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Mask-Constrained Synthesis of Domino-Like Tiled Phased Arrays

Luca Tosi and Arianna Benoni*

Abstract—In this work, the mask-constrained synthesis of domino-tiled phased arrays is addressed.
By exploiting tiling theorems and theory, optimal and sub-optimal methods for the synthesis of domino
arrangements and the corresponding excitations that minimize the deviation of the radiation pattern
from a user-defined power mask are presented. A set of numerical examples, carried out with full-wave
simulators and concerned with different aperture sizes and various mask shapes, is reported to assess
the effectiveness, limitations, and ranges of computationally-admissible applicability of the proposed
methods.

1. INTRODUCTION

Modern radar/sensing and 5G communication applications require antennas with beam-shaping and
steering capabilities, guaranteeing low costs and low weight architectures. Accordingly in the last
years, methodologies for the synthesis of unconventional phased array architectures [1] (e.g., sparse [2],
thinned [3, 4], and clustered arrays [1]), reflectarray-based systems [5, 6] and corporate feed-based
technologies like the substrate integrated waveguide array [7] have been widely studied. Among
these, clustered arrays are gaining a lot of attention thanks to their modular structures and reduce
the complexity of the feeding network [1]. Generally speaking, array clustering consists in grouping
two or more elements to be fed by a single transmission/reception module (TRM ), while fulfilling the
design objectives of the array synthesis at hand (e.g., the side lobe level minimization, the fitting of
a radiation pattern with a user-defined mask, etc.) The reduction of the control points/TRM s with
respect to a fully-populated (i.e., a TRM for each array element) architecture has a non-negligible impact
on the radiation performance of the arising modular system since the radiated pattern unavoidably
deviates from the ideal one. Moreover, high quantization lobes appear in case of a periodic clustering
because of the regular quantization of the aperture distribution. To yield the optimal trade-off
between TRM s reduction and closeness to the ideal radiation performance also avoiding undesired
lobes, irregular/a-periodic phased array clustering for both linear [8–11] and planar [12–16] geometries
has been widely studied in the recent years. Effective strategies for the computation of the sub-array
weights (i.e., the complex excitations of the shared TRM modules), such as the analytic excitations
matching (EM ) technique [8, 9, 15] and hybrid methods combining evolutionary algorithms with convex
programming (CP) solvers [10], have been proposed. As for the optimization of the clustering layout,
efficient local-search techniques that guarantee a fast convergence to effective, even though sub-optimal,
unconstrained clustered solutions (unconstrained clustering), for instance, the Contiguous Partition
Method (CPM ) [9, 11] and the Weighted K-means Clustering Method (WKCM ) [15], have been
developed. However, to the best of the authors’ knowledge no one of these methods allows one to a-priori
set the size/shape of the array partitions, while such a solution (the so-called constrained clustering)
would enable a further cost saving. Indeed, besides the minimization of the number of TRM s, having
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simpler sub-arrays with similar shapes would facilitate the modular assembling of the radiating system
as well as the implementation of few production lines, one for each type of elementary building block [17].
Moreover, the modularity is advantageous in phased array antenna manufacturing since it enables the
implementation of light and low profile structures [17], an easy maintenance, and integrated cooling
systems [18]. The constrained clustering is also referred to as array tiling [14], tiles (i.e., physically
contiguous clusters of elements) with the same shape (i.e., single-shape tiling [16, 19–25]) or a limited
number of shapes (i.e., multi-shape tiling [12–14, 26, 27]), being used to cover the whole antenna aperture
without overlapping and any gaps or leaving the minimum one. As a matter of fact, while a suitable
shape/dimension of the antenna aperture is necessary to comply with the design constraints, modern
radar/communication applications usually require high directive beams, which are admissible only when
assuring the entire aperture overlay. In the mathematical literature, the tiling of a bounded area is known
as finite tiling problem, and it is a non-trivial task [28–31], even the counting of the number of existing
tilings for medium/large apertures is generally an almost computationally intractable/impossible task.
However, there are mathematical theorems that allow one to assess the tilability of arbitrary rectangular
regions [29] and to know the number of full-coverage tiling arrangements [32] in the case of domino tiles
(i.e., 2-cells polyominos). By exploiting such a theoretical stuff, domino-based architectures have been
studied in [20], and useful synthesis methods have been proposed. More specifically, exhaustive as well
as GA-based methodologies have been proposed for minimizing the power pattern SLL, while ensuring
the complete tessellation of the antenna aperture, by considering an efficient height-function [33] coding
for the representation of the solution space and optimal tiling algorithms [34].

In this paper, a new class of tiling approaches is presented to properly address the mask-constrained
array synthesis problem. Starting from a set of requirements on the array performances, which are set
through a power mask, the proposed methods are aimed at finding the optimal tiling configuration
affording a pattern that fits the mask or minimizes the deviation from it when the mask-matching at
hand is not physically-admissible. More specifically, three synthesis approaches, namely the ETM-CP,
EM-ETM/CP, and EM-OTM/CP methods, are formulated and their applications as well as feasibility
are discussed when dealing with different array sizes and various mask requirements.
The outline of the paper is as follows. The mask constrained array tiling problem is formulated in
Section 2 along with a detailed description of the proposed synthesis methods. Section 3 is devoted to
the numerical validation of such techniques by considering different apertures and power masks shapes.
Suitable guidelines and range of reliability/effectiveness of each approach are also suggested. The use of
a full-wave solver for modelling real arrays is also considered to give a real assessment of the synthesis
results. Some conclusions and final remarks are finally drawn (Section 4).

2. MATHEMATICAL FORMULATION

Let us consider a rectangular phased array [Fig. 1(a)] of Ntot = M ×N elementary sources located in a
lattice of square cells centered at the coordinates (xm,n, ym,n), m = 1, . . . ,M ; n = 1, . . . , N , and spaced
by dx and dy along the x and y axes, respectively. The radiated power pattern P (u, v) is given by

P (u, v) =

∣∣∣∣∣
M∑

m=1

N∑
n=1

wm,nEFm,n (u, v) e
jk(uxm,n−vym,n)

∣∣∣∣∣
2

(1)

where k = 2π
λ is the wavenumber; λ is the wavelength; u , sin θ cosϕ and v , sin θ sinϕ are the

angular coordinates, while wm,n and EFm,n are the complex excitation and embedded element factor
of the (m,n)-th array element, respectively. Dealing with a domino-tiling of the aperture, the array
elements are vertically or horizontally grouped into Q rectangular sub-arrays of two elements each,
namely a vertical σV or horizontal σH domino [Fig. 1(b)]. The output port of each q-th (q = 1, . . . , Q)
domino is then weighted by a complex coefficient wq of amplitude αq and phase βq (i.e., wq = αqe

jβq).
By mathematically describing a domino partition of the array aperture with the clustering vector
C = {cm,n ∈ [1 ÷ Q]; m = 1, . . . ,M ; n = 1, . . . , N}, with its (m,n)-th integer entry being the
membership of the (m,n)-th lattice element to the q-th tile, the corresponding radiated power pattern,
P (u, v), is obtained substituting in (1) the following excitations coefficients of the equivalent fully-
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Figure 1. Array Architecture — Sketch of (a) the fully populated array architecture and (b) a domino
tiled array of isotropic radiating elements.

populated array

wm,n =

Q∑
q=1

αqe
jβqδcm,nq, n = 1, . . . , N ; m = 1, . . . ,M (2)

where δcm,nq is the Kronecker function (δcm,nq = 1 if cm,n = q and δcm,nq = 0, otherwise). With reference
to this formulation, the mask-constrained synthesis of a domino tiled phased array can be formulated
as follows:

Mask-Constrained Domino-Tiled Phased Array Design —Given an array ofM×N elements located
on a rectangular lattice, determine the optimal clustering of the array elements into vertical σV and
horizontal σH domino tiles by defining the clustering vector Copt and the corresponding sub-array
level amplitude, αopt = {αopt

q ; q = 1, . . . , Q}, and phase, βopt = {βopt
q ; q = 1, . . . , Q}, excitation

vectors so that the radiated power pattern has maximum directivity

D =
4π |P (u0, v0;Ct)|

2∫ 1

−1

∫ 1

−1
|P (u, v;Ct)|

2 1√
1− u2 − v2

dudv

(3)

along the direction of the mainlobe peak (u0, v0), subject to

P (u, v) ≤ M (u, v) (4)

with M(u, v) being a pattern mask mathematically defining the power requirements.

To solve such a synthesis problem, it is properly reformulated in an optimization one by defining
the following cost function

Φ
(
C;α, β

)
= χ

(
C;α, β

)
+

1−H [P (u, v)−M (u, v)]

D (u0, v0)
(5)

where D(u0, v0) is the peak directivity, (u0, v0) the beam pointing direction, H[·] the Heaviside function,
and

χ
(
C;α, β

)
= max

(u,v)∈V
{|P (u, v)−M (u, v)|H [P (u, v)−M (u, v)]} (6)

is the maximum violation of the power pattern from the power mask in the (u, v)-plane, within the
visible region V = {(u, v) : u2+v2 < 1}. More in detail, the mask matching is quantified in terms of the
maximum distance of the power pattern from the mask, χ(C;α, β), only when the power pattern is above
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the mask; otherwise, the cost function accounts only for the second term [i.e., the ratio 1/D(u0, v0)] to
maximize the peak directivity.

The global optimum of the mask-constrained domino tiling synthesis problem can be theoretically
reached by means of a full-global optimization approach, by jointly optimize the tiling configuration C
and the tiles excitations coefficients α and β, as(

Copt;αopt, βopt
)
= arg

[
min
C,α,β

{
Φ
(
C;α, β

)}]
(7)

Even for very small array, solving (7) turns out to be computationally intractable, because of the
extremely wide solution space generated by setting 2Q real values (i.e., the values of the Q tiles
amplitudes, αq, q = 1, . . . , Q, and phases, βq, q = 1, . . . , Q), and M × N integer numbers (i.e., the
entries of the clustering vector, cm,n, m = 1, . . . ,M , n = 1, . . . , N). The main obstacle turns out to be
the identification, among all the possible combinations of the integers cm,n, m = 1, . . . ,M , n = 1, . . . , N ,
of the admissible tiling configurations, Ct, t = 1, . . . , T , encoding the clustering of the M × N array
elements into non-overlapping domino-like tiles. Towards this end, in [20] mathematical tiling theorems
and algorithms [29, 32] are exploited to (i) verifying if rectangular array apertures are fully covered by
the domino tiles [29], (ii) to know the exact number of existing domino tiling solutions T , analytically
provided by the following closed-form formula [32]

T = 2
MN
2

M∏
m=1

N∏
n=1

[
cos2

(
πm

M + 1

)
+ cos2

(
πn

N + 1

)]1/4
, (8)

and (iii) to exactly generate the T different tiling configurations, Ct, t = 1, . . . , T , using the optimal
domino-tiling method provided in [34]. Accordingly the mask-constrained synthesis method is addressed
by using the Enumerative Tiling Method (ETM ) presented in [20] for the joint optimization of the tilings
Ct, t = 1, . . . , T and of the sub-array coefficients, through a nested optimization strategy, in which the
optimal tiling configuration is obtained as(

Copt;αopt, βopt
)
= arg

[
min
Ct

{
Φ
(
Ct;α

opt
t , βopt

t

)
; t = 1, . . . , T

}]
(9)

where the optimal excitations coefficients are optimized for each (t)-th (t = 1, . . . , T ) configuration as(
αopt
t , βopt

t

)
= arg

[
min
αt,βt

{
Φ
(
αt, βt

|Ct

)}]
; t = 1, . . . , T (10)

In the following a set of methods, namely the ETM-CP, EM-ETM/CP, and EM-OTM/CP,
implementing the nested optimization approach are described and discussed. Each method is proposed
to solve a specific dimension of the problem, with the goal of providing the closest solution to the
optimum, in a reasonable amount of time.

2.1. Enumerative CP-Optimized Method (ETM-CP)

In the case of small array size (e.g., M < 6, N < 6, T < 100) the nested optimization is implemented
combining the enumeration of the tilings (ETM) with a Convex Programming (CP) optimization [35]
of the tiles excitations coefficients in (10). The method, here named as ETM-CP approach, is described
by the following procedural steps.

• Step 1. Tilings Enumeration — Execute the ETM method [20] to generate the whole set of
admissible clustering configurations Ct, t = 1, . . . , T ;

• Step 2. CP Optimizations — Given the power mask M(u, v) defining the maximum upper bounds
constraints on the power pattern, the following optimization problem is solved(

αCP
t , βCP

t

)
= arg

[
min
αt,βt

{
Φ
(
αt, βt

|Ct

)}]
, t = 1, . . . , T (11)
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where for each tiling Ct, t = 1, . . . , T , the optimization of the sub-array weights is performed
through the CP strategy presented in [35], in which the maximization of the power pattern
directivity along the sum beam pointing direction is maximized, still satisfying the power mask
M(u, v). More in detail, the power mask M(u, v) is uniformly discretized in R sampling directions,
(ur, vr), r = 1, . . . , R and a standard CP -based optimization technique [35] is used to obtain the
optimal subarray amplitude and phase excitations (αCP

t , βCP
t

) of the (t)-th (t = 1, . . . , T ) trial
clustering configuration Ct, minimizing the cost function

Ψ
(
αt, βt

)
=

∫ 1

−1

∫ 1

−1
P (u, v;Ct)

1√
1− u2 − v2

dudv

(u, v) ∈ V
(12)

subject to the following constraints
P (u0, v0;Ct) = 1 (13)

P (u, v;Ct) ≤ M (ur, vr)
r = 1, . . . , R

(14)

The minimization of (12) subject to (13) implies the maximization of the antenna directivity (3).
If the mask constraints are too tight (i.e., no feasible solution to the problem exists) a sub-optimal
solution must be obtained, for instance, by using interior-point algorithms [36] returning in these
cases a minimizer, in the ℓ1-norm, for the constraint violation, or by relaxing the mask until an
optimal solution is found.

• Step 3. Solution Selection — Evaluate the cost function (5) for each CP -optimized solution,
Φ(Ct;α

CP
t , βCP

t
), t = 1, . . . , T , and select the best tiling/sub-array weights as the one minimizing

the cost, as(
CETM -CP ;αETM -CP , βETM -CP

)
= arg

[
min

Ct;α
CP
t ,βCP

t

{
Φ
(
Ct;α

CP
t , βCP

t

)
; t = 1, . . . , T

}]
(15)

The computational time of the above procedure amounts to ∆tETM -CP = ∆tETM+T×∆tCP +T×∆tΦ,
where ∆tETM is the time necessary to generate the configurations Ct, t = 1, . . . , T , ∆tCP the time of a
single CP optimization, and ∆tΦ the time for the single evaluation of (5). It is worth noting here that
the feasibility of the ETM-CP approach mainly depends on: (i) the cardinality of the solution space,
T , and (ii) the computational cost needed to solve (10). Consequently, in the case of larger arrays,
even if the enumeration of the T configurations would be possible within a reasonable time, the CP
optimization time ∆tCP can make the approach computationally unfeasible.

2.2. Enumerative Excitation Matching Method (EM-ETM/CP)

In order to deal with medium sized arrays (e.g., M < 10, N < 10, T < 1 × 108), the CP-based
optimization of (αt, βt

), t = 1, . . . , T is avoided substituting the CP method with an Excitation Matching

(EM )-based approach. More in detail the ETM enumeration is combined with the analytic computation
of the tiles excitations coefficients, minimizing the EM metric. Finally, the tiles excitation coefficients
of the solution selected at the end of the process are optimized using CP. The proposed method, called
EM-ETM/CP, is implemented throughout the following procedural steps:

• Step 1. Reference Array — Given the power mask M(u, v) defining the ideal requirements on

the power pattern, compute the optimal reference excitations weights wRef = αRef
m,nejβ

Ref
m,n , m =

1, . . . , M ; n = 1, . . . , N through a CP optimization of the M × N fully-populated array
amplitude and phase coefficients [Fig. 1(a)];

• Step 2. Tilings Enumeration — Execute the ETM method [20] for the enumeration of the whole
set of clustering configurations Ct, t = 1, . . . , T ;
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• Step 3. EM Sub-Array Weights — For each tiling Ct, t = 1, . . . , T , the optimal compromise
EM amplitudes and phase coefficients (αEM

t , βEM
t

), t = 1, . . . , T are obtained solving the following
excitation matching problem(

αEM
t , βEM

t

)
= arg

[
min
αt,βt

{
M∑

m=1

N∑
n=1

∣∣∣wRef
m,n − wEQ

m,n,t

∣∣∣}]
; t = 1, . . . , T (16)

whose solution, turns out to be analytically obtained as [9]

αEM
q,t =

1

2

N∑
n=1

M∑
m=1

αRef
m,nδcm,n,tq, q = 1, . . . , Q; t = 1, . . . , T (17)

βEM
q,t =

1

2

N∑
n=1

M∑
m=1

βRef
m,nδcm,n,tq, q = 1, . . . , Q; t = 1, . . . , T (18)

• Step 4. Cost Function Evaluation — Evaluate the cost function (5) for each T solutions and select
the best tiling/sub-array weights, solving

CEM -ETM = arg

[
min
Ct

{
Φ
(
Ct;α

EM
t , βEM

t

)
; t = 1, . . . , T

}]
(19)

• Step 5. CP Optimization — The amplitude and phase tiles excitations of the selected EM-ETM
solution, CEM−ETM , are finally optimized using a CP optimization in order to completely fulfill
the mask constraints(

αEM -ETM/CP , βEM -ETM/CP
)
= arg

[
min
α,β

{
Φ
(
α, β

∣∣CEM -ETM
)}]

(20)

In this case, the total computational time equals ∆tEM -ETM/CP = ∆tETM +T ×∆tEM +T ×∆tΦ+2×
∆tCP , where ∆tEM is the time necessary for the EM excitation computation. The use of the analytic
formulas (17) and (18) allows a fast computation of the tiles excitations weights, thus enabling the
synthesis of larger array sizes with respect to the ETM-CP approach, while the computational time is
only limited by T . Accordingly, in the case of large arrays, [e.g., M > 10, N > 10], the EM-ETM/CP
turns out to be computationally intractable.

2.3. Excitation Matching Optimization Method (EM-OTM/CP)

When the number of solutions, T , is large enough (e.g., T ≥ 1 × 106) to make both ETM-CP and
EM-ETM/CP methods unfeasible, the OTM methodology presented in [20] is here used to efficiently
explore a subset of the whole set of tilings. The OTM proposed in [20] exploits a schemata-driven
GA, in which the probability to converge towards solutions that are very close to the global optimum
is enhanced by a smart initialization of the optimizer. The strategy proposed for solving the mask
constrained synthesis problem inherits from the EM-ETM/CP approach (i) the computation of the
tiles amplitudes and phase coefficients, α = {αq; q = 1, . . . , Q}, β = {βq; q = 1, . . . , Q}, minimizing the
EM metric using (17) and (18); and (ii) the final CP optimization of the tiles excitations coefficients
for the EM-OTM solution. More in detail, the OTM strategy presented in [20] exploits the efficient
height-function (HF )-based coding [33, 34] of the T domino tilings into words of L < (M ×N) integer
values, wt = {wl,t ∈ [wl,1÷wl,T ]; l = 1, . . . , L}, t = 2, . . . , T − 1, starting from the knowledge of a-priori
and analytically defined tiling words, w1 and wT . Accordingly, the GA is initialized with a population
of U trial individuals/solutions wu, u = 1, . . . , U , selected using the schemata-driven method [20]
and encoded into binary chromosomes ŵu, u = 1, . . . , U . The successive generations of populations
are obtained iteratively applying the standard GA operators, namely the roulette-wheel selection, the
single-point crossover, and the mutation [37], using the EM technique for the computation of the tiles
amplitude and phase coefficients, until a tiling solution that completely fulfills the mask constraints
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M(u, v) is generated [i.e., χ(CEM -OTM ; αEM -OTM , βEM -OTM ) = 0] or when the maximum number of
iterations, K, is reached. Finally, the optimal sub-array weights are obtained as:(

αEM -OTM/CP , βEM -OTM/CP
)
= arg

[
min
α,β

{
Φ
(
α, β

∣∣CEM -OTM
)}]

. (21)

3. NUMERICAL VALIDATION

In this section, the numerical validation considering different array dimensions, as well as different
types of synthesis mask, is reported. A set of examples showing the different ranges of applicability of
the proposed methods, when small, medium, and large array sizes are considered, are illustrated and
discussed. Finally, the reliability assessment of the optimized solutions when considering real radiating
elements is reported.

3.1. Small Dimensions Arrays

Let us consider a small rectangular aperture of dimensions 2.5λ × 2.0λ, filled by M × N = 5 × 4
elements, located over a square lattice, equally spaced by dx = dy = λ/2. The ideal design requirements
are defined by the power mask M(u, v) of Fig. 2(a), characterized by a rectangular window of dimension
BWu×BWv = 1.00 [u]× 1.12 [v] for the main beam, a sidelobe level equal to SLLL1 = −20 [dB] for the
first sidelobes, while the end-fire sidelobes along the azimuth plane are lowered to SLLL2 = −25 [dB].

The fully populated reference array phase coefficients are set to βRef
m,n = 0, m = 1, . . . ,M , n = 1, . . . , N ,

while the amplitude coefficients have been optimized using the max-directivity CP optimization [35],
setting a maximum number of iterations equal to I = 200 and a convergence threshold equal to τ = 10−6.
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Figure 2. Numerical Assessment (Small Array, Symmetric Mask ; d = 0.5λ, M ×N = 5×4 Ntot = 20)
— The reference solution of the fully-populated array obtained through a CP optimization. (a) The
power mask, (b) the amplitude coefficients, and (c) the top-view power pattern.

The obtained amplitude coefficients are shown in Fig. 2(b), and the corresponding power pattern
is reported in Fig. 2(c). According to (8), the array allows to entirely cover the aperture with Q = 15
tiles in T = 95 different ways. Consequently, the limited number of tiling configurations enable the use
of the ETM-CP approach. The simulation takes a total amount of time equal to 9 [hours] 44 [min] and
30 [sec] considering the same CP parameters used for the reference array synthesis. Fig. 3(a) shows
the values of the mask matching cost function term of the T solutions sorted from the best to the
worst one. In order to discriminate among the convergent solutions fitting the mask with cost-function
value lower than the threshold and the solutions that violates the mask, the CP convergence threshold
is reported in the figure as a black dashed line. As can be seen, 6 ETM-CP solutions have a mask
violation value that is below the convergence threshold, among which the one minimizing the mask
violation is reported in Figs. 4(a)–(b) whose respective power pattern descriptors, namely the SLL,
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Figure 3. Numerical Assessment (Small Array, Symmetric Mask ; d = 0.5λ, M ×N = 5× 4 Ntot = 20,
T = 95) — (a) The ETM-CP cost function evaluations for each of the T = 95 tiling solutions, as
compared to the EM-ETM simulation cost function evaluations, and the cost function of the EM-
ETM/CP simulation. (b) (c) The power pattern cuts along the u = u0 = 0.0 and v = v0 = 0.0 plane of
the ETM-CP, the EM-ETM, and the EM-OTM optimal solutions and the EM-ETM/CP solution, as
compared to the power mask.

HPBWAZ , HPBWEL, and D, are reported in Table 1. The comparisons of the power pattern with the
power mask of the optimal ETM-CP solution are reported in Fig. 3(b) and Fig. 3(c), along the azimuth
and elevation planes, respectively. As can be seen, the pattern meets the mask, also confirmed by the
final cost function value [ΦETM -CP = 1.22× 10−9, Table 1].

The same test case is considered to validate the EM -based nested approaches (EM-ETM/CP and
EM-OTM/CP), in order to check the closeness to the optimal ETM-CP solution. Accordingly, the
EM-ETM optimization has been executed considering reference excitations equal to the CP amplitudes
coefficients of Fig. 2(a). The evaluated cost function values have been reported in Fig. 3(a) as compared
to the ETM-CP method; however, none of the EM-ETM solutions reach the convergence threshold,
showing a non-negligible distance of the EM-ETM best solution from the ETM-CP one. Indeed, by
observing Figs. 3(b)–(c) the power pattern cuts along the azimuth and elevation planes of the EM-ETM
power pattern violates the power mask in both the principal planes cuts. Anyway, by observing the
tiling/amplitudes configuration of the best EM-ETM solution [Figs. 4(c)–(d)], the tiles arrangement
is exactly the same as the ETM-CP tiling [Fig. 4(a)], while the sub-array amplitude coefficients show
different values. Finally, the optimal ETM-CP solution is obtained after a CP optimization of the tiles
amplitudes [Figs. 4(e)–(f)], thus making the EM-ETM/CP method converge to the ETM-CP solution
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Figure 4. Numerical Assessment (Small Array, Symmetric Mask ; d = 0.5λ, M ×N = 5× 4 Ntot = 20,
T = 95) — (a) (c) (e) The tiles amplitudes excitations coefficients and (b) (d) (f) the respective top-view
power patterns of the (a) (b) ETM-CP optimal solution, (c) (d) the EM-ETM optimal solution, and
the (e) (f) EM-ETM/CP solution.
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Table 1. Numerical Assessment (Small Array, Symmetric Mask ; d = 0.5λ, M ×N = 5× 4 Ntot = 20,
T = 95) — Measured radiation indexes (SLL, D, HPBWaz, and HPBWel), and cost function Φ of the
reference and optimized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel Φ ∆t

[dB] [dBi] [deg] [deg] - [h :min : sec]

M ×N = 4× 5 SymmetricMask

Reference −20.00 17.12 24.15 30.10 2.36× 10−9 00 : 11 : 40

ETM -CP −20.00 16.95 24.21 30.10 1.22× 10−9 09 : 44 : 30

EM -ETM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 31

EM -OTM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 05

EM -ETM/CP −20.00 16.95 24.21 30.10 1.22× 10−9 00 : 00 : 47

[Fig. 4(a)]. It is worth noting here that the overall time needed to obtain the global optimum using the

EM-ETM/CP method has been estimated equal to ∆tEM -ETM/CP = ∆tRef +∆tEM -ETM +∆tCP = 1 :
18 [min : sec] (Table 1), which means a time reduction of 99.7% with respect to the ETM-CP approach.
With the purpose of validating the EM-OTM/CP strategy, the GA-based schemata-driven optimization
presented in [20] has also been executed. The GA control parameters have been set according to the rules
described in [20] (U = 6, K = 10, crossover probability pc = 0.9, and mutation probability pm = 0.01).
For statistical reasons, the GA optimization has been executed for 10 different times, always converging
to the EM-ETM/CP solution [Figs. 3(b)–(c)].

3.2. Medium Dimensions Arrays

In order to assess the proposed methodology for small/medium sized arrays, a 4.5λ × 3λ rectangular
aperture is now considered, filled with N × M = 9 × 6 elements located over a squared lattice and
equally spaced by dx = dy = λ/2. The symmetric power mask of Fig. 5(a) defines the optimal pattern
shape, consisting in a main beam window of dimension BWu × BWv = 0.5 [u] × 0.8 [v], a maximum
SLLL1 = −20 [dB] for the lobes nearby the main lobe, and a maximum SLLL2 = −25 [dB] in the
end-fire zone. The CP optimized amplitude coefficients of the reference fully-populated array, together
with the synthesized power pattern, are reported in Fig. 5. According to (8), an M × N = 9 × 6
elements array can be partitioned into exactly T = 8.17991 × 105 different tilings. It is clear that
in this case the amount of time needed to complete ETM-CP simulations turns out to be very large
(i.e., ∆t ≃ 94 days, assuming ∆tCP ≃ 10 [sec]). The EM -based techniques instead allow to complete
the optimization into a reasonable amount of time (i.e., ∆tEM -ETM = 15 : 39 : 36 [h :min : sec] and
∆tEM -OTM = 00 : 20 : 12 [h :min : sec], Table 3).

Table 2. Numerical Assessment (Medium Array, Symmetric Mask ; d = 0.5λ, M×N = 6×9 Ntot = 54,
T ≃ 8.2× 105) - Measured radiation indexes (SLL, D, HPBWaz, and HPBWel), and cost function Φ
of the reference and optimized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel Φ ∆t

[dB] [dBi] [deg] [deg] - [h :min : sec]

M ×N = 6× 9 SymmetricMask

Reference −20.00 21.52 13.15 20.07 3.60× 10−10 00 : 21 : 25

EM -ETM −19.11 21.54 13.03 19.86 4.80× 10−5 15 : 39 : 36

EM -OTM −19.11 21.54 13.03 19.86 4.80× 10−5 00 : 20 : 12

EM -ETM/CP −20.00 21.46 13.15 20.07 5.00× 10−10 00 : 03 : 30
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Figure 5. Numerical Assessment (Medium Array, Symmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54) — The reference solution of the fully-populated array obtained through a CP optimization.
(a) The synthesis mask, (b) the amplitude coefficients, and (c) the top-view power pattern.

The cost-function evaluated by the EM-ETM for all the existing tilings has been reported in
Fig. 6(a), together with the best solution provided by the EM-OTM approach using the following
parameters: U = 54, K = 500, pc = 0.9, pm = 0.01. It is worth noting that also in this case the
EM-OTM method achieves the same EM-ETM solution. Fig. 7(a) reports the respective tiling, as well
as the amplitude coefficients while the top-view power pattern is shown in Fig. 7(b). The comparison
of the power pattern with the power mask is reported in Figs. 6(b)–(c) along the azimuth and elevation
planes, respectively. As can be seen, the power pattern corresponding to the EM-ETM solution does not
match the optimal performances [ΦEM -ETM = 4.8× 10−5, Table 2]. Nevertheless, the solution obtained
through the proposed EM/ETM-CP method [Figs. 7(c)–(d)] affords a power pattern that completely

fits the power mask, as confirmed by the final cost function value [ΦEM -ETM/CP = 5.0×10−10, Table 2],
which is below the convergence threshold [Fig. 6(a)].

Table 3. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2× 105) — Measured radiation indexes (SLL, D, HPBWaz, and HPBWel), and cost
function Φ of the reference and optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel Φ ∆t

[dB] [dBi] [deg] [deg] - [h :min : sec]

M ×N = 6× 9 AsymmetricMask

Reference −25.00 20.81 14.53 21.61 3.05× 10−10 00 : 27 : 35

EM -ETM −23.48 20.85 14.32 21.33 2.40× 10−4 16 : 08 : 10

EM -OTM −23.48 20.85 14.32 21.33 2.40× 10−4 00 : 25 : 20

EM -ETM/CP −24.45 20.63 14.69 21.49 1.70× 10−5 01 : 47 : 46

In order to show the versatility of the proposed methodologies, a second assessment of the 9 × 6
array has been performed considering the asymmetric mask of Fig. 8(d). A window of dimension
BWu × BWv = 0.64 [u] × 0.92 [v] is considered for the main beam, while three different SLL levels
are asymmetrically defined in the side-lobes zone: SLLL1 = −25 [dB], SLLL2 = −28 [dB], and
SLLL3 = −35 [dB]. The reference complex excitations of the fully populated array are reported in
Figs. 8(a)–(b) and the corresponding power pattern in Fig. 8(c). As shown in Fig. 9(a), the EM-ETM
and EM-OTM simulations converge to the same EM -optimal solution showing a mask matching equal
to ΦEM−ETM = 2.4× 10−4 (Tab. 3), whose corresponding tiling is pictured in Figs. 10(a)–(b), together
with the EM-ETM amplitude and phase coefficients, while the top view power pattern is reported in
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Figure 6. Numerical Assessment (Medium Array, Symmetric Mask ; d = 0.5λ,M×N = 6×9Ntot = 54)
— Numerical Assessment (Medium Array, Symmetric Mask ; d = 0.5λ, M × N = 6 × 9 Ntot = 54,
T ≃ 8.2× 105) — (a) The EM-ETM, and the EM-OTM simulation cost function evaluations, and the
cost function of the EM-ETM/CP simulation. (b)–(c) The power pattern cuts along the u = u0 = 0.0
and v = v0 = 0.0 plane of the EM-ETM, and the EM-OTM optimal solution and the EM-ETM/CP
solution, as compared to the reference fully-populated solution and to the power mask.

Fig. 10(c). The EM-ETM/CP optimized solution [Figs. 10(d)–(f)] still does not reach the convergence.

Consequently, the cost function value [ΦEM−ETM/CP = 1.7×10−5, Table 3] is still above the convergence
threshold [Fig. 9(a)], but it is lower than the EM-ETM solution. Indeed, even if the EM-ETM/CP
power pattern violates the power mask [Figs. 9(b)–(c)], the corresponding beam pattern descriptors

(Table 3) are very close to the optimal ones (∆SLL = |SLLEM -ETM/CP − SLLRef | = 0.55 [dB], ∆D =

|DEM -ETM/CP − DRef | = 0.18 [dBi], ∆HPBWAZ = |HPBW
EM -ETM/CP
AZ − HPBWRef

AZ | = 0.16 [deg],

∆HPBWEL = |HPBW
EM -ETM/CP
EL −HPBWRef

EL | = 0.12 [deg]). In order to quantify the robustness
of the optimized tiled array, when the beam is steered off-broadside directions, the mask matching
of the power pattern varying the beam pointing within the visible range (i.e., 0◦ ≤ θ0 < 90◦ and
0◦ ≤ ϕ0 < 360◦) has been evaluated and reported in the polar diagram of Fig. 11(a). It can be noticed
that the steering of the beam along the ϕ0 = 90 [deg] direction leads to higher mask matching values
than the steering along the azimuth plane. A detail of the steering analysis is reported in Fig. 11(b),
which shows the mask matching as a function of the pointing angle θ0 along the ϕ0 = 0 [deg] and
ϕ0 = 90 [deg] planes.
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Figure 7. Numerical Assessment (Medium Array, Symmetric Mask ; d = 0.5λ, M×N = 6×9Ntot = 54,
T ≃ 8.2×105) — (a) (c) The tiles amplitudes excitations coefficients and (b) (d) the respective top-view
power patterns of the (a) (b) EM-ETM optimal solution, and (c) (d) the EM-ETM/CP solution.

3.3. Large Dimensions Arrays

As a final example, a larger array is considered. The array aperture is a rectangle of dimension 10λ×7.5λ
filled by Ntot = 300 elements located over a 20 × 15 grid, equally spaced by dx = dy = λ/2. The
considered power mask is shown in Fig. 12. As can be seen, the mask is asymmetric with a main beam
window of dimension BWu × BWv = 0.32 [u] × 0.42 [v] and SLL levels equal to: SLLL1 = −25 [dB],
SLLL2 = −30 [dB], and SLLL3 = −40 [dB].

Figures 12(a)–(b) show the optimal CP excitation coefficients of the reference fully-populated
array, while Fig. 12(c) shows the top view of the synthesized power pattern. In this case, the
cardinality of the solution space equals T = 4.9098 × 1035, which is too large for an exhaustive
exploration, and consequently, the EM-OTM has been chosen in order to search for the optimal tiling
in a feasible amount of time. Indeed, 10 different GA optimizations have been executed considering
U = 800 individuals, K = 1000 iterations, pc = 0.9, and pm = 0.01, for a total simulation time
equal to ∆t = 16 : 42 : 30 [h :min : sec]. The fitness of all the executed simulations is reported
in Fig. 13(a) as function of the iteration index. As can be seen, all the GA simulations converge
to cost-functions values within the interval [2.0 × 10−6, 1.8 × 10−6]. The 50% of the executed
GA simulations converge to the same best solution having a matching with the mask equal to
Φ(CEM -OTM ; αEM -OTM , βEM -OTM ) = 1.8 × 10−6 (Table 4). The EM -optimal tiling, together with
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Figure 8. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2×105) — The reference solution of the fully-populated array obtained through a CP
optimization. (a) The amplitude coefficients, (b) the phase coefficients, (c) the top-view power pattern,
and (d) the synthesis mask.

the amplitude and phase excitation coefficients, is reported in Figs. 14(a)–(b), respectively, while the
top view power pattern is reported in Fig. 14(c). Even if the EM-OTM solution does not match the
mask completely, the EM-OTM/CP solution [Figs. 14(d)–(f)] successfully lowers the mask matching

below the convergence threshold [Φ(CEM -OTM/CP ; αEM -OTM/CP , βEM -OTM/CP ) = 6.2×10−9, Table 4]
as also confirmed by the comparison of the power pattern cuts along the u = u0 = 0.0 and v = v0 = 0.0
planes [Figs. 13(b)–(c)]. The analysis of the optimized tiled array, when the beam is steered off-broadside
directions, is reported in Fig. 15 in terms of mask matching.

In order to check the flexibility of the optimized domino tiling configurations, the tiling solution
optimized to fit at best the mask of Fig. 12(d) has been analyzed changing the amplitude tapering
distribution. More in detail the tiling configuration has been fixed to be equal to the EM-OTM
optimized solution of Fig. 14(a), while the amplitude tapering has been set equal to the Dolph-
Chebyshev distribution of Fig. 16(a) generating a reference beam with equi-ripple sidelobes with
SLL = −30 [dB] and fitting the radiation mask reported in Figs. 16(d)–16(e). Fig. 16(b) shows the
sub-array configuration together with the new clustered amplitude coefficients, while the corresponding
pattern is compared to the reference pattern and the mask along the main planes in Figs. 16(d)–
16(e). The mask deviation amounts to Φ = 3.73 × 10−6, which is slightly higher than the EM-OTM
solution when considering the asymmetric mask (i.e., Φ = 1.8 × 10−6, Table 4) but with the same
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Figure 9. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2×105) — (a) The EM-ETM, and the EM-OTM simulation cost function evaluations,
and the cost function of the EM-ETM/CP simulation. (b)–(c) The power pattern cuts along the
u = u0 = 0.0 and v = v0 = 0.0 plane of the The EM-ETM, and the EM-OTM optimal solution and the
EM-ETM/CP solution, as compared to the reference fully-populated solution and to the power mask.

Table 4. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2× 105) — Measured radiation indexes (SLL, D, HPBWaz, and HPBWel), and cost
function Φ of the reference and optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel Φ ∆t

[dB] [dBi] [deg] [deg] - [h :min : sec]

M ×N = 15× 20 AsymmetricMask

Reference −25.00 28.27 6.50 8.60 9.57× 10−9 02 : 59 : 03

EM -OTM −24.73 28.31 6.48 8.56 1.80× 10−6 04 : 28 : 29

EM -OTM/CP −25.00 28.24 6.51 8.60 6.20× 10−9 02 : 07 : 07

order of magnitude, as also confirmed by Figs. 16(d)–16(e) showing small pattern deviations only along
the ϕ0 = 90 [deg] plane. For comparison, a trivial regular domino tiling configuration has also been
considered [Fig. 16(c)], showing in this case larger mask deviations (Φ = 3.78 × 10−5) and high side
lobes mainly in the end-fire region along the ϕ0 = 0 [deg] plane.
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Figure 10. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2× 105) — (a) (d) The tiles amplitudes excitations coefficients, (b) (e) the tiles phase
excitations coefficients and (c) (f) the respective top-view power patterns of the EM-ETM, and the
EM-OTM optimal solution (a) (b) (c), and the EM-ETM/CP solution (d) (e) (f).
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Figure 11. Numerical Assessment (Medium Array, Asymmetric Mask ; d = 0.5λ, M × N = 6 × 9
Ntot = 54, T ≃ 8.2 × 105) — The mask matching map, evaluated when steering the beam of the
EM-ETM/CP solution, within a scan cone.
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3.4. Reliability Assessment

In order to assess the reliability of the optimized solutions when considering real radiating elements, a set
of test cases selected among the medium and large arrays previously designed have been simulated using
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Figure 12. Numerical Assessment (Large Array, Asymmetric Mask ; d = 0.5λ, M × N = 15 × 20
Ntot = 300, T ≃ 4.9× 1035) — The reference solution of the fully-populated array obtained through a
CP optimization. (a) The amplitude coefficients, (b) the phase coefficients, and (c) the top-view power
pattern, and (d) the synthesis mask.

Table 5. Full-Wave Simulations — Measured radiation indexes (SLL, D, HPBWaz, and HPBWel)
and cost function Φ of the arrays simulated using the full-wave commercial software.

M ×N SLL D HPBWaz HPBWel Φ

[dB] [dBi] [deg] [deg] -

6× 9 EM -ETM/CP −25.22 20.08 14.50 21.00 1.09× 10−6

EM -ETM −24.60 21.10 14.20 20.80 5.94× 10−5

15× 20 EM -OTM/CP −25.30 28.40 6.40 8.50 5.62× 10−7

EM -OTM −25.04 28.40 6.40 8.40 1.28× 10−6
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Figure 13. Numerical Assessment (Large Array, Asymmetric Mask ; d = 0.5λ, M × N = 15 × 20
Ntot = 300, T ≃ 4.9 × 1035) — (a) The EM-OT simulation cost function evaluations for the 10 GA
simulation runs. (b) (c) The power pattern cuts along the u = u0 = 0.0 and v = v0 = 0.0 plane of the
EM-OTM optimal solutions and the EM-OTM/CP, as compared to the power mask.
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Figure 14. Numerical Assessment (Large Array, Asymmetric Mask ; d = 0.5λ, M × N = 15 × 20
Ntot = 300, T ≃ 4.9 × 1035) — (a) (d) The tiles amplitudes excitations coefficients, (b) (e) the tiles
phase excitations coefficients and (c) (f) the respective top-view power patterns of the (a)–(c) EM-OTM
optimal solution, and the (d)—(f) EM-OTM/CP solution.
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Figure 16. Numerical Assessment (Large Array, Asymmetric Mask ; d = 0.5λ, M × N = 15 × 20
Ntot = 300, T ≃ 4.9 × 1035) — (a) The Dolph-Chebyshev amplitude distribution (b) the EM-OTM
optimal solutions, (c) a trivial regular domino tiling, and (d) (e) the power patterns along the main
cuts as compared to the power mask.
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(a) (b)

Figure 17. Numerical Assessment (Full-Wave Simulations) — (a) The model of the multi-layer patch
antenna and (b) the cavity backed spline patch antenna considered for the full-wave simulations.
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Figure 18. Full-Wave Simulations - The normalized power pattern cuts along (a) (c) the u = u0 = 0.0
and (b) (d) v = v0 = 0.0 planes of the EM-OTM, and the EM-OTM/CP methods for the M×N = 6×9
(a) (b) and M ×N = 15× 20 (c) (d) arrays as compared to the reference mask.
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a commercial full-wave software. The cavity-backed spline-shaped patch (Fig. 17) has been considered.
The power pattern cuts along the ϕ0 = 0 [deg] and ϕ0 = 90 [deg] planes of the simulated medium
(M×N = 6×9) and large (M×N = 15×20) arrays are compared with the mask as reported in Fig. 18.
As can be observed, the full-wave patterns of the proposed methods solutions (i.e., ETM -CP , EM -
ETM/CP and EM -OTM/CP ) outperform the EM-ETM solution pattern in terms of mask matching

in all the considered cases (e.g., ΦEM -ETM/CP |6×9
Multi-Layer = 6.91× 10−6 vs. ΦEM -ETM/CP |6×9

Multi-Layer =

3.58× 10−5 and ΦEM -OTM/CP |15×20
Spline = 5.62× 10−7 vs. ΦEM -ETM |15×20

Spline = 1.28× 10−6, Table 5).

4. CONCLUSIONS

This work presents a novel class of optimization techniques for the design of rectangular tiled phased
arrays when considering domino-like tiles and affording a pattern that minimizes the deviation from
an user-defined upper-bound mask. According to the size of the array aperture, three different
novel techniques have been proposed, namely the ETM-CP, EM-ETM/CP, and EM-OTM/CP, jointly
optimizing the tiling configuration and the amplitude and/or phase excitation coefficients of the tiles
modules, combining analytic and optimization-based domino tiling techniques with CP -based synthesis
methods. A set of representative numerical results validate the proposed methods, for small, medium,
and large array sizes, considering both symmetric and asymmetric masks. Moreover, the robustness
of the optimized tiled array when steering the main beam within the visible range, as well as the
reliability assessment when considering real radiating elements, through a full-wave simulations, has
been analyzed. The numerical assessment leads to the following outcomes:

• the proposed exhaustive ETM-CP approach has been effectively used for the optimization of
very small arrays, but it turns out to be impractical for small/medium arrays due to the high
computational burden introduced by the optimization of the tiles control points;

• even if a perfect matching cannot be always ensured (e.g., as shown by the design of medium sized
arrays considering asymmetric masks) the reported results show that the proposed EM-ETM/CP
and EM-OTM/CP methods allow to improve the matching with the mask-defined requirements
with respect to the “bare” EM-ETM and EM-OTM optimizations.

• the reliability of the proposed methodologies has been assessed considering realistic patch antenna
elements, positively compared with respect to the “bare” EM-ETM and EM-OTM solutions in
terms of mask matching of the radiated pattern obtained using a commercial full-wave solver.
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