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A Modified Magnitude-Selective Affine Function-Based Behavioral
Digital Predistortion for Power Amplifiers in MIMO Systems

Haopu Shen, Cuiping Yu*, Ke Tang, and Yuanan Liu

Abstract—In this paper, a modified magnitude-selective affine function-based behavioral model is
proposed for the linearization of power amplifiers in multiple-input multiple-output (MIMO) systems.
In this model, high-order polynomials in the crossover memory polynomial (COMPM) are replaced by
magnitude-selective affine functions to compensate for the crosstalk and nonlinear distortion, leading
to a highly efficient hardware implementation. The performance of the model is validated using two
3-carrier long-term evolution (LTE) signals of 20MHz bandwidth. Experimental results show that the
proposed model can achieve nearly the same adjacent channel power ratio (ACPR) and normalized
mean square error (NMSE) as COMPM with about 70% reduction of hardware complexity.

1. INTRODUCTION

To meet the needs of high rate and large-capacity communication needs, multiple-input multiple-
output (MIMO) technique has become an essential part of the current fifth-generation (5G) wireless
communication due to its inherent advantages [1]. However, in MIMO system, the multiple RF channels
may be placed closely, or even be integrated on the same chip, which will introduce crosstalk between
channels. The crosstalk leads to the generation of new nonlinear distortion when it passes through
power amplifiers (PAs), which degrades the quality of the output signal and also brings great challenges
to the linearization of the PAs [2].

Digital predistortion (DPD) has been widely adopted for the compensation of transmitter
nonlinearities in wireless communication system. In the presence of crosstalk, conventional DPD
algorithms cannot compensate the nonlinearities generated by the PAs. Thus, many different DPD
models suitable for MIMO systems have been proposed in recent years. In [4], a crossover memory
polynomial (COMPM) is firstly proposed to compensate for crosstalk and nonlinearity in MIMO
systems. In this model, the output of the PA is approximated as the sum of two nonlinear functions.
In [5], Saffar et al. proposed a 2× 2 Parallel Hammerstein (2× 2 PH) model, which can achieve better
linearization performance than COMPM. However, the existence of triple summation symbols leads to
a huge number of coefficients, which will consume a lot of computing resources. In [6] and [7], the
models reduce the quantity of the coefficients to reduce complexity by modifying the basis functions,
which can achieve approximate linearization performance at a lower number of coefficients than 2 × 2
PH. In [8], a dual-input crosstalk mismatch model (DI-CTMM) for multi-antenna transmitters has been
proposed. This model compensates for the combined effects of PAs, antenna crosstalk, and impedance
with a linear crosstalk and mismatch model block shared by all transmitting paths and a dual-input
DPD block in every transmitting path. However, when it comes to multiple channels, the coefficients
of these models will increase rapidly, which will consume huge hardware resources. As a consequence,
a low-complexity DPD model is of great importance for MIMO systems. The proposed model is to
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further reduce the hardware complexity on the basis of the existing low-complexity DPD model suitable
for MIMO systems.

The magnitude-selective affine (MSA) function-based DPD was proposed for 5G small-cell
transmitters [9, 10]. In this model, the cross-terms are redesigned by magnitude-selective affine functions
to construct nonlinear behavior of the model. Partial complex multiplication is replaced by complex
addition, which can achieve the significant reduction of hardware resources. In this paper, MSA
function-based DPD is applied to MIMO systems, and MSA functions are used to replace the high-
order polynomials in COMPM. This paper is organized as follows. In Section 2, after a brief review
of COMPM, the proposed model is introduced in detail. The performance of the proposed model is
verified through experiments in Section 3. Finally, Section 4 is the conclusion.

2. THE PROPOSED MODEL

In MIMO systems, according to the location where the crosstalk occurs, the crosstalk can be divided
into linear crosstalk and nonlinear crosstalk. Fig. 1 shows the MIMO transmitters with linear crosstalk
and nonlinear crosstalk, where coupling factors α and β denote the effects of nonlinear crosstalk, and
γ and δ denote the effects of linear crosstalk. It can be seen that the input signals and output signals
can be coupled with each other, which means that the output of the power amplifier will be affected
not only by one input signal, but also by another.

PA1

PA2

Input1

Input2

Output1

Output2

Figure 1. Block diagram of a 2 ×2 MIMO transmitter with linear and nonlinear crosstalk.

In [3], COMPM is proposed to compensate for crosstalk and nonlinearity in MIMO systems, and
the output of a transmitter path in 2× 2 COMPM is mathematically expressed as

yr(n) =

Q−1∑
q=0

P−1∑
p=0

α(r)
p,qxr(n− q) |xr(n− q)|p +

Q−1∑
q=0

P−1∑
p=0

b(r)p,qxs(n− q) |xs(n− q)|p (1)

where yr(n) is the output of the first power amplifier, herein, r, s ∈ {1, 2} and r ̸= s; α
(r)
p,q and b

(r)
p,q are

the coefficients of the model; x1(n) and x2(n) are the inputs; Q is the memory depth; P is the nonlinear
order.

In order to further reduce the complexity of hardware implementation, it should be possible to
replace the multiplication with other more efficient operations. Then MSA function-based behavioral
model is used to the model construction in MIMO systems. The proposed model is shown in the
following expression:

y1(n) =

M−1∑
m=0

u1m(n−m)ejθ1(n−m) +

M−1∑
m=0

u2m(n−m)ejθ2(n−m) (2)

where M is the memory depth, and θ1(n) and θ2(n) are the phases of x1(n) and x2(n), respectively.
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u1m and u2m can be written as follows:

u1m(n−m) =



f
(1)
1m(|x1(n−m)|), 0 ≤ |x1(n)| < β1&0 ≤ |x2(n)| < β1

f
(1)
2m(|x1(n−m)|), 0 ≤ |x1(n)| < β1&β1 ≤ |x2(n)| < β2
...

f
(1)
Km(|x1(n−m)|), 0 ≤ |x1(n)| < β1&βK−1 ≤ |x2(n)| < βK
...

f
(1)
(K2−1)m

(|x1(n−m)|), βK−1 ≤ |x1(n)| < βK &βK−2 ≤ |x2(n)| < βK−1

f
(1)
K2m

(|x1(n−m)|), βK−1 ≤ |x1(n)| < βK &βK−1 ≤ |x2(n)| < βK

(3)

u2m(n−m) =



f
(2)
1m(|x2(n−m)|), 0 ≤ |x1(n)| < β1&0 ≤ |x2(n)| < β1

f
(2)
2m(|x2(n−m)|), 0 ≤ |x1(n)| < β1&β1 ≤ |x2(n)| < β2
...

f
(2)
Km(|x2(n−m)|), 0 ≤ |x1(n)| < β1&βK−1 ≤ |x2(n)| < βK
...

f
(2)
(K2−1)m

(|x2(n−m)|), βK−1 ≤ |x1(n)| < βK &βK−2 ≤ |x2(n)| < βK−1

f
(2)
K2m

(|x2(n−m)|), βK−1 ≤ |x1(n)| < βK &βK−1 ≤ |x2(n)| < βK

(4)

where βk (k = 1, 2, 3, · · · ,K; βk = k/K) is the threshold value that divides the two input envelope

magnitude ranges into K2 partitions. f
(1)
im and f

(2)
im can be written as:

f
(i)
jm(|x1(n−m)|) = A

(i)
jm |x1(n−m)|+B

(i)
jm (5)

where A
(i)
jm and B

(i)
jm are the model coefficients (i = 1, 2; j = 1, 2, 3, · · · ,K2 − 1,K2).

The implementations of the proposed model for the two transmitter paths are nearly the same.
Take the first path as an example. Fig. 2 depicts the construction of the proposed model. Fig. 3 shows

Output
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Figure 2. Construction of the proposed model.
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Figure 3. Hardware implementation of the proposed model.

the hardware implementation example of the first transmitter path. The two input complex signals are
first decomposed into magnitude and phase respectively using the coordinate rotation digital computer
(CORDIC) algorithm. Then, the magnitudes of two input signals are compared with the threshold
values to choose the model coefficients. After the process of coefficient selection, the coefficients are
multiplied with or added to their corresponding input magnitudes, and the phase of each signal is then
restored by multiplying with ejθ1(n−i) and ejθ2(n−i), respectively. The output can be obtained by adding
them together.

In the proposed model, the high-order polynomials in COMPM are replaced by MSA functions,
which can save lots of hardware resources.

3. COMPLEXITY REDUCTION IN MODEL EXTRACTION

The proposed model maintains the linear characteristics of the parameters, so the model coefficients
can be extracted by the least squares (LS) method. The proposed model in matrix format is written as

Y
(i)
N×1 = X

(i)
N×RW

(i)
R×1 i = 1, 2 (6)

where i = 1, 2 is used to represent the different transmitter paths. X is the input matrix of the PA; Y
is the corresponding output vector; and W includes all the coefficients. The subscript R is the total
number of the coefficients, and N is the number of samples.

For simplicity, the memory depth M is set to 1, and the number of thresholds is set to 2 as an
example. The model can be expressed as

y(n) =
(
A

(1)
j0 |x1(n)|+B

(1)
j0

)
ejθ1(n) + (A

(2)
j0 |x2(n)|+B

(2)
j0 )ejθ2(n)

= A
(1)
j0 x1(n) +B

(1)
j0 ejθ1(n) +A

(2)
j0 x2(n) +B

(2)
j0 ejθ2(n) (7)

where A
(1)
j0 , B

(1)
j0 , A

(2)
j0 , and B

(2)
j0 are the model coefficients. From (7), it is clear that there are only four

active coefficients used, but because there are four partitions, the total number of coefficients is 16.
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Two sets of input sample sequences are given for example, x1 = [x1(0), x1(1), · · · , x1(7)]T and

x2 = [x2(0), x2(1), · · · , x2(7)]T , and the corresponding output samples sequences of transmitter paths
are denoted as y1 and y2. Fig. 4 shows the segmentation results of the two input samples. The matrix
X(1) can be written as

X(1) =



x1(0) ejθ10 x2(0) ejθ20 0 0 0 0 0 0 0 0 0 0 0 0

x1(1) ejθ11 x2(1) ejθ21 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x1(2) ejθ12 x2(2) ejθ22 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x1(3) ejθ13 x2(3) ejθ23

0 0 0 0 x1(4) ejθ14 x2(4) ejθ24 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x1(5) ejθ15 x2(5) ejθ25

0 0 0 0 0 0 0 0 x1(6) ejθ16 x1(6) ejθ26 0 0 0 0

0 0 0 0 x1(7) ejθ17 x1(7) ejθ27 0 0 0 0 0 0 0 0


where the values of the inactive elements are set as 0. Once the matrix X(1) is obtained, the LS
algorithm can be used directly to extract the coefficients. Since the size of X(1) is too large, the matrix
operations will be costly.

In order to simplify the process of model extraction, the method in [9] can be applied to divide the
large matrix into several small matrices. The model coefficients of the same small area are unique, and
they are completely determined by the input samples that fall in this area and will not be influenced
by other samples.

According to the segmentation results of the two input samples in Fig. 4, large matrix operation
can be broken into four smaller operations as follows:

area 1 :

[
y1(0)

y1(1)

]
=

[
x1(0) ejθ10 x2(0) ejθ20

x1(1) ejθ11 x2(1) ejθ21

]
A

(1)
10

B
(1)
10

A
(2)
10

B
(2)
10



area 2 :

[
y1(4)

y1(7)

]
=

[
x1(4) ejθ14 x2(4) ejθ24

x1(7) ejθ17 x2(7) ejθ27

]
A

(1)
20

B
(1)
20

A
(2)
20

B
(2)
20



area 3 :

[
y1(2)

y1(6)

]
=

[
x1(2) ejθ12 x2(2) ejθ22

x1(6) ejθ16 x2(6) ejθ26

]
A

(1)
30

B
(1)
30

A
(2)
30

B
(2)
30



area 4 :

[
y1(3)

y1(5)

]
=

[
x1(3) ejθ13 x2(3) ejθ23

x1(5) ejθ15 x2(5) ejθ25

]
A

(1)
40

B
(1)
40

A
(2)
40

B
(2)
40


To generalize this property, the matrix representation in (6) can be decomposed into a submatrix

representation 
Y

(i)
1 = X

(i)
1 W

(i)
1

Y
(i)
2 = X

(i)
2 W

(i)
2

· · ·
Y

(i)
K2 = X

(i)
K2W

(i)
K2

(i = 1, 2) (8)
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Figure 4. Segmentation results of the sample sequences.

where Y
(i)
k , X

(i)
k , and W

(i)
k represent the corresponding output vector, the matrix of input signals, and

coefficients vector in the kth area, respectively. The coefficients vector of different areas can be obtained
by LS algorithm respectively. 

W
(i)
1 =

(
X

(i)H
1 X

(i)
1

)−1
X

(i)H
1 Y

(i)
1

W
(i)
2 =

(
X

(i)H
2 X

(i)
2

)−1
X

(i)H
2 Y

(i)
2

· · ·
W

(i)
K2 =

(
X

(i)H
K2 X

(i)
K2

)−1
X

(i)H
K2 Y

(i)
K2

(9)

The complexity of the least squares calculation in (6) is proportional to R2N . When it comes
to (9), the complexity can be expressed by

K2∑
k=1

(
R

K2

)2

Nk =
R2N

K4
(10)

where Nk is the number of samples in area k, which satisfies
K2∑
k=1

Nk = N .

In the proposed model, the number of coefficients will increase slightly, but the computational
complexity will be reduced significantly because the matrix dimension used to extract coefficients for
the LS method becomes smaller.

4. MEASUREMENT RESULTS

In this section, the performance of the proposed model is verified and compared with the COMPM.
The measurement setup of the 2 × 2 MIMO system is shown in Fig. 5. The setup consists of two
vector signal generators (AgilentMXG N5182A and Agilent ESG E4438C), a baseband generator and
channel emulator (Agilent PXB N5106A), two power amplifiers, two couplers, a vector & spectrum
signal analyzer (R&S FSW43), and a PC. Two 3-carrier LTE signals of 60MHz bandwidth signals with
7.1 dB peak-to-average power ratio (PAPR) are considered as the input signals. The output signals
were sampled at a sample rate of 200MHz and were sent at a carrier frequency of 2.3GHz using two
signal generators connected to a computer.
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Figure 5. Block diagram of experimental setup.

To introduce crosstalk, these two RF signals were passed through couplers of −20 dB coupling
factor. After that, the PAs were driven by these RF signals. The output RF signals from couplers were
passed through attenuators and then captured by digital signal analyzer.

To verify the performance of the proposed model, COMPM was measured for comparison. K of
the proposed model used in the experiment is set to 4, and M is set to 3. In the proposed model, K is
used for segmentation. The parameters of Single-Input Single-Output (SISO) model and COMPM were
set to P = 5 and Q = 3. Under the parameter conditions given, all of the models can achieve the best
performance. The linearization performance of different DPD methods is evaluated in terms of NMSE
and ACPR. They are summarized in Table 1 and Table 2. Fig. 6 shows the power spectral density of
the two PAs’ output signals. In this paper, the hardware complexity of the proposed has been evaluated
by Floating Point Operations (FLOPs). It has been calculated and listed in Table 1. From the tables,
it can be seen that the proposed model can achieve nearly the same ACPR and NMSE as the COMPM
with about 70% reduction of FLOPs. Compared with SISO model, the ACPR of the proposed model
is improved by about 5 dB/3 dB, and the NMSE is improved by 14 dB/10 dB with the FLOPs reduced
from 272 to 168. The experimental results have proved the effectiveness of the proposed model.
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Figure 6. Power spectral density of various DPD methods’ output for different PAs. (a) PA1, (b) PA2.
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Table 1. DPD results for different methods.

Models ACPR(PA1) (dBc) ACPR(PA2) (dBc) FLOPs

w/o DPD −33.44 −33.23 −36.69 −35.33 /

SISO DPD −44.21 −43.30 −42.64 −42.83 272

COMPM −48.91 −48.36 −45.60 −46.88 568

proposed −48.48 −48.42 −45.05 −47.81 168

Table 2. NMSE for different methods.

Models NMSE(PA1) (dB) NMSE(PA2) (dB)

w/o DPD −18.96 −16.62

SISO DPD −20.16 −18.50

COMPM −34.23 −28.43

proposed −34.13 −28.44

5. CONCLUSION

In this paper, a modified magnitude-selective affine function-based model is proposed for the
linearization of power amplifiers in MIMO systems, which can compensate for the crosstalk and
nonlinear distortion effectively. This model can also reduce the hardware complexity significantly. The
performance of the proposed model has been verified by experimental results. The experimental results
show that the proposed model can achieve the ACPR and NMSE performance close to the COMPM
with the 70% reduction of FLOPs. It is predictable that low cost hardware implementation and great
linearization performance make the proposed model a competitive candidate for MIMO DPD solutions
in the future wireless systems.
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