamics) to predict experimental electron beam deflections in a standard configuration, as
compared against a standard field-based model and a commercial software package (also field-based).
The experimental setup consisted of a low velocity electron beam (2000 eV) travelling through a 290
turn coil. The deflection caused by the electromagnet has been simulated with three different models,
two field based models and a direct-action model based on Weber electrodynamics. It was found that
the three models agree well with experimental data and predict similar deflection values, where they
were found to be equally accurate. Furthermore, the magnetic field of a solenoid was visually analysed
in a plane and compared with a “force field” description obtained from Weber electrodynamics. They
were found to be the same qualitatively and moreover, after algebraic manipulation, also quantitatively.
This is in agreement with the models predicting approximately equal deflection values for the simulated
electron beam. As Weber’s force has been shown to be consistent with field equations and Lorentz force
before, this is not a particularly surprising result, and the theories appear to be indistinguishable in the
near field and low velocity limit. However, Weber’s force follows energy and momentum conservation and
the direct-action model presented here can directly calculate the force between beam and electromagnet
without needing the field as a mediator. This could be advantageous in certain situations where
complicated geometrical structures are utilised, as any geometry can potentially be implemented. Since
the present model is limited to the low velocity regime, it could be of interest for particle decelerators
and storage rings where low energy beams are utilised. Further, the Weber model presented here is is
foundational, and demonstrates its applicability for this relatively straightforward test case. This can
likely be adapted and advanced in the future for more complex beam focussing arrangements, or to take
into account space charge effects from particle-particle interactions through superposition of forces or
statistical treatment of charges (e.g., by utilising the virial theorem [57]). Other disturbing effects, such
as tune shifts or chromaticity shifts could be incorporated into a particle-based model.
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