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Solving Multivariable Equations with Tandem Metamaterial Kernels
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Abstract—A fundamental building block in characterizing and tackling scientific and industrial
questions boils down to the ability of quickly solving mathematical equations. However, with the
ever-growing volume of information and unsustainable integration growth in electronic processors, a
radically new modality for solving equations is highly imminent. Here, we introduce an electromagnetic
counterpart to solve multivariable complex equations, where two metamaterial kernels are connected
in series to form a closed-loop electromagnetic system. Complex valued information is carried by
electromagnetic fields, and the equation solution for arbitrary input signals can be recursively attained
after a number of feedbacks. As an illustration, we present the capability of such a system in solving eight
complex equations, and inversely design two 4×4 metamaterial kernels by topology optimization, whose
average element error is reduced to smaller than 10−4. Having accomplished all unknown coefficients
with high fidelity, our work represents a conspicuous apparatus for a myriad of enticing applications in
ultracompact signal processing and neuromorphic computing.

1. INTRODUCTION

The ability of quickly processing the increasing volume of information generated every day is in ever-
pressing demand over the past decades, especially with the proliferation of artificial intelligence. To
meet the high demand on computing resources, we have been seeing a great evolution of electronic
processors, such as graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) for
scenario-specific applications. Unfortunately, the slowing down or even failure of Moore’s law makes this
persistent evolution become extremely difficult and thus in turn intensifies the contradiction between
supply and demand [1]. Specifically, the speed and energy of electronic processor are hindered from
the approach of physical limit in semiconductor technology, posing an obstacle to further lift parasitic
capacitance and clock rate. In this context, it is highly anticipated to exploit a radically new computing
modality to be complementary with electronic processors and to find some on-demand applications in
which new computing modality is the greatest.

Optical computing, which operates with photons instead of electrons, has been found to be an
alternative paradigm to overcome the inherent limitation of electronics [2–7]. Whereas electronic
computing currently dominates the computing community, we cannot underestimate the unique
advantages brought by optical computing in the near future, notably with the twilight of Moore’s
law. The unique advantages are mainly manifested by the speed-of-light operation, paralleling process,
and low power consumption. As early as 1980s, researchers have managed to exploit optical analogy
computing using a bulky system of lenses and filter [8, 9]. Recent advances in metamaterials offer a
versatile and miniaturized platform to enable a myriad of functional processor for specialized tasks, such
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as spatial differentiation, logic operation, and optical neural network [10–31]. Apart from that, the fast
promotion of optical computing is also inseparable from the assistance of many advanced optimization
algorithms [32, 33]. Researchers are now attempting to bring optical computing into some real-world
applications involving high-throughput and low-latency data processing [34–36].

As a fundamental building block, equation solving plays an important role in analyzing, modeling,
and characterizing scientific and industrial questions. However, the related studies for electromagnetic
implementation are relatively few. More recent works have presented an original and fresh approach to
create wave-based integral equation solver and have been well recognized [37, 38]. It processes the
integral equation into discrete format and then designs a compact computing kernel to physically
characterize the given integral equation. By connecting the output waveguides to the input waveguides
of the computing kernel, the equation solution can be attained in steady state through hundreds of
electromagnetic wave circulations in the system. Based on this, solving a set of equations is still in
high demand but challenging, most notably those with a large number of the variables. This is mostly
because the difficulty of obtaining an accurate and small-footprint computing kernel with target large-
scale scattering matrix is increased significantly.

In this work, we design a compact electromagnetic device to solve a set of linear equations, where
two inhomogeneous metamaterial kernels are connected to construct a closed-loop system. Complex-
valued information is carried by electromagnetic fields, and the solution for arbitrary input signals can
be attained in the steady state after a number of cycles in the closed-loop system. The metamaterial
kernels are strongly designed with topology optimization, whose average element error (AEE) is reduced
to 10−4. For a given high-dimensional equation, we decompose it into two low-dimensional matrices,
which is mimicked by the scattering matrices of two metamaterial kernels. As a proof-of-concept, we
demonstrate the capability of such a system in solving eight complex equations. Our work fills the gap
about electromagnetic equation solver and holds great potential to extend the frontiers in integrated
computing photonic circuitry, fast analog signal processing, and optical neural network [25–38].

2. RESULTS

2.1. Architecture of Electromagnetic Mathematic Equation Solver

For a set of linear nonhomogeneous equations AX = B, the solution can be generally summarized as
A−1B, as sketched in Fig. 1(a). In this process, the key step boils down to the deduction of the inverse
of the coefficient matrix A, whose complexity scale is proportional to O(2N)3, and 2N is the dimension
of A. Fig. 1(b) shows the conceptual representation of our electromagnetic equation solver, where two
metamaterial kernels are connected in series to form a closed-loop system. The transmission matrix of
each metamaterial structure imitates the coefficient matrix of equations. For example, X1 will become
A1X1 after passing through the metamaterial kernel. After a number of feedbacks, the system will
reach a steady state (the running time is negligible). Thus, the general relation governing the loop
system follows, {

A1X1 +B1 = X2

A2X2 +B2 = X1
(1)

where [X1,X2] represents the 2N × 1 vectorial solution obtained as the complex-valued signal carried
by electromagnetic waves; [B1,B2] represents the 2N×1 vector input signal; A1 and A2 are two N×N
transmission matrices of the operational kernel (the left inset in Fig. 1(b)). We further simplify Eq. (1)
into the matrix form, [

−A1,N×N , IN×N

IN×N ,−A2,N×N

]
·
[
X1,N×1

X2,N×1

]
=

[
B1,N×1

B2,N×1

]
(2)

where I is an unit matrix. Comparing Eq. (2) with Fig. 1(a), their mathematical forms are equivalent.
Assuming that A1 = −A11, A2 = −A22, I = A12 = A21, the two formulas are exactly the same.
Although the unit matrix enforcement on A12 and A21 makes the electromagnetic implementation
lose some generalizations, it is still very useful, especially in the applications based on state transition.
Therefore, for a given mathematical equation set, we first decompose the coefficient matrix A2N×2N into
two matrices A1,N×N and A2,N×N , and then set up the whole electromagnetic platform with tandem
metamaterial kernels and input/output components.
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(a)
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Figure 1. Schematic of electromagnetic implementation for solving multivariable mathematic
equations. (a) Equation solving in mathematics. For a non-singular coefficient matrix A, the
mathematical solution can be expressed as the product of A−1 and B, i.e., X = A−1B In other
way, we can also decompose these matrixes into block matrixes. (b) Electromagnetic implementation of
equation solver. Two metamaterial kernels are connected in series to form a closed-loop network, each
of which is inversely designed to characterize the coefficient matrix A1 and A2 with high fidelity. The
coefficient matrix is embodied as the transmission matrix in this case. For a customer-defined input B1

and B2, the tandem metamaterial system will reach a steady-state after a number of recursive wave
propagations. Finally, we extract the equation solution from X1 and X2.

2.2. Inverse Design of Metamaterial Kernel

The task is now reduced to finding two computational kernels whose transmission matrices A1 and A2

are the same as the coefficient matrices −A11 and −A22. As shown in Fig. 2(a), the physical layout
of the computational kernel consists of a two-dimensional (2D) domain sandwiched by planar metallic
waveguides (the spatial parameters are shown in Fig. S1 in Supporting Information). The top and
bottom sides are surrounded by electromagnetic absorber. We consider the fundamental TE10 mode to
carry information, and the operating frequency is selected as f = 5GHz (the wavelength λ = 6 cm).
Four inputs (rectangular waveguides) and four outputs are attached to the left and right sides, so
the transmission matrix of the computational kernel is a 4 × 4 matrix. In addition, there is also a
4× 4 reflection matrix, which shall be miniaturized to zero. The center green highlighted region is the
designed region (30 cm× 48 cm, 5λ× 8λ), where the dielectric distribution associated with the expected
transmission matrix needs to be found during optimization.

The electromagnetic optimization that finds the dielectric distribution associated with the
transmission matrix of the operational kernel was undertaken using the topological optimization
method [33, 38]. Topological optimization can produce optimized dielectric distribution without any
constraint on geometrical shapes. This is different from deep learning assisted inverse design, in which
one always needs to discretize the electromagnetic devices with fixed square, circular shape and more;
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Figure 2. Inverse design of metamaterial kernels with topology optimization. (a) Inhomogeneous
metamaterial kernel to mimic the coefficient matrix. It contains four input waveguides and four output
waveguides on either side of the design region; see the geometric parameters in Fig. S1. The design region
is surrounded by absorbing boundary layer on top and bottom. The inverse design aims to optimize the
spatial inhomogeneity in the design region with topology optimization. (b) The AEE over iterations.
(c)–(f) Target matrix and the optimized matrix enabled by the designed metamaterial kernels. (g)
Comparison between the optimized results (solid circle) and the corresponding target matrix (hollow
circle).

the optimized outcome is generated from one combination of these pixels and looks very rigid. To
facilitate the topology optimization process, we deploy a loss function AEE defined as the complex-
plane “distance” between the S parameters (i.e., transmission matrices A′

1 and A′
2) and their expected

values (i.e., target matrices A1 and A2). The optimization goal was to minimize the AEE and the
reflection matrix of the computational kernel (ideally, to be zero). The optimized variable is defined by
the relative permittivity at each point, which is bounded between air with the relative permittivity of
1 and Rexolite, a low-loss polystyrene with the relative permittivity of 2.53. Following a satisfactory
convergence, the next step of optimization was performed using penalty function to enforce the relative
permittivity binarize as air or Rexolite; see the iterative process of binaryzation in Fig. S2 in Supporting
Information. At last, the optimization is ceased when a satisfactory small error in the binarized structure
is reached.
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2.3. Numerical Simulation

We randomly select two target matrices and optimize the computational kernels with topology
optimization, as shown in Fig. 2. After dozens of iterations, convergence is obtained, and the AEE is
decreased to 10−4, suggesting that the two computational kernels can implement the target stochastic
matrix with negligible errors (Fig. 2(b)). To intuitively illustrate the accuracy, we plot the ideal matrices
(hollow circles) and the optimized matrices (solid circles) of the two computational kernels in Fig. 2(g).
The high consistence indicates that the metamaterial structure can accurately perform desired complex-
valued matrix as operational kernel for the equation solver. In Supporting Information (Figs. S3 and
S4), we simulate the computational kernels with fabrication errors, which exhibit a good tolerance.

Figures 3(a), (c) display the binary distribution consisting of either air or the commercially available
dielectric material Rexolite, where Rexolite is represented in green. The electric field distributions with
different inputs are plotted in Figs. 3(b), (d), providing visual confirmation for optimization results
enabled by the computational kernels. We observe that the reflection waves of scattering matrices are
nearly zero, which is crucial to the electromagnetic equation solver. And each figure represents one
column of the optimized matrices presented in Figs. 2(d), (f). The electric field distributions and the
target stochastic matrices are well matched. From the physical view, we have realized the precise control
of the amplitude and phase of electromagnetic field in this compact computational kernel. Next, we will
build the complete metamaterial system of equation solver by utilizing these two well-designed kernels.

(c) (d)

(a) (b)

Figure 3. Numerical results of metamaterial kernels. (a), (c) Inhomogeneous distributions of the
relative permittivity inside the metamaterial kernels. The metamaterial kernels are composed of either
air or the commercially available dielectric material Rexolite with the relative permittivity of 2.53.
(b), (d) Electrical field distributions inside the metamaterial kernels with different inputs. Four input
waveguides are excited one-by-one. For all cases, almost no reflected waves go back to the inputs.

2.4. Solving Multivariable Equations

Fig. 4(a) illustrates the numerical simulation result for the distribution of Ez field (snapshot in time)
in the assembled closed-loop system; see Supplementary Movie 1. It mainly includes two well-designed
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Figure 4. Solving multivariable equations with tandem metamaterial kernels. (a) Electric field
distribution in the closed-loop network. The two metamaterial kernels are connected through four
waveguides. The electrical lengths of all waveguides connecting the kernel to couplers are multiples of
the TE10 guide wavelength, ensuring zero phase difference between the two ends of each waveguide.
(b) Electric field distribution of the directional coupler. The red arrow shows the excited port. The
coupling efficiency of this coupler is 11.3%, the reflection and transmission phase of the coupler is also
set to be zero. (c)–(e) Solution of equations carried by electromagnetic waves for three representative
input patterns (insets). The solutions by optics (solid lines) are consistent with the theoretical results
(dashed lines), in term of both real and imaginary parts.

computational kernels, four waveguides, and directional couplers shown in Fig. 4(b). The directional
couplers are also designed at the operating frequency to create 11.3% power coupling efficiency with zero
reflection. The transmission phase of the coupler is also set to zero. This is a crucial consideration to
eliminate the effect of the presence of coupler in the signal path. Fig. 4(b) shows the simulation results
of the electric field distribution in the coupler, consisting of two parallel waveguides with perfect electric
conductor (PEC) walls, each with the width of 45mm same as the connecting waveguide in system.
There are five openings (15mm) in the common PEC wall between the waveguides in order to couple a
portion of the power between the two waveguides. The distance between the two adjacent openings is
3mm. This coupler is symmetric, and the scattering matrix follows the general format. The electrical
lengths of all waveguides connecting operational kernels and couplers are multiples of the TE10 guide



Progress In Electromagnetics Research, Vol. 175, 2022 145

wavelength, ensuring zero phase difference between the two ends of each waveguide. The system can
be excited at arbitrary waveguide (through the corresponding coupler) with a monochromatic signal
with electric field. The complex values of the field distribution constructed on the waveguides (at the
position of small black vertical arrows in Fig. 4(a)) represents the solution of the corresponding input.
The input signal [B1,B2] may be an arbitrary complex distribution of monochromatic waves at the
eight input ports. Fig. 4(a) shows the steady-state simulated result when three input ports are excited,
as indicated by red arrows.

The complex-valued fields on the output ports of eight couplers are then used to extract the
solutions of the equation (the specific method is shown in Supporting Information), which are shown
in Figs. 4(c)–(e) containing 3 representative input patterns (more results can be found in Figs. S5
and S6 in Supporting Information). Compared with the ideal theoretical results (dashed lines), we
attain an excellent agreement between theoretical and simulated results. The small deviations may be
attributed to the errors generated during binarization process and the influence of embedding coupler.
We also simulated the equation-solver system constructed by the other two metamaterial kernels shown
in Fig. S7 in Supporting Information, and the corresponding results are presented in Fig. S8. These
results strongly verify the capability of such a system to solve multivariable equations. Furthermore, we
see that the effect caused by the loss of employed material is negligible, and the designed equation-solver
is robust to the noises of the input signals (Figs. S9 and S10 in Supporting Information).

3. CONCLUSION

In conclusion, we have proposed a tandem metamaterial system to solve multivariable mathematical
equations. The tandem metamaterial kernels are inversely designed to make their transmission matrix
consistent with the coefficient matrix of the equation. We employ topology optimization to design
the metamaterial structure without any geometric constrains and explicitly impose realistic dielectric
parameter to ensure that the electromagnetic solver could be easily fabricated. Taking a set of eight
linear equations as a demonstration, we first decompose it into two 4 × 4 metamaterial kernels to
significantly decrease the design complexity. The two designed metamaterial kernels are designed to
have only a small-scale footprint whose size is 5λ × 8λ, and the AEE loss is decreased to 10−4. On
this foundation, we cascade the two metamaterial kernels with four waveguides to successfully solve the
equations with high accuracy. Although the equation solver was demonstrated in the microwave, the
concept is relevant and can be readily generalized to other high frequencies with a similar framework
(Fig. S11 in Supporting Information).

Our work opens a new avenue for solving large-scale mathematical equations in optics. Moving
forward, it would be also interesting to enable a re-programmable optical solver by incorporating active
components and nonlinear materials into metamaterials kernels, behaving as the analogue, wave-based
counterpart of electronic field-programmable gate arrays [10]. Whereas the metamaterials kernels are
iteratively optimized beforehand on computer, we can even apply in-situ training on the integrated
photonics platform [39], in conjunction with reinforcement learning and other heuristic algorithms [14].
We anticipate that this formalism may be carried over to other enticing applications in on-chip signal
processing and neuromorphic computing to drastically reduce their footprints without compromising
the efficiency or functionality [40, 41].
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