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Improved Higher-Order Sliding Mode Controller for Model
Predictive Current Control of PMSM

Qianghui Xiao1, Zihao Liu1, Yang Zhang1, *, Zhe Li1, Bing Luo2, and Tingting Wang2

Abstract—To improve the control accuracy of the model prediction current (MPC) loop of a permanent
magnet synchronous motor (PMSM), a new high-order super-twisting sliding-mode controller combined
with a sliding-mode disturbance observer is proposed as a speed control strategy. Firstly, the linear
term is added to the scaling term based on the original algorithm, which enhances robustness while
weakening jitter. In addition, load perturbations and parameter uptake in the system are considered.
The perturbation observation error is introduced into the switching gain function, and an improved
sliding-mode disturbance observer is designed as feedforward compensation. The disturbance immunity
of the system is effectively enhanced. Simulated and experimental results verify the correctness and
effectiveness of this control strategy.

1. INTRODUCTION

Permanent magnet synchronous motor (PMSM) control techniques are continuously explored, and fast
and reliable control strategies are essential [1, 2]. In addition to Vector Control (VC) and Direct Torque
Control (DTC), Model Predictive Control (MPC) has been widely investigated as a control method
for PMSM. Depending on the number of voltage vectors acting in a single control cycle, the MPC of
PMSM is classified as single-vector, double-vector [3, 4], and triple-vector [5] model predictive current
control. Single vector control is simple, but current pulsation is high. Triple-vector control can improve
the system performance, but it is computationally intensive and requires high hardware requirements.
Therefore, two-vector model predictive control is adopted in this paper.

However, the PMSM is a nonlinear, multi-variable, and strongly coupled controlled object, and
the control system is susceptible to uncertainties such as external load disturbances and parameter
uptake [6, 7]. In the speed control system of a PMSM, the traditional proportional integral (PI) controller
is often used. However, it is challenging to meet high-performance control requirements due to its control
sensitivity to system parameters, susceptibility to external disturbances, and low control accuracy [8].
This leads to poor control accuracy of model predictive control of the current loop.

To further improve the response speed and disturbance immunity of the system, some modern
control theories such as fuzzy control, adaptive control [9], self-turbulence control [10], neural
networks [11], and sliding mode control [12, 13] have been successfully applied to the speed control
of PMSM. Among them, sliding mode control (SMC) is widely used because of its robustness, fast
dynamic response, and easy implementation [14].

Improving the dynamic response performance of the system and weakening the jitter is the key to
this paper’s research. Ref. [15] proposes a higher-order sliding mode control: its algorithm comprises a
proportional term and an integral term. When the point of motion reaches the sliding mode surface,
the integral term moves the system trajectory around the origin to ensure the continuity of the output
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control signal [16]. This weakens the jitter phenomenon, but its effect is mediocre. Ref. [17] applies
super-twisting algorithm to the speed controller of a PMSM. It is compared with a sliding mode control
based on the exponential convergence law. This control strategy improves the system’s speed while
suppressing sliding mode jitter. However, the perturbation term in the algorithm is minimally bounded.

Usually, sliding-mode control is used to improve its control performance at the cost of setting too
high switching gains, which may lead to severe system jitter and even collapse [18, 19]. Therefore,
[20] proposes a PMSM speed regulation system based on an adaptive over-torsion algorithm, which
effectively solves the problem of excessive gain. However, due to the discontinuity of the integral term
of the original algorithm, a super-twisting fractional order (STFO) controller was proposed in [21]
to improve its control performance. The use of convergence methods in the convergence process has
been proposed, thus effectively weakening the jitter. Ref. [22] designed a continuous and fast adaptive
terminal sliding mode convergence method to achieve high accuracy tracking. However, the control
scheme is difficult to implement due to its high start-up current and more complex design.

Another method is to weaken jitter and improve immunity by adding a disturbance observer.
In [23], a generalized proportional-integral observation (GPIO) strategy combined with super-twisting
sliding mode control is designed. This control strategy has a small switching gain factor and a high
tracking accuracy. However, due to the discontinuity of its integral term, it leads to a more obvious
jitter. Refs. [24, 25] compensate in real-time by introducing a disturbance observer, which improves
the immunity of the control system to disturbances. However, the design of the observer relies on an
accurate model of the drive system.

Since the scaling term in the super-twisting algorithm is a square root calculation [26], the above
strategy still suffers from the lack of fast enough arrival time and poor immunity to disturbances of the
super-twisting algorithm. Furthermore, there are problems with the value and design of the switching
gain coefficients for such perturbation observers and the dependence on an accurate system model.

To sum up, this paper proposes a high-order sliding mode controller (SMC) based on a new super-
twisting algorithm (NSTA) and combined with a sliding mode disturbance observer (SMDO) as a
speed control strategy. Linear term is added to the scaling term of the original algorithm, effectively
weakening the system’s jitter. In addition, an improved SMDO is designed, taking load disturbances
and parameter ingestion into account. A perturbation observation error is introduced based on the
conventional switching gain function. The total disturbance of the observer output is fed back into the
controller, improving disturbance immunity of the system.

2. PMSM MODEL

The simplified voltage equation for a PMSM under ideal assumptions is:[
ua
ub
uc

]
=

[
Rs 0 0
0 Rs 0
0 0 Rs

][
ia
ib
ic

]
+ p

[
ψa

ψb

ψc

]
(1)

where ψa, ψb, ψc are the magnetic chain of the three-phase stator winding; ua, ub, uc are the phase
voltage instantaneous values; ia, ib, ic are the phase current instantaneous values of the three-phase
stator winding; Rs is the resistance of the three-phase stator winding; p is the differential operator.

Since the surface-mounted permanent magnet synchronous motor has Lq = Ld, the current equation
in the dq coordinate system:

diq
dt

= (uq −Rsiq − ωreLsid − ωreψf ) /Ls (2)

did
dt

= (ud −Rsid + ωreLsiq) /Ls (3)

where ud is the stator direct-axis voltage component; uq is the stator cross-axis voltage component; id is
the current direct-axis component; iq is the current cross-axis component; Ls is the stator inductance;
ωre is the rotor electric angular velocity; ψf is the permanent magnet magnetic chain.

The first-order Eulerian discretization of Eqs. (2) and (3) gives [27]:

iq(k + 1) = iq(k) + [uq(k)−Rsiq(k) −ωreLsiq(k)− ωreψf ]Ts/Ls (4)

id(k + 1) = id(k) + [ud(k)−Rsid(k) + Lsiq(k)]Ts/Ls (5)
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where id(k), iq(k) are the feedback values of d and q-axis currents of the stator current at the current
moment; id(k + 1), iq(k + 1) are the predicted values of d and q-axis currents of the stator current at
the next moment, respectively; Ts is the sampling period of the system.

The equation of motion of a permanent magnet synchronous motor is expressed as:

dw

dt
=

3pnψf

2
iq −

B

J
ω − TL

J
(6)

where pn is the polar logarithm; ω is the mechanical angular velocity; B is the viscous friction coefficient;
J is the rotational inertia; and TL is the load torque.

3. SLIPFORM SPEED CONTROLLER DESIGN

3.1. Controller Design

The higher-order sliding mode algorithm solves the conflict between arrival speed and system jitter.
Unlike other higher-order sliding mode algorithms, the super-twisting algorithm does not need to derive
the sliding mode surface. Thus, the sliding mode surface and its derivatives can be simultaneously
stabilized to zero, avoiding the simplicity of introducing noise control. Its general expression is as
follows:

u = −α|s|1/2sign(s) + u1
u̇1 = −βsign(s) + ė

(7)

where s is the sliding variable; e is the perturbation term; α and β are the sliding mode gain coefficients;
and the symbol sign(s) is the switching function.

The proportional term α|s|1/2sign(s) can effectively improve the arrival speed of the algorithm;
however, its sliding mode surface is calculated using the square root, and the arrival speed of the
algorithm and the anti-interference ability are directly affected by the gain of the proportional term. In
order to improve the anti-interference ability and arrival speed, this paper proposes a new super-twisting
algorithm, namely:

u = −α|s|1/2sign(s)− ks+ u1
u̇1 = −βsign(s) + ė

(8)

where ks is a linear term and k > 0.
In this paper, the slide surface selected for the speed control loop is:

s = x = ω∗ − ω (9)

Derivation of Eq. (9) yields:
ṡ = ẋ = −ω̇ (10)

By comparing Eq. (6), Eq. (8), and Eq. (10), the output of this controller is obtained as follows:

i∗q =
2J

3pnψf

((
B

J
ω +

TL
J

)
+ α|s|

1
2 sign(s) + ks+ e+

∫
βsign(s)dt

)
(11)

3.2. System Stability Analysis

According to Eq. (11), when δ > 0 and 2|e| 6 δ is elected, α, β, and k satisfy the following conditions.

α > 2

β >

(
α+ k |z1|1/2

)2

4
(
α+ k |z1|1/2

)
− 8

+
δ2

4α

k > 0

(12)

When the above conditions are satisfied, Eq. (11) can converge to the origin in a certain time.
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Letting the perturbation term e = ((B/J)ω + (TL/J) and by using variable substitution, the
following variables are obtained: {

z1 = s
z2 = −

∫
βsign (z1) dt+ e

(13)

Derivation of Eq. (13) yields.{
ż1 = −α|z1|1/2sign (z1)− kz1 + z2
ż2 = −βsign (z1) + ė

(14)

In order to verify the stability of the sliding mode speed controller, the Lyapunov function is
formulated according to Eq. (11) as follows.

V (z1, z2) = ζTΠζ (15)

where ζT = [ζ1, ζ2] = [|z1|1/2sign(zl), z2]; Π is the real symmetric matrix with the following expressions:

Π =

 4β +
(
α+ k |z1|1/2

)2
−
(
α+ k |z1|1/2

)
−
(
α+ k |z1|1/2

)
2

 (16)

In order to verify the stability of its control system, the derivation of Eq. (15) yields:

V̇ (z1, z2) = ξ̇TΠξ + ξTΠξ̇ =
1

2

1

|ξ1|
[
ξTATΠξ + ξTΠAξ + ρBTΠξ + ρξTΠB

]
(17)

where A =

[
−
(
α+ k |z1|1/2

)
1

−2β 0

]
, B =

[
0
1

]
, ρ = 2|z1|1/2. Obviously, ρ = 2|z1|1/2 is a scalar.

Expanding BTΠξ and ξTΠB for computational analysis shows that they are both scalars, and ΠT = Π
according to Eq. (16).

So when the conditions δ > 0 and 2|e| 6 δ are satisfied, Eq. (17) can be further reduced to:

V̇ (z1, z2) ≤ 1

2

1

|ξ1|
[(
ξTATΠξ + ξTΠAξ + ρBTΠξ + ρξTΠB

)
+ δ2ξ21 − ρ2

]
≤ 1

2

1

|ξ1|
[
ξTATΠξ + ξTΠAξ + δ2ξTCTCξ + ξTΠBBTΠξ

]
= −1

2

1

|ξ1|
ξTQξn (18)

where Q = −[ATΠ+ΠA+ δ2CTC +ΠBBTΠ].
Obviously, Q is a positive definite matrix, so Eq. (18) satisfies the following conditions:

V̇ (z1, z2) = −1

2

1

|ξ1|
ξTQξ < 0 (19)

From the above analysis, it can be seen that for the system shown in Eq. (11) the corresponding

Lyapunov function V (z1, z2) satisfies the stability theory of V > 0 in the radially unbounded and V̇ < 0
stability condition.

Further expansion of the positive definite matrix Q yields:

Q=

2
(
α+ k |z1|

1
2

)3
−
(
α+ k |z1|

1
2

)2
+4β

(
α+ k |z1|

1
2

)
−δ2 2

(
α+ k |z1|

1
2

)
−2

(
α+ k |z1|

1
2

)2

2
(
α+ k |z1|

1
2

)
− 2

(
α+ k |z1|

1
2

)2
2
(
α+ k |z1|

1
2

)
− 4

 (20)

For the system to reach stability, it needs to satisfy V̇ < 0 stability condition, and according to
the above analysis, Q is positive definite. According to the Schur complementary lemma (SCL), for a
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real symmetric matrix Q, the parameters of the controller need to satisfy the following conditions since
k > 0: 

α > 0

β >

(
α+ k |z1|1/2

)2

4
(
α+ k |z1|1/2

)
− 8

+
δ2

4α

k > 0

(21)

The stability proof of this system is completed. When the above parameters satisfy the above
conditions, the output iq

∗ of the sliding mode speed controller can realize the sliding mode motion and
gradually converge to the origin.

3.3. Anti-Disturbance Performance Analysis

The dynamic equation of a permanent magnet synchronous motor can be expressed as follows when the
uptake of the internal parameters of the system and the disturbance of the external load is taken into
account:

ω̇ =
dw

dt
=

3pnψf

2
iq −

B

J
ω − 1

J
d(t) (22)

where d(t) is the total disturbance of the system, including the external load disturbance as well as the
internal parameter variations.

Thus, combining Eq. (8), Eq. (10), and Eq. (22), the sliding mode control law is designed as:

i∗q =
2J

3pnψf

((
B

J
ω +

1

J
d(t)

)
+ α|s|

1
2 sign(s) + ks+

∫
βsign(s)dt

)
(23)

It can be seen from Eq. (23) that the dynamic effects of the motor and the control performance
of the system are strongly influenced by the uncertainty term d(t). However, in many SMC studies
and practical applications, most of them define the perturbation term d(t) as a bounded term and do
not observe the perturbation of their systems. Therefore, in this paper an observer is designed as a
feedforward to the speed controller. The disturbances of the system are observed in real time and fed
back into the controller.

3.4. Sliding Mode Disturbance Observer Design

In order to further improve the anti-interference of the whole system, a sliding mode disturbance observer
is designed in this paper. In order to solve the jitter vibration phenomenon existing in the sliding mode
observer, a relative improvement is made to the conventional observer. The perturbation observation
error is fed back into the switching gain function. The structure is shown in Fig. 1.
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ω eω g(eΩ)

−
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Figure 1. Sliding mode disturbance observer structural diagram.

In a permanent magnet synchronous motor control system with zero first order derivative of load
torque disturbance

dTL
dt

= 0 (24)
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The first-order derivative of the total system perturbation term d(t) is also zero, as can be seen in
Eq. (24):

ḋ(t) = 0 (25)

Set the state variables of the observer to be the total disturbance d(t) of the system and the
mechanical angular velocity ω. The input of the system is the electromagnetic torque Te, and the
output is ω. The augmentation matrix of the system is obtained as follows.[

ω̇

ḋ

]
=

 −B
J

− 1

J
0 0

[
ω
d

]
+

 1

J
0

Te (26)

The observation object of the sliding mode disturbance observer is set as the total system
disturbance d(t), mechanical angular velocity ω, and the observer equation is obtained through Eq. (26)
as: [

˙̂ω
˙̂
d

]
=

 −B
J

− 1

J
0 0

[
ω̂

d̂

]
+

 1

J
0

Te + [
1
l

]
g (eω) (27)

where l is the observer gain; eω = ω− ω̂ is the velocity observation error; and g(eω) is the sliding mode
control law.

From Eq. (26) and Eq. (27), the error equation of the sliding mode perturbation observer can be
obtained as:  ėω = −B

J
eω − 1

J
eT − g (eω)

ėT = − lg (eω)
(28)

where eT = d− d̂ is the perturbation observation error.
The integral sliding surface is selected as follows:

sω = eω + cω

∫ t

0
eωdt (29)

Derivation of sω yields:
ṡω = ėω + cωeω (30)

The convergence law is chosen as shown in Eq. (31):

ṡω = −εωsign (sω) (31)

Combining the −eT /J operational perturbation term with Eq. (28), Eq. (30), and Eq. (31), the
control law of the perturbed observer can be obtained as:

g (eω) =

(
cω − B

J

)
eω + εωsign (sω) (32)

Under the action of the control law of the observer, the trajectory of its system gradually converges
to the state origin and reaches the sliding mode surface, from which it follows that:

sω = ṡω = 0 (33)

eω = ėω (34)

From Eq. (34), we have: {
eT = −Jg (eω)

ėT = − lg (eω)
(35)

From Eq. (35), we have:

eT = cT e
1
ζ
t

(36)

where cT is a constant, and to ensure that eT can converge to zero in finite time, the parameter l needs
to satisfy.

l < 0 (37)
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Then the value of parameter l directly affects the time at which the perturbation observation error
converges to zero.

To verify the stability of the sliding mode perturbation observer, the Lyapunov function is defined
as follows:

V0 =
1

2
s2ω2 (38)

Derivation of Eq. (38):

V̇o = SωṠω (39)

Combining Eq. (26), Eq. (30), and Eq. (32) yields:

V̇0 = sω ṡω = sω

(
ceω − B

J
eω − 1

J
eT − g (eω)

)
= sω

(
−εωsign (sω)−

eT
J

)
(40)

According to the theoretical analysis of the stability of Lyapunov functions, it is known that the
sufficient conditions for the existence and accessibility of the slipform surface are:

V̇o = SωṠω < 0 (41)

From Eq. (41), we have:

εω >
|eT |
J

(42)

From Eq. (41), it can be seen that the switching gain εω of the observer increases as the
load perturbation observation error eT increases, which leads to a more pronounced dithering of the
observations.

εω = fε
|εT |
J

(43)

where fε is constant and fε > 1. As eT tends to zero, εω also tends to zero to weaken the jitter of
the observed values. When eT increases, εω increases accordingly, thus ensuring the robustness of the
system.

From the above analysis, it can be seen that the total disturbance term of the system has been
fed back to the sliding mode controller in real-time as a known quantity. When there is parameter
ingestion and load torque perturbation, the controller can respond to the perturbation change in time,
which further improves the system’s robustness and effectively improves the response characteristics of
the permanent magnet synchronous motor. The system control structure diagram is shown in Fig. 2.
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Figure 2. Structure diagram of permanent magnet synchronous motor control system based on NSTA-
SMC+SMDO.
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4. IMPROVED DUAL VECTOR MPCC

4.1. Voltage Vector Selection and Duty Cycle Optimization

The two-vector current prediction control using optimal duty cycle model predictive current control
(MPCC) is shown in Fig. 3.
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Figure 3. Schematic diagram of optimal voltage vector selection with duty cycle.

In Fig. 3, iq(k) is the feedback value of the cross-axis current, iq(k + 1) the predicted value of the
cross-axis current, and i∗q the given value of the cross-axis current. In this paper, we choose the principle
of no differential beat of the cross-axis current for duty cycle calculation, by allocating the action time
of the effective voltage vector and the zero voltage vector in 1 sampling period, so that the cross-axis
current reaches the given value at the (k + 1)th sampling moment.

iq(k + 1) = iq(k) + siγiTs + s0 (Ts − γiTs) = i∗q (44)

where γi is the duty cycle of the optimal voltage vector, and the range is restricted to the interval [0, 1].
From Eq. (19), the duty cycle can be obtained as:

γi =
i∗q − iq(k)− s0Ts

Ts (si − s0)
(45)

The optimal duty cycle is calculated in advance for each voltage vector. The value function considers
both the voltage vector and the duty cycle when performing optimization, so the optimal voltage vector
is optimized as U1, which ensures the global optimum of the selected voltage vector and can realize the
q-axis current without differential beat.

In this paper, when the voltage vector is selected, the first voltage vector is selected in the range
of the remaining five effective voltage vectors after removing the effective voltage vector selected in the
previous moment, and the second voltage vector is fixed as zero vector following the principle of allowing
only one jump in the number of switching times. This can reduce the number of operations per cycle
on the one hand and improve the steady-state performance of the system on the other hand.

4.2. Value Function

The control objective of the MPCC strategy is to enable the cross-rectangular current to accurately
track the given value of the cross-rectangular current, so the value function is selected in the following
form:

gi =
(
i∗q − iq(k + 1)

)2
+ (i∗d − id(k + 1))2 (46)

Considering that the control system introduces many delay problems during operation, such as
dead time, delay of inverter output, and filtering, which causes the controller output to lag behind the
system current change, iq(k + 1), id(k + 1) in the value function are replaced by iq(k + 2), id(k + 2).
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4.3. Improved Optimal Duty Cycle MPCC Principle

The improved optimal duty cycle MPCC in the voltage vector selection, the first voltage vector selection
range is the remaining five voltage vectors after removing the effective voltage vector selected in the
previous moment. This control strategy improves the robustness of the system while reducing the
burden of optimal duty cycle calculations. The method system block diagram is shown in Fig. 4 (the
effective voltage vector selected in the last cycle U1 for example).
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iq
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Figure 4. System block diagram of the improved optimal duty cycle MPCC method.

The improved optimal duty cycle MPCC method is as follows:

1) Calculate the duty cycle of each of the five effective voltage vectors according to Eq. (21).

2) According to the PMSM discrete mathematical model Eq. (4) and Eq. (5), the current values of the
compensated id,q under the combination of five voltage vectors and their duty cycles are predicted
and substituted into the cost function to calculate the gi value;

3) The five gi values are compared, and the voltage vector that minimizes the cost function is selected
as the optimal voltage vector. Then the optimal voltage vector and its duty cycle are implemented
by the space vector modulation technique.

5. SIMULATION AND EXPERIMENTAL ANALYSIS

In this paper, the proposed current prediction control algorithm is simulated and verified in
MATLAB/Simulink software, and an RT-LAB semi-physical control platform based on RT-LAB is
built for experiments to compare with the conventional method. The simulated motor parameters are
as Table 1.

5.1. Simulation Analysis

The simulation analysis verifies the correctness and effectiveness of the control strategy proposed in this
paper, provided that uniform parameters are used throughout the system. The three-speed control
strategies, STA-SMC, NSTA-SMC, and NSTA-SMC+SMDO, are analyzed and compared through
simulation. The parameters of STA-SMC are: α = 1500, β = 60000, NSTA-SMC: α = 1500, β = 60000,
k = 600, SMDO: cω = 2, l = −0.8, εω = 1800, fε = 1.5. The sampling frequency is 10 kHz, and the
total simulation time of the system is 0.5 s. Fig. 5 shows the motor speed curve. It shows the speed
variation for the three control strategies under different conditions of no-load start, loading, unloading,
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Table 1. PMSM parameters for simulation.

Parameters Value

Permanent magnet chain (Wb) 0.1

Stator inductance (mH) 1.625

Stator resistance (Ω) 0.15

Rated torque (Nm) 15

Rated speed (r/min) 3000

Rated power (W) 200

Rotor inertia (kg ·m2) 0.00478

Number of pole pairs 2

Figure 5. Motor speed curve.

Table 2. Performance comparison of three control strategies.

Result STA-SMC NSTA-SMC NASA-SMC+SMDO

Response time t (s) 0.046 0.040 0.034

Adjustment time t1 (s) 0.015 0.011 0.005

Adjustment time t2 (s) 0.022 0.017 0.008

Adjustment time t3 (s) 0.015 0.012 0.01

Acceleration overshoot (rpm) 0 0 0

Load overshoot (rpm) 43.2 35.0 7.5

Unload overshoot (rpm) 34 26 6.8

and sudden speed changes. When the motor starts at no-load and runs at 1500 (r/min), the analysis
from Fig. 6 and Table 2 shows that all three control strategies are free of overshoot. The NSTA-
SMC+SMDO control strategy has the shortest response speed and regulation time, 0.012 s faster than
the STA-SMC response speed and has the best transient characteristics.

The rated load of 15Nm is added suddenly at 0.1 s and unloaded at 0.2 s. From the analysis of
Fig. 7, Fig. 8, and Table 2, it is clear that the STA-SMC control changes the speed significantly during
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Figure 6. Partial enlarged view of the rotational
speed at startup.

Figure 7. Partial enlarged view of the rotational
speed during loading.

Figure 8. Partial enlarged view of rotational
speed during unloading.

Figure 9. Partial enlarged view of rotational
speed during acceleration.

loading and unloading and has the longest regulation time. When a linear term is introduced in the
proportional term, NSTA-SMC can make the motor speed converge to the given speed in a shorter time,
and the speed change is more minor when the load changes. NSTA-SMC has significantly less regulation
time than STA-SMC control in terms of regulation time, with 0.01 s less for the loading process and
0.014 s less for the unloading process. When a sliding mode disturbance observer (SMDO) is combined
with NSTA-SMC, its control characteristics improve. Compared with NSTA-SMC, the regulation time
is further reduced; the speed variation rate is reduced by 61.2%; and the response characteristics of the
whole system are significantly improved.

The speed rises from 1500 (r/min) to 2000 (r/min) at 0.3 s, and the STA-SMC also has the most
extended response speed and mediation time in the case of sudden speed change, as shown in the
analysis of Fig. 9 and Table 2. When NSTA-SMC+SDMO control is used, the dynamic characteristics
are the best, and the speedy response time is the shortest and has good robustness. Compared
with STA-SMC, NSTA-SMC effectively weakens the phenomenon of sliding mode jitter. At the same
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time, the introduction of SDMO further improves the steady-state characteristics and anti-disturbance
characteristics of the control system.

As can be seen in Fig. 10, when the speed is stable at 2000 (r/min), the steady-state error of the STA-
SMC and NSTA-SMC speed is the largest, and the control quality is poor. The NSTA-SMC+SMDO,
on the other hand, improves the response speed and anti-interference capability of the system without
increasing the system jitter. The conflict between the arrival speed of the SMC and the system jitter is
effectively resolved.

From the analysis of Fig. 11, it can be seen that the proposed control strategy has lower torque
fluctuation and the faster torque response speed than other controls. It has the shorter regulation
time and good anti-disturbance performance when it is affected by parameter uptake and load torque
disturbance.

Figure 10. Partial enlarged view of rotational
speed at steady state.

Figure 11. Motor torque change diagram.

5.2. Experimental Analysis

In order to further verify the effectiveness and correctness of the control method proposed in this paper,
the RT-LAB experimental platform was built.

The RT-LAB experimental platform consists of the following devices: a DSP controller, an RT-
LAB simulation motor, an upper computer, and a scope. The RT-LAB experimental platform is shown
in Fig. 12. The parameters of the PMSM are shown in Table 3.

Scope

RT-LAB

DSP Upper

Computer

Figure 12. RT-LAB experiment platform.
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Table 3. PMSM parameters for the experiment.

Parameters Value

Permanent magnet chain (Wb) 0.3

Stator inductance (mH) 8.5

Stator resistance (Ω) 2.875

Rated speed (r/min) 1000

Rated power (kw) 1.0

Rated voltage (v) 380

Rotor inertia (kg ·m2) 0.00816

Number of pole pairs 4
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Figure 13. Experimental waveforms of motor phase A current of three control strategies.
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Figure 14. NSTA-SMC+SMDO control. (a) Speed response curve during load changes. (b) Torque
response curve during load changes.

Figures 13, 14, 15, and 16 show the experimental results of three control strategies, NSTA-
SMC+SMDO, NSTA-SMC, and STA-SMC. The following results can be obtained by analyzing the
processes of start-up, acceleration, loading, and unloading.
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Figure 15. NSTA-SMC control. (a) Speed response curve during load changes. (b) Torque response
curve during load changes.
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Figure 16. STA-SMC control. (a) Speed response curve during load changes. (b) Torque response
curve during load changes.

Figure 13 shows the three control strategies’ A-phase output waveforms during motor loading,
unloading, and acceleration. The fundamental frequency of the motor is 100Hz. When the loading and
unloading are stable, it can be seen from the analysis in Fig. 13 that when the NSTA-SMC+SMDO
control strategy is used, the current harmonics are 5.22%, the current harmonics of NSTA-SMC 11.96%,
and STA-SMC 15.68%. From the FFT analysis, it can be seen that the control strategy proposed in this
paper reduces: 56.35% and 66.71%, respectively compared to the other two strategies. The improved
control strategy effectively reduces the higher harmonic components of the current, mainly the third
harmonic and fifth harmonic.

When the motor is unloaded, the speed response curve analysis shows that the NSTA-SMC+SMDO
has faster start-up response and shorter regulation time than the STA-SMC and NSTA-SMC, and its
steady-state error is the smallest when the speed reaches steady state. The steady-state error of STA-
SMC is: 0.046 (r/min), NSTA-SMC: 0.038 (r/min), and NSTA-SMC+SMDO is the smallest with the
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value of 0.029 (r/min). When the speed rises from 1500 (r/min) to 2000 (r/min), STA-SMC has the
longest response speed and mediation time. When NSTA-SMC+SDMO control is used, the best dynamic
characteristics, the shortest speed response time, and good robustness are achieved.

When the load is changed, a disturbance of 15Nm is added at 0.1 s, and a disturbance of 15Nm is
removed at 0.2 s. The analysis of the experimental results shows that the maximum speed fluctuation
value of STA-SMC is: 23.7 (r/min); the maximum speed fluctuation of NSTA-SMC is: 16.2 (r/min);
the NSTA-SMC+SMDO is reduced to 8.6 (r/min), and its speed regulation time is the shortest. The
analysis of the torque response curve shows that NSTA-SMC+SMDO has faster torque response and
smaller overshoot than the other two controls.

The analysis of the above experimental results shows that the control characteristics of the
whole system are effectively improved by introducing the linear term into the proportional term. In
combination with the sliding mode disturbance observer, the disturbance of the system can be estimated
in real-time as a feedforward. Sliding mode jitter is suppressed while the system robustness is further
improved.

6. CONCLUSION

From the analysis of simulation and experimental results, the NSTA-SMC+SMDO control strategy
proposed in this paper has better anti-disturbance characteristics. That is, it can weaken the jitter and
also effectively improve the robustness and control performance of the system.

(1) The results of simulations and experiments show that when the linear term is introduced into
the proportional term, the NSTA-SMC control strategy solves the problems of poor anti-disturbance
and slow speed caused by the square root calculation in the original algorithm. Compared with the
STA-SMC control, the NSTA-SMC has a faster response and good steady-state characteristics.

(2) The switching gain in the SMDO designed in this paper is a function related to the perturbation
observation error. This function can effectively suppress the jitter of the sliding mode observer and
improve its performance. The simulated and experimental results show that the NSTA-SMC+SMDO
control strategy proposed in this paper can further improve the control system’s response speed and
anti-disturbance capability.
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