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Array Pattern Restoration under Defective Elements

Jafar R. Mohammed* and Ahmed J. Abdulqader

Abstract—The defective array elements which are unavoidable due to the long full-time antenna system
operation directly affect its radiation pattern, sidelobe level, directivity, and the system performance.
Therefore, reducing these undesirable effects is a main interest in designing such arrays in practice. In
this paper, a partially compensating method based on the genetic optimization algorithm is proposed to
mainly reduce those undesirable effects of the defected elements. Unlike the existing fully compensating
methods where all of their active elements were optimized to compensate for the effects of the defected
elements, the proposed method optimizes the excitation weights of some optimally selected active-
elements. Thus, the whole array elements do not need to be redesigned again as in the case of the fully
compensating methods. This greatly simplifies the design implementation of these arrays. Moreover,
a very large defective percentage ranging from 5% up to 50% has been considered to demonstrate
the effectiveness of the proposed method. Furthermore, the drawback effects of the randomly failing
elements at the array center have been highlighted, and some suggestions have been provided.

1. INTRODUCTION

Defective elements in an array cause unexpected pattern distortion and an increase in the sidelobe
level which leads to more waste of the radiation energy in undesired directions and cause interference.
Therefore, it is necessary to restore the desired radiation pattern under such unavoidable failed
situations. In the literature, a very few of analytical methods were found to deal with this problem, for
example see [1], and only a limited number of the numerical methods have been devised to redesign the
whole defected array by recalculating all the excitation weights of the active elements to compensate
the weights of the defective elements and restore the desired radiation pattern. These methods are
known as fully compensating methods. Peters [2] proposed a conjugate gradient method to recalculate
the amplitude and phase excitations of all active (i.e., none failed) elements to minimize the sidelobe
pattern distortion. Then Yeo and Lu [3] used a genetic algorithm (GA) while Grewal et al. [4] used a
firefly optimization algorithm to redesign all elements of the defected array. Some other researchers [5, 6]
used only a part of active array elements to restore the desired array pattern. In [5], the authors used
particle swarm optimization (PSO) to address the limits of compensation in a failed array, while in [6]
the authors used a GA to find the minimum number of adjustable active elements to compensate the
defective elements. Another method based on the hardware replacement was suggested by Mailloux [7]
where the signals from the defected elements were replaced in the digital beamformer circuit. However,
the hardware replacement method is generally time-consuming which may be not a good choice for many
practical applications. In [8], Keizer extended his newly suggested method based on an iterative fast
Fourier transform to deal with the problem of element failure correction. In all of those aforementioned
methods, it is required to readjust (or redesign) the excitation weights of all or most of the active
elements which are practically complex and time consuming. Moreover, they are only considered a
very limited number of defective elements that are usually located randomly on the array sides and
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not on the array center [9, 10]. As a matter of fact, the central array elements usually have the largest
excitation weights which make their compensation difficult when they are facing faults.

In this paper, a partially compensating method based on GA is suggested to reduce the effects of
the defective elements. The array elements are first divided into three types based on their excitation
weights. The first type is the defective elements which are considered randomly across the array, and
their magnitude weights are zero, while the other type is compensating elements which are adaptive,
and their excitation weights are re-updated by means of genetic optimization. The last type is the fixed
elements in which their magnitudes are fixed according to a certain array taper. By this way, not all
the active array elements need recalculation as in the existing fully compensating methods, and instead
only the compensating elements are optimally optimized to correct the damaged pattern. GA was used
to find the optimum number of compensating elements and their excitation weights without redesigning
the whole array elements. A specific cost function has been formulated to correct the damaged pattern
by iteratively minimizing the difference between the obtained SLL and the desired one. Moreover, the
effects of the failing elements at the array center have been highlighted, and some suggestions have been
provided.

2. THE DEFECTED ARRAYS

In this section, fully and partially compensating methods are introduced.

2.1. Fully Compensating Elements

To proceed with this method, first suppose a uniform linear array of 2N isotropic elements placed
symmetrically about the x-axis with uniform inter-element spacing of d = 0.5λ. The normalized array
factor of such an antenna array as a function of elevation angle θ can be expressed as [11]:

AF (θ) =

N∑
n=1

an cos

(
2n− 1

2
kd sin θ + pn

)
(1)

where parameters an and pn are the amplitude and phase weightings of the nth elements, respectively.
The wave number k is equal to 2π

λ , and λ is the wavelength. For simplicity, the amplitude-only weighting
approach is used; thus, the phases are set to zero. In the defected array, the inter-element spacing
between active elements will be changed and may become nonuniform according to how many defective
elements are presented. From (1), the amplitude weights of the randomly defected elements, an, will
be set to zero, while all the other weights will be optimized to provide the required compensation for
pattern correction.

2.2. Partially Compensating Elements

In this approach, the number of compensated (or optimized) elements is restricted to only specific subset
elements instead of all array elements. The central elements are assumed to have fixed weights, while the
compensating elements are assumed to be located near the edges of the array aperture. This is mainly
because the edge elements have the highest effect on the array pattern alteration [12]. The locations of
the defective elements are assumed to be random across the array aperture. To proceed, assume that a
subset of Nc out of N total active elements on each side of the linear array is made variable and subject
to the optimization process.

The remaining number of the central active elements, N − Nc, keep their magnitude excitations
fixed according to the used taper. Note that the absence of the last element in each side of the array
reduces the array aperture and consequently results in a wide beam width of the array pattern. To
prevent such an issue, it is assumed that the last element on each side of the array is always active and
intact so that the array aperture is preserved. The total far-field radiation pattern of these two subsets
(i.e., compensated subset array of Nc adaptive elements and a tapered subset array of N −Nc elements)
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can be written as:

AF (θ) =

N−Nc∑
n=1

an cos

(
2n− 1

2
kd sin θ

)
︸ ︷︷ ︸

Central fixed elements

+
N∑

m=N−Nc+1

bm cos (kdm cos θ)︸ ︷︷ ︸
Compensating elements

(2)

For magnitude-only weighting method, the values of bm are only optimized while the values of an
are fixed according to the used taper. First, the number of defective elements should be given in
advance, but their locations should be randomly selected. Then the GA is used to find the number of
compensating elements, Nc, and their amplitude weights, bm, such that the obtained radiation pattern
with the defected elements has a sidelobe level as close as possible to the desired level. To solve such
an optimization problem, a cost function is formulated as follows:

Cost =
1

S

S∑
s=1

[|AF (θs)| − SLLd (θs)]
2 (3)

where S is the total number of the sample points, and SLLd is the desired sidelobe level. According
to (3), the obtained array pattern at the sidelobe region (i.e., |θ| ≥ FNBW where FNBW represents the
first null-to-null beam width) and the desired sidelobe level are both vertically and equally sampled into
S points. For each sample point, the difference between the obtained and the desired sidelobe levels is
computed. If the magnitudes of the obtained SLLs are above the desired ones, then the compensating
weights should be iteratively updated until they become below or as close as possible to the desired
ones. This iterative change contributes to minimization of the cost which is actually the error between
the obtained and desired sidelobe patterns.

3. SIMULATION RESULTS

In all examples, a symmetric linear array of 2N = 40 radiating elements was considered. The maximum
number of iterations is set to 150, and the population size is set to 50. The other parameters of the
genetic algorithm were chosen as follows: the crossover was single point; selection was roulette; the
mutation rate was 0.15; finally, the mating pool was chosen to be 4. The lower and upper bounds of the
amplitudes of the compensating elements were chosen between 0 and 1. All the optimization processes
were implemented on a laptop with windows 10 Pro 64 bit operating system, processor type Intel (R)
Core TM i5, CPU @ 1.6GHz 1.8GHz and memory size of 4G byte RAM.

In the first example, a fully compensated approach, where all of the active elements are optimized,
is considered and applied to magnitude-only weighting method to obtain an SLL as close as possible
to the desired one which is set at SLLd = −30 dB and, at the same time, to place two symmetric wide
nulls centered at θ = ±40◦ each with a width equal to θ = 10◦. The number of randomly defective
elements is assumed to be 4 on each side of the array (i.e., the defective percentage is 20%). The results
of the original Taylor excited array pattern, damaged and the restored array patterns are shown in
Fig. 1. The corresponding excitation weights for these three patterns are also shown in Fig. 1. The
restored patterns have exactly met the desired SLL and the controlled nulls. However, the number of
compensating elements was 16 among a total of 20 elements on each side of the array which is relatively
large.

In the second example, the same results of example 1 were obtained with a partially compensated
approach for only a number of optimized elements equal to Nc = 11. For comparison purposes, the
number of the defective elements, the desired SLL, and the controlled nulls were all set as in the previous
example. The results are shown in Fig. 2. It can be seen that the same results can be obtained with
less number of the optimized elements.

In the third example, the variation in the number of defective elements on the performance of
the partially compensated approach is investigated. Table 1 and Fig. 3–Fig. 5 show the results. From
Table 1, it can be seen that the performances of both damaged and restored patterns in terms of taper
efficiency, directivity, peak SLL, and FNBW are all getting worse with an increase in the number of
randomly defective elements. However, the peak SLL of the restored patterns for all cases including the
case of defective percentage 50% is below −21 dB. Also, these figures show that the main beam widths
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Figure 1. The results of fully compensated approach for 8 defective elements, 32 compensating
elements, SLLd = −30 dB and two wide nulls.
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Figure 2. The results of partially compensated approach for 8 defective elements, 10 central fixed
elements, 22 compensating elements, SLLd = −30 dB and two wide nulls.

of the restored patterns are gradually broadened with an increased number of defective elements. This
is mainly because the amplitude excitations of the compensating elements get narrower which directly
results in broader main beams.

In order to show the versatility of the proposed method, it has also been applied to a uniformly
excited array. The results of 4 defective elements on each side of the array are shown in Fig. 6. The
performance measurements of the original, damaged, and restored patterns are shown in Table 2. Note
that the obtained SLL of the restored pattern is below −30 dB.

Some advantages of the proposed method compared to other existing methods are highlighted in
Table 3.

Next, the effect of the defective elements at the array center is considered. As mentioned earlier,
the central elements possess the largest amplitude weights. Thus, they have more impact on the
array pattern distortion and cannot be easily compensated by optimizing other elements. It is worth
mentioning that the central defected elements have not been investigated before by any other researchers.
Fig. 7 and Fig. 8 show the results for two cases of 4 and 8 randomly central defective elements. Table 4
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Table 1. Performance measures as a function of the number of defective elements in the partially
compensated approach.

Performances

Original

Taylor

Pattern

Restored Pattern

Number of random defective elements on each side of the array

1 2 3 4 5 6 7 8 9 10

Taper

Efficiency
0.85

Damaged 0.81 0.77 0.75 0.70 0.63 0.6 0.57 0.52 0.49 0.47

Restored 0.70 0.61 0.71 0.52 0.4 0.4 0.39 0.39 0.39 0.39

Directivity

(dB)
26.77

Damaged 26.4 26.1 25.8 25.29 24.4 24.1 23.8 22.7 22.2 21.7

Restored 25.1 24.0 25.2 22.60 20.4 20.3 20.1 20.2 20.1 20

Peak

SLL (dB)
−30

Damaged −23 −24 −26 −21 −15 −16 −17 −13 −13 −14

Restored −30 −30 −30 −30 −21 −21 −21 −21 −21 −21

FNBW

(deg.)
8

Damaged 8.8 9 9 10.6 15 14.6 14.6 14.4 14.2 13.3

Restored 10.1 11.4 10 14 16.4 16.4 16.6 16.6 16.8 16.6

Amplitude

Weights

∣∣aT
n

∣∣ = ∣∣aT
−n

∣∣ ∣∣aD
n

∣∣ = ∣∣aD
−n

∣∣
0.2507

Restored

Weights

0.04 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2617 0.07 0 0 0 0.07 0.06 0 0.06 0 0

0.2833 0.11 0.02 0.19 0.00 0.04 0.02 0 0 0.06 0

0.3150 0.10 0.07 0 0.01 0.04 0 0.00 0.00 0 0

0.3556 0.23 0.08 0.28 0 0 0 0 0 0 0

0.4037 0.23 0.15 0 0.13 0 0.00 0.02 0 0 0

0.4577 0.39 0.19 0.38 0 0.00 0 0 0 0 0

0.5155 0 0.33 0.48 0 0.00 0.00 0.00 0 0 0

0.5751 0.54 0 0.43 0.24 0 0 0 0 0 0

0.6346 0.50 0.48 0.49 0.31 0 0 0 0 0 0

0.6924 0.64 0.49 0.63 0.28 0 0 0 0 0 0

0.7473 0.71 0.64 0.68 0.51 0.29 0.32 0.31 0.31 0.24 0.30

0.7982 0.79 0.68 0.77 0.44 0.29 0.29 0.30 0.28 0.31 0.31

0.8446 0.80 0.77 0.75 0.70 0.56 0.54 0.52 0.53 0.52 0.52

0.8860 0.89 0.84 0.84 0.73 0.53 0.56 0.55 0.55 0.52 0.53

0.9219 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

0.9517 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

0.9750 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

0.9909 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.9990 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 2. Performance measures for uniformly excited array with 8 defective elements.

Performance Original Pattern Damaged Pattern Restored Pattern

Taper Efficiency 1 0.8 0.4

Directivity (dB) 28.20 27.02 20.38

Peak SLL (dB) −13.2 −15.0 −30.0

FNBW (deg.) 5.6 6.2 16

Amplitude

Weights

[1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1]

[1, 1, 0, 1, 1, 0,

1, 1, 1, 0, 0, 1, 1,

1, 1, 1, 1, 1, 1, 1]

[0.0000, 0.0686, 0, 0.0003, 0.0000, 0,

0.0048, 0.0000, 0.0000, 0, 0, 0.3406,

0.3233, 0.5979, 0.6216, 1, 1, 1, 1, 1]



22 Mohammed and Abdulqader

M
a

g
n

it
u

d
e

 (
d

B
)

A
m

p
li

tu
d

e

Figure 3. The original, damaged and the restored array patterns and their corresponding amplitude
weights for 4 defective elements, 26 compensating elements, and 10 central fixed elements.
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Figure 4. The original, damaged and the restored array patterns and their corresponding amplitude
weights for 8 defective elements, 22 compensating elements and 10 central fixed elements.

Table 3. Comparative between different methods.

Methods

Max.

defective

percentage

Fully or

Partially

optimization

scheme

Obtained

SLL

Relative

execution

time

Redesigning

weights (i.e.,

feeding network

complexity)

The method in [3] 18.75% Fully −35.2 dB High All elements

The method in [4] 31.25% Fully −35 dB High All elements

The method in [5] 30% Partially −30 dB Moderate Part of elements

The method in [6] 6% Partially −22.4 dB Moderate Part of elements

This method 50% Partially −21 dB Moderate
Only compensating

elements
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Figure 5. The original, damaged and the restored array patterns and their corresponding amplitude
weights for 12 defective elements, 18 compensating elements, and 10 central fixed elements.

Table 4. Performance measures for central defective elements approach.

Performance
Original

Pattern

4 Central

Defective Elements

8 Central

Defective Elements

Damaged

Pattern

Restored

Pattern

Damaged

Pattern

Restored

Pattern

Taper Efficiency 0.85 0.76 0.68 0.67 0.68

Directivity (dB) 26.77 26.61 27.35 26.66 27.04

Peak SLL (dB) −30 −16.2 −17 −16.6 −8.2

FNBW (deg.) 7 6.6 5.2 5.8 4.9

Amplitude Weights

0.2507 0.2507 0.1626 0.2507 0.2615

0.2617 0.2617 0.2424 0.2617 0.2468

0.2833 0.2833 0.3023 0.2833 0.3973

0.3150 0.3150 0.3105 0.3150 0.3817

0.3556 0.3556 0.3866 0.3556 0.4752

0.4037 0.4037 0.3421 0.4037 0.5392

0.4577 0.4577 0.4608 0.4577 0.4704

0.5155 0.5155 0.3160 0.5155 0.7019

0.5751 0.5751 0.6757 0.5751 0.3952

0.6346 0.6346 0.2804 0.6346 0.8572

0.6924 0.6924 0.8109 0.6924 0.2722

0.7473 0.7473 0.2095 0.7473 0.9049

0.7982 0.7982 0.9306 0 0

0.8446 0 0 0.8446 0.8314

0.8860 0.8860 1.0000 0 0

0.9219 0.9219 0.2588 0.9219 0.7103

0.9517 0.9517 0.9847 0 0

0.9750 0 0 0.9750 0.4640

0.9909 0.9909 0.8706 0.9909 0.2562

0.9909 0.9909 0.5368 0 0
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Figure 6. The original, damaged and the restored array patterns and their corresponding amplitude
weights for uniform array with 8 defective elements.
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Figure 7. The original, damaged and the restored array patterns and their corresponding amplitude
weights for 4 defective elements at the array center.

shows the performance measures for these two cases. It can be observed that the main beam widths
of the damaged pattern as well as the restored pattern are not changed greatly with respect to that
of the original pattern. This is mainly because the antenna aperture at both array sides does not face
any changes. Thus, the effects of the central defective elements have mainly appeared on the very high
sidelobes. Note that even if all the other active elements are made optimizable, they cannot compensate
for the central defective elements. In order to restore the damaged pattern in such a critical case, it is
advised to either replace the hardware of the failed elements or use an automatic RF switch to alter
the signal of the defective element to any vicinity active element near the array center.

Finally, the method was extended and applied to the planar array where the number of randomly
defective elements was chosen to be 30%. The results are shown in Fig. 9. The compensated elements
were able to restore the damaged array patterns successfully in both azimuth and elevation planes.
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Figure 8. The original, damaged and the restored array patterns and their corresponding amplitude
weights for 8 defective elements at the array center.

 

(a) (b)

(c) (d)

Figure 9. The original, damaged and the restored array patterns for (a) azimuth plane, (b) elevation
plane, their amplitude weights with (c) 30% randomly defective elements, and (d) defective element
locations highlighted in red color.
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4. CONCLUSIONS

In many practical applications of the phased arrays, the problem of defected elements could not be
avoided due to the full long-time operation requirement. All the array elements are randomly and equally
vulnerable to such damage problems. This includes the central elements where the excitation amplitudes
possess the largest weights that are difficult to rectify. From the obtained results of simulating different
scenarios, the following observations can be drawn.

The defective elements at the sides of the array can be easily compensated, and the damaged pattern
can be corrected by optimizing all or just a selected number of the array elements. In this case, the
directivity, beam width, and the taper efficiency degrade, while the peak SLL can be controlled within
the desired level. On the other hand, when the defective elements are at the array center, the SLL
cannot be controlled. Suggestions include the hardware replacement of the failed elements or the use of
an automatic RF switch to alter the signal of the defective element to any vicinity working element.
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